
Routing with a Markovian Metric to Promote Local Mixing

Yunnan Wu∗, Saumitra M. Das†, Ranveer Chandra∗

∗Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399.
yunnanwu,ranveer@microsoft.com

†School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907.
smdas@purdue.edu

November 8, 2006

Technical Report
MSR-TR-2006-158

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Routing with a Markovian Metric
to Promote Local Mixing
Yunnan Wu∗, Saumitra M. Das†, Ranveer Chandra∗.

∗Microsoft Research, One Microsoft Way, Redmond, WA 98052.{yunnanwu,ranveer}@microsoft.com
†School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907.smdas@purdue.edu

Abstract— Routing protocols have traditionally been based on
finding shortest paths under certain cost metrics. A conventional
routing metric models the cost of a path as the sum of the costs
on the constituting links. This paper introduces the concept of a
Markovian metric, which models the cost of a path as the cost of
the first hop plus the cost of the second hop conditioned on the
first hop, and so on.

The notion of the Markovian metric is fairly general. It is
potentially applicable to scenarios where the cost of sending a
packet (or a stream of packets) over a link may depend on the
previous hop of the packet (or the stream). Such scenario arises,
for instance, in a wireless mesh network equipped withlocal
mixing, a recent link layer advance. This scenario is examined
as a case study for the Markovian metric. The local mixing
engine sits between the routing and MAC layers. It maintains
information about the packets each neighbor has, and identifies
opportunities to mix the outgoing packets via network coding
to reduce the transmissions in the air. We use a Markovian
metric to model the reduction of channel resource consumption
due to local mixing. This leads to routing decisions that can
better take advantage of local mixing. We have implemented
a system that incorporates local mixing and source routing
using a Markovian metric in Qualnet. The experimental results
demonstrate significant throughput gain and resource saving.

I. I NTRODUCTION

Network codingrefers to a scheme where a node is allowed
to generate output data by mixing (i.e., computing certain
functions of) its received data. The broadcast property of the
wireless medium renders network coding particularly useful.
Consider nodesv1, v2, v3 on a line, as illustrated in Figure 1.
Supposev1 wants to send packetx1 to v3 via v2 andv3 wants
to send packetx2 to v1 via v2. A conventional solution would
require 4 transmissions in the air (Figure 1(a)); using network
coding, this can be done using 3 transmissions (Figure 1(b)).
The key here is that a single broadcast transmission ofx1⊕x2

(the bitwise XOR of the two packets) presentsx2 to node
v1 who knowsx1, and x1 to nodev3 who knowsx2. This
technique was termedphysical piggybackingby Wu et al. [1]
because the two packets are combined into one, without even
increasing the size of the packet. It looks as ifx1 andx2 are
getting a shared ride in the air.

It is not hard to generalize Figure 1 to a chain of nodes. For
packet exchanges between two wireless nodes along a line,
the consumed channel resource could potentially be halved
with physical piggybacking. Wu et al. further showed a simple
distributed implementation that can realize such advantages
in practice. Specifically, each wireless router can examineits
local buffer and mix a left-bound packet with a right-bound

packet (here “left” and “right” are in the relative sense). Such a
mixture packet can be demixed by the left and right neighbors.

v1 v3v2

x1 x1

x2x2

(a)

v1 v3v2
x1

x1⊕x2

x2

(b)

Fig. 1. (a) The conventional solution requires 4 transmissions to exchange
two packets betweenv1 andv3 via a relay nodev2. (b) Using network coding,
two packets can be exchanged in 3 transmissions [1].

Generalizing [1], Katti et al. [2] recently presented a
framework for taking advantage of physical piggybacking to
improve the efficiency of unicasting in multi-hop wireless
networks. In their approach, each node snoops on the medium
and buffers packets it heard. A node also informs its neighbors
which packets it has overheard. This allows nodes to know
roughly what packets are available at each neighbor (i.e., “who
has what?”). Knowing “who has what” in the neighborhood, a
node examines its pending outgoing packets and decides how
to form output mixture packets, with the objective of most
efficiently utilizing the medium.

These prior studies result in a link layer enhancement
scheme in the networking stack. As illustrated in Figure 2, the
local mixing engine sits above the MAC layer (e.g., 802.11)
and below the network layer. Given the routing decisions, the
local mixing engine tries to identify opportunities for physical
piggybacking. Experimental results in [2] demonstrate the
usefulness of local mixing in improving the link layer effi-
ciency. The gain of this technique, however, critically depends
on the traffic pattern in the network. This motivates the
following question: Can we make intelligent routing decisions
that maximize the benefits offered by the local mixing engine?

In this paper we focus on wireless mesh networks (i.e., static
multi-hop wireless networks), which find useful applications

MAC (e.g., 802.11)

Network (Routing)

Local Mixing

Selecting routes to
maximize the benefit
of local mixing

Fig. 2. The big picture. The local mixing engine sits between the network
layer and the MAC layer and thus presents an enhanced link layer to the
network layer. This paper develops routing solutions that can better take
advantage of the local mixing engine.

v1 v2 v3

v4 v5 v6

v7 v8 v9

Gateway
to wired
network

Fig. 3. An example mesh networking scenario. There are 9 mesh access
points andv1 is a gateway to the wired network. The connectivity graph is
shown in the figure. Assume currently there are two long-term background
flows, v3 → v2 → v1 andv1 → v4 → v7. Suppose we want to find a good
routing path fromv1 to v9.

in metro-area public Internet access, community wireless
networks, and transient networks (e.g., disaster relief).State-
of-the-art routing protocols for wireless mesh networks have
traditionally been based on finding shortest paths under certain
cost metrics. The simplest path metric is the hop count along
the path. Later on, various link quality metrics have been
proposed for static wireless mesh networks. These metrics
include for example, the per-hop round-trip time (RTT), the
expected transmission count (ETX) [3], and the expected
transmission time (ETT) [4].

A natural thought is to modify the link metrics to take into
account the effect of the local mixing engine in reducing the
transmissions over the air. This, however, is not straightfor-
ward. Consider the example setting illustrated in Figure 3.
There are two long-term flows in the network,v3 → v2 → v1

andv1 → v4 → v7. We want to find a good routing path from
v1 to v9. Due to the existence of the local mixing engine, the
route v1 → v2 → v3 → v6 → v9 is a good solution because
the packets belonging to this new flow can be mixed with
the packets belonging to the opposite flowv3 → v2 → v1,
resulting in improved resource efficiency. To encourage using
such a route, can linkv2 → v3 announce a lower cost? There
are some issues in doing so, because a packet fromv5 that
traversesv2 → v3 may not share a ride with a packet from
v3 that traversesv2 → v1, although a packet fromv1 that
traversesv2 → v3 can.

We see from this example that in the presence of the local
mixing engine, assessing the channel resource incurred by a
packet transmission requires some context information about
where the packet arrives from. For example, we can say that
given the current traffic condition, the cost for sending a packet
from v2 to v3 that previously arrives fromv1, is smaller. The
key observation here is the need to define link cost based on
some context information. More generally, this motivates the
concept of aMarkovian metric.

A Markovian metric introduces context information into the
cost modelling. The cost of sending a packet (or a stream of
packets) across a link is now allowed to depend on where
the packet (or the stream) arrived from. The cost of a path
is modelled as the cost of the first hop plus the cost of the
second hop conditioned on the first hop, and so on. Due
to this decomposition structure, the dynamic programming

principle still applies and thus finding the shortest path with
a Markovian metric can still be done in polynomial time. In
a practical network, support for the Markovian metric can be
added easily into an existing routing framework that uses a
conventional routing metric.

The concept of the Markovian metric is explained in a
general context in Section II. After reviewing local mixing
in Section III, in Section IV we examine how to design a
specific Markovian metric to maximize the benefit of local
mixing. Section V presents the experimental results.

II. M ARKOVIAN METRIC

A conventional routing metric models the cost of a path
as the sum of the costs on the individual links. A Markovian
metric introduces context information into the cost modelling.
The cost of sending a packet (or a stream of packets) across
a link is now allowed to depend on where the packet (or the
stream) arrived from.

Definition 1 (Markovian Metric):
Consider a pathP = v0 → v1 → . . . → vk. A Markovian
metricmodels the cost of a path as the sum of the conditional
costs on the links:

cost(P)
∆
=cost(v0 → v1) + cost(v1 → v2|v0 → v1) + . . .

+ cost(vk−1 → vk|vk−2 → vk−1). (1)

Herecost(b → c|a → b) denotes the cost of sending a packet
from b to c, conditioned on that the packet arrived atb via a.

The conventional routing metric can be viewed as a special
case of the Markovian metric where all the conditional link
costs are equal to their unconditional counterparts. The decom-
position relation (1) is reminiscent of the decomposition of
the joint probability distribution of random variables forming
a Markov chain into a product of the conditional probabilities.
Thus, a Markovian metric to an unconditional metric is like a
Markov chain to a memoryless sequence of random variables.

A. The Dot Graph Representation

Suppose we are given a set of unconditional link costs
Wuncon and a set of conditional link costsWcon. For ease
in notation, we usewi,j to denote an unconditional link
cost cost(vi → vj) and wi,j,k to denote a conditional link
cost cost(vj → vk|vi → vj). We now discuss a graphical
representation of these costs, which we call thedot graph.1

Denote the original graph byG and the resulting dot graph
by Ġ. For the example network in Figure 3, the graphical
representation of the link costs is illustrated in Figure 4.In
this example, we assume each unconditional link cost is 1 and
there are two conditional costs,w1,2,3 = 0.5 andw7,4,1 = 0.5.
For instance, herecost(v2 → v3|v1 → v2) < cost(v2 → v3)

1A dot graph is a generalization of theline graph, a well known repre-
sentation in graph theory. Given a graphG = (V, E), the line graphL(G)
is a graph whose node set isE and whose edge set comprises the set of all
ordered edge pairs(e, e′) such thate’s end point is equal toe′’s start point.
The dot graph, however, may contain significantly less edges than the line
graph, if there are only a few conditional link costs.

v1 v2 v3

v4 v5 v6

v7 v8 v9

e1,2

e2,1

e2,3

e3,2

w1,2,3

w1,4

0

0 w2,1

e4,1 e1,4

e7,4 e4,7

w4,1

0

0

w1,2

w7,4,1

Fig. 4. The dot graph representation of a collection of conditional and
unconditional link costs, for the example graph in Figure 3.

because a packet fromv2 to v3 that arrived fromv1 can be
mixed with the existing traffic in the flowv3 → v2 → v1.

First, we introduce a dot for each directed link in the original
graph, which “splits” the original link into two halves. Note
that there is a one-to-one correspondence between the linksin
the original graphG and the dots inĠ. With slight abuse of
notation, we refer to these dots as the names for the links in
G; for example, the dot that splits the link fromv1 to v2 is
referred to ase1,2. Therefore,Ġ has|V (G)|+ |E(G)| nodes.

Second, for each conditional link costcost(vj → vk|vi →
vj) in the given setWcon, we draw an edge from the doteij to
the dotejk. These edges, together with the edges generated by
splitting the original links, constitute the edge set of thedot
graph. To distinguish from the edges in the original graph,
we call an edge in the dot graph awire. Therefore,Ġ has
2|E(G)| + |Wcon| wires.

Third, we associate a cost label with each wire inĠ. The
cost of a wire from a physical nodevi ∈ V (G) to a dot
ei,j ∈ V (Ġ) is the given unconditional cost of the link,wij .
The cost of a wire from a dotei,j ∈ V (Ġ) to a physical node
vj ∈ V (G) is 0. The cost of a wire from a dotei,j ∈ V (Ġ) to
another dotej,k ∈ V (Ġ) is wi,j,k, the given conditional cost
of the link.

In general, we allow the coexistence of a conditional cost
and unconditional cost for the same link, e.g.,cost(b → c|a →
b) and cost(b → c). We assume the conditional link cost is
always less than or equal to its corresponding unconditional
link cost. This is without loss of generality because we
can always define the unconditional cost on a link as the
maximum of the corresponding conditional link costs. The
meaning is intuitive: The unconditional link cost represents
a conservative estimate of the cost incurred; given further
context information, the cost may be lower. For example, in
Figure 4, w1,2,3 = 0.5 < w2,3 = 1; intuitively, there is a
“short cut” from e1,2 to e2,3.

B. Minimum Cost Routing Using a Markovian Metric

Intuitively, the dot graph models the existence of short cuts
at various places in the network. It is easy to see that a path
in the dot graphĠ maps into a route in the original network
and the cost of the route is just the total cost along the path

in Ġ. For instance, consider a pathP1 from v1 to v9 in Ġ:

v1 → e1,2 → e2,3 → v3 → e3,6 → v6 → e6,9 → v9.

This corresponds to the physical routev1 → v2 → v3 → v6 →
v9. The cost of the path is:w1,2 +w1,2,3 +w3,6 +w6,9 = 3.5.
In comparison, consider the pathP2:

v1 → e1,4 → v4 → e4,7 → v7 → e7,8 → v8 → e8,9 → v9.

This corresponds to the physical routev1 → v4 → v7 → v8 →
v9, which has a cost of 4. Therefore,P1 is better thanP2.

More generally, to find the minimum cost route between two
physical nodes, we just need to apply a shortest path algorithm
over the dot graph. For example, with Dijkstra’s algorithm,
the complexity isO(|V (Ġ)|2). Note that we can remove the
unnecessary dots iṅG; specifically, we can introduce a dot
ei,j only if there is a need to express a related conditional link
cost, i.e., whenWcon includes a costwi,j,∗ or w∗,i,j . (Here we
use the symbol∗ as a wildcard.) By doing so, the number
of vertices in the dot graph can be reduced toO(|V (G)| +
min{|E(G)|, 2|Wcon|}).

Proposition 1 (Min-Cost Routing w/ Markovian Metric):
Given a set of unconditional link costsWuncon and a set of

conditional link costsWcon, the minimum cost routing from
a source nodes to a sink nodet can be found by running a
shortest path algorithm over the dot graph. This can be done
in complexityO

(

(|V (G)| + min{|E(G)|, 2|Wcon|})
2
)

.

C. Adaptive Routing in a Practical Network

In a practical network, routing decisions are made to reflect
the changes in the topology and sometimes the traffic as well.
The dot graph representation makes it particularly easy to see
how to modify the existing routing protocols for a Markovian
metric system. Essentially, a physical nodevi needs to play
several characters in a distributed routing algorithm, including
those of its neighboring dots who do not physically exist.
In particular, we could divide the computation responsibility
as follows. Let each physical nodevi be responsible for the
outgoing wires ofvi and its incoming dotse∗,i. For example,
in Figure 4, physical nodev2 implements the computation
involving wirese∗,2 → v2, v2 → e2,∗, e1,2 → e2,3.

Routing protocols can be classified as either proactive or
reactive. Proactive protocols attempt to maintain up-to-date
routes within the network, so that a route is readily available
when a packet needs to be forwarded. Reactive protocols, on
the other hand, do not maintain up-to-date topological informa-
tion about the network. When a source needs to find a route
to a destination node, the source initiates a route discovery
procedure, typically done by flooding. In the following we
examine how to support a Markovian metric in representative
routing algorithms, starting with the proactive protocols.

1) Link State Routing:Example protocols in this category
include OLSR [5] and LQSR [3]. In link state routing, each
router measures the cost to each of its neighbors, constructs
a packet including these measurements, sends it to all other
routers, and computes the shortest paths locally. In essence,
the complete topology and the link costs are experimentally

measured and distributed to each router. Then each router can
locally run a shortest path algorithm to decide the routes.

To support a Markovian metric, minimal changes are needed
in a link state routing system. Each router can just measure
the unconditional and conditional costs for the links/wires it
is responsible for and broadcast the measurements to all other
routers. Take nodev2 in Figure 4 as an example. Herev2

needs to measure the unconditional costs to each neighbor, as
well as the conditional costs of the formcost(ei,2 → e2,j).

2) Distance Vector Routing:An example protocol in this
category is DSDV [6]. In distance vector routing (also known
as the Bellman-Ford algorithm), each router maintains a table
(i.e., a vector) giving the best known cost to reach each
destination and which interface to use to get there. There tables
are updated by exchanging information with the neighbors.

Let us start with a first-cut solution. Once everyT millisec-
onds each router sends each neighbor a list of its estimated
minimum cost to reach each destination. Since each physical
nodevi is also playing the roles of its incoming dots, a first-
cut implementation will aggregate the tables fromvi and its
incoming dots. For example, consider nodev2 in Figure 4. It
is also responsible for playing the roles ofe1,2, e3,2, e5,2.
Thus the aggregated table will include one minimum cost
from ei,2 to vj , for i = 1, 3, 5 and all other destinations.
Denotecost(ei,2 vj) the estimated minimum cost to reach
destinationvj . Note that in this case,

cost(e3,2 vj) = cost(e5,2 vj) = cost(v2 vj).

Similar scenarios may happen whenever the conditional cost
cannot lead to a lower route to the givenvj . In these scenarios,
sending bothcost(e3,2 vj) and cost(e5,2 vj) is waste-
ful. To remove such redundancy, we includecost(v2 vj),
and cost(e∗,2 vj) only if it is lower thancost(v2 vj).
This results in an improved implementation.

3) Source-Routed On-Demand Route Discovery:Example
protocols in this category include DSR [7] and DSR with ETX
[8]. Here a source node that wishes to discover a route to
a destination broadcasts a route request packet. This route
request contains the address of the destination, the source
node’s address, and a unique identifier. When a node forwards
a route request, it appends not only its own address, but also
information about the related link costs. Specifically, suppose
the route discovery packet has traversed a pathv0 → v1 →
. . . → vk to vk. Thenvk sends a route request that contains:

cost(v0 → v1), cost(v1 → v2|v0 → v1), . . . ,

cost(vk−1 → vk|vk−2 → vk−1), (2)

and alsocost(vk → vj |vk−1 → vk) for neighborvj (because
vj may not know how to compute this). If the physical medium
is broadcast medium, thenvk can send a single broadcast
packet that contains (2) andcost(vk → vj |vk−1 → vk) for all
neighborsvj . When a nodevk receives a request it has already
forwarded, it forwards it again only if the accumulated cost
to a neighborvj is better than the best which it has already
forwarded with the request ID. The link metrics are included
in the route replies sent back to the source.

v0

v4

v2
v1

v3

v0

v4

v2
v1

v3

Has: x1 , x3
Wants: x4

Has: x1 , x4
Wants: x3

Has: x2, x3, x4
Wants: x1, x5

Has: x1 , x5
Wants: x2

Fig. 5. The local mixing problem is about optimizing the formation of
mixture packets at a local wireless router, knowing “who has what” and “who
wants what” in a neighborhood.

4) Hop-by-Hop On-Demand Route Discovery:An example
protocol in this category is AODV [9]. Similar to the source-
routed on-demand discovery, here the route request initiated
by the source is flooded through the network. However, each
route request no longer contains the entire route. Instead,each
route request received byv contains only the cumulative cost
from s to v. Each nodev maintains for each incoming neighbor
u the minimum accumulated cost froms via u to v, denoted
by cost(s u → v). When a nodev receives a request, it
forwards the request to a neighborv′ only if the total cost to
v′ is reduced. The routing table entries to the destination will
be created after the destination sends back a route reply to the
source, following the sequence of best previous hops.

III. L OCAL M IXING : A REVIEW

The gist of the packet exchange example in Figure 1 is as
follows: At certain moment,v1 has x1; v2 has x1 and x2;
v3 hasx2. Thus a mixture packetx1 ⊕ x2 can be demixed
into x1 and x2 respectively atv3 and v1. In the following
we use the namesource packetto refer to a packet such as
x1 which was originally generated by a source node, and the
namemixture packetto refer to a packet such asx1 ⊕ x2.

More generally, we may have a situation illustrated in
Figure 5. A wireless router knows the source packets each
neighbor has (i.e., “who has what”). It also knows “who wants
what” because these are the packets in its output queue that
it is supposed to forward to the neighbors. Then it can decide
locally how to optimize the formation of mixture packets.
A heuristical approach for generating the mixture packets
is used in [2], which takes the packet at the head of the
output packet queue, and steps through the packet queue
to greedily add packets to the mixture, while ensuring the
neighbors can successfully demix. For example, in Figure 5,
there are five packets in the output queue,x1, . . . ,x5; assume
a lower indexed packet is an earlier packet. Then the greedy
procedure will use three transmissions:x1 ⊕x2, x3 ⊕x4, x5.
However, there is a better solution:x1 ⊕ x3 ⊕ x4, x2 ⊕ x5.
A mathematical abstraction of the optimized formation of the
mixture packets – thelocal mixing problem– is studied by
Wu et al. [10] from an information theoretic point of view.
Under the assumption that each neighbor discards the received
packets that are polluted by sources it does not have or want,
the optimal mixing is characterized.

Why would a node have packets meant for others? In
Figure 1, nodev1 has packetx1 because it is the previous
hop of x1. More generally, due to the broadcast nature of the
wireless medium, neighboring nodes may overhear packets.
For example, in Figure 5, packetx1 may follow a path
. . . v4 → v0 → v3 . . .; v1 and v2 may have overheardx1

whenv4 sent it tov0.
How does a node get to know “who has what”? First, note

that a node can obtain some partial information about its
neighbors’ data availability in a passive fashion. For example,
nodev2 may infer that nodev1 holds packetx1 if v1 recently
received packetx1 or a mixture packet involvingx1 from v1,
or if v2 recently heardv1 acknowledging the receipt of packet
x1. This suffices for packet exchanges such as Figure 1.

Passive inference does not incur any additional overhead.
However, using passive inference alone, a node may only
obtain a limited view of the neighbors’ data availability.
Katti et al. [2] extended this by proposing two techniques
to obtain more information about local data availability: (i)
Let each node explicitly announce the packets it currently
has to its neighbors; (ii) let a node guess whether a neighbor
has overheard a packet using information about the channel
reception. In the former, each node can periodically compose
reception reportsto announce the packets it has overheard.
The reception reports may also be piggybacked with ordinary
packets. To implement guessing, nodes conduct measurement
about the packet success probabilities to its neighbors and
exchange the measurement results in the neighborhood. Such
measurement and report functionality may already be needed
by a routing protocol based on the expected transmission count
(ETX) [8]. The guessing technique of [2] can be explained via
Figure 5. Supposev4 sends a source packetx1 to v0 without
mixing; supposev0 knows thatv1 can receive a packet fromv4

with probability 0.8. Whenv0 receivedx1 sent byv4, v0 can
infer that v1 has overheard the packet with probability 0.8.
Guessing may result in a more up-to-date knowledge about
“who has what”; however, if the guess is wrong, the neighbor
may fail to demix a packet intended for it.

A mixture packet may be intended for more than one
receiver. Due to the limited collision avoidance mechanism
for broadcast in 802.11, the mixture packet is sent as a unicast
packet addressed to one of the receivers [2]. A consequence of
this is that the sender cannot be sure whether the other intended
receivers received the packet reliably. We call such an issue
the “missing ACKs” problem. The missing ACKs problem
can be addressed by explicitly generating ACKs in addition
to the ACK in 802.11 MAC [2]. Nodes can keep track of the
packets that were sent but have not yet been acknowledged
and retransmit packets after time-out.

Next, we briefly review the key data structures and opera-
tions in implementation.

Each packet has a variable length header that includes:
(i) the IDs of the source packets being mixed and their
respective receivers, (ii) some piggybacked ACKs, (iii) some
piggybacked reception reports. If no data packets were sent
after a certain amount of time, then a dedicated control packet

containing ACKs and reception reports is broadcast.
Each node maintains three separate buffers,

OverheardBuffer, ReceivedBuffer, SentBuffer,
holding respectively the source packets that the node
overheard, received, or sent. Upon receiving a packet, the
packets in these three buffers are used for demixing. Reception
reports describe new content in theOverheardBuffer.
ACKs describe new content in theReceivedBuffer.

Each node maintains aWhoHasWhatTable whose entries
are of the form “nodevi has source packetxj with probability
p”. Upon receiving a packet, theWhoHasWhatTable is
updated according to the local mixing header. If the received
packet is a source packet, guessing is also performed based
on the measured channel reception probabilities.

After a packet is sent, the ingredient source packets are
moved from the output queue into theSentBuffer. In
addition, timer events are inserted so that the sent packets
will be moved back to the output queue for retransmission if
the ACKs does not arrive after a certain time threshold.

IV. M ARKOVIAN METRIC FORLOCAL M IXING

In this section we examine how to use a Markovian metric
to maximize the benefit of local mixing. The central issue here
is to properly define the link costs and compute them. Let us
begin with the unconditional link metrics. A popular link qual-
ity metric in the literature is the expected transmission count
(ETX) [8]. This metric estimates the number of transmissions,
including retransmissions, needed to send a unicast packet
across a link. It is obtained by measuring the loss probabilities
of broadcast packets between pairs of neighboring nodes.

The ETX metric can be viewed as a characterization of
the amount of resource consumed by a packet transmission.
With the local mixing engine, several packets may share a ride
in the air. Naturally, the passengers can share the airfare.In
effect, each participating source packet is getting a discount.
Such discount, however, cannot be accurately modelled by an
unconditional metric such as ETX, because the applicability
of the discount depends on the previous hop of the packet. We
propose a conditional link metric called theexpected resource
consumption(ERC), which models the cost saving due to local
mixing. Consider a packet sent in the air. If it is a mixture
of k source packets, then each ingredient source packet is
charged1

k
the resource consumed by the packet transmission.

The resource consumed by the transmission could be measured
in terms of, e.g., air time, or consumed energy.

A. Computation of Expected Resource Consumption (ERC)

We now explain how to compute the ERC. Each node
maintains aWireInfoTable. Each row of the table contains
the measured statistics about a wire, sayei,j → ej,k, which
crosses the current nodevj . The packets forwarded by the
current node can be classified into categories associated with
the wires. For each wire category, we collect the total number
of packets sent and the total resource consumed in a sliding
time window. The total resource consumption is obtained by
adding the resource consumption for each sent packet. A

simple charging model is used in our current implementation.
For example, if a source packet across wireei,j → ej,k is sent
in a mixture of 3 packets, we set the resource consumption of
this source packet as1/3 of the ETX of link ej,k.2

To implement the sliding window computation efficiently,
we quantize the time axis into discrete slots of equal length.
We use a sliding window ofN slots. For each wire, we
maintain a circular buffer ofN bins; at any time, one of the
N bins is active. At the start of each slot, we shift the active
bin pointer once and clear the statistics in the new active bin.
Each time a packet is transmitted in the air, we update the
statistics in the current active bin accordingly.

To evaluate the conditional link metric for a certain wire
ei,j → ej,k, we first obtain the ERC for each slot, sayn, as:

ercn :=
Resource consumed by pkts sent in slotn

of packets sent in slotn
. (3)

Then we compute the ERC for the wire as the weighted
average of the ERCs for the slots:

ERC :=

N−1
∑

n=0

αnercn; αn = αN−1−n

(

1 − α

1 − αN

)

. (4)

Here the parameterα is the forgetting factor for old observa-
tions. Old observations receive lower weights.

What if few or no packets were sent during a certain slot
across the wire? We propose to conduct experiments using
probing packets. The experiments are done via simulation,
without disturbing the existing traffic. Specifically, we main-
tain a virtual output queue in addition to the output queue.
Whenever we insert an actual packet into the output queue,
we insert it into the virtual output queue as well. Whenever
the MAC layer asks for an output packet, we also invoke the
mixing algorithm on the virtual output queue to generate a
mixture packet. (In fact, for the virtual output queue, we just
need to decide on how to mix; no actual mixing is needed.)
The result of the mixing decision is only used to update the
statistics for the wires being tested.

B. Interpretation of the ERC Metric

The ERC link metric estimates the local resource con-
sumption while considering the effects of local mixing. The
resulting Markovian path metric thus estimates the total re-
source consumed by the route. Resource efficiency is an im-
portant performance metric for resource-constrained wireless
networks, e.g., sensor networks. It is also well aligned with
the overall system throughput in interference limited wireless
networks, because resource saved in one flow may be used to
improve the throughput for other flows.

The ERC metric emphasizes the maximization of network-
wide utility more than the maximization of the individual flow
utility (e.g., latency). By using a weighted combination oftwo
Markovian metrics, one capturing the network-wide utilityand
the other the individual flow utility, we can adjust the balance

2We could also use ETT [4] in lieu of ETX. The ETT metric is equal to
the ETX metric divided by the raw link rate. When the radios operate at the
same physical link rate, the two metrics are essentially equivalent.

between the two objectives. For example, occasionally there
may be a longer route with a lower resource consumption than
a shorter route; in this case, we may define a Markovian metric
as the weighted combination of the ERC metric and the ETT
(expected transmission time) metric:

cost(ejk|eij)
∆
= βERC(ejk|eij) + (1 − β)ETT(ejk), (5)

where the ETT metric is computed by dividing the ETX metric
by the raw link data rate (see [4]). It is up to the applications
or certain network rule-makers to decide how to balance these
two considerations.

C. Route Stabilization via Randomized Route Holding

In order to model the resource reduction due to local mixing,
the ERC takes the traffic load into account. Could this cause
oscillation in the routing decisions? We provide some intuitive
reasoning below. Recall that the discounts offered by the local
mixing engine exist only when the flows cross in certain ways.
Stated alternatively, the advertised discounts have restrictions
and hence only a few qualifying flows may find them attrac-
tive. Since the discounts benefit all the flows whose packets are
being mixed, there is incentive for flows to route in a certain
cooperative manner that are mutually beneficial. Presumably, if
the flows try such a mutually beneficial arrangement for some
time, they will confirm the discounts and tend to stay in the
arrangement. Such an arrangement is analogous to the Nash
equilibrium in game theory, where no player wants to deviate
from its current strategy given all other players’ strategies.
However, a complication is that there can be more than one
equilibrium. We want the flows to make dynamic decisions
that eventually settle down to one equilibrium. To facilitate
this, we propose the following strategy. To prevent potential
route oscillations, we require each flow to stay for at least
Thold duration after each route change, whereThold is a random
variable. The randomization of the mandatory route holding
time Thold is used to avoid flows from changing routes at
the same time. In addition, after the mandatory route holding
duration, the node switches to a new route only if the new
route offers a noticeably smaller total cost.

V. EVALUATION OF MARKOVIAN METRIC ROUTING

We implemented the local mixing engine, a link-state source
routing protocol, the support for Markovian metric routing,
and the support for the ERC link matric in Qualnet 3.9.5, a
widely used event-driven simulator for wireless networks.The
resulting integrated system will be referred to as Markovian
Metric Source Routing (MMSR) in the following. We imple-
mented local mixing for MMSR as a shim layer between the
routing and MAC (802.11) layers. The routing layer exposes
the packet delivery probabilities to the local mixing layer(for
guessing “who has what”). The local mixing layer exposes the
ERC statistics to the routing layer.

The basic routing framework can be viewed as a simplified
version of LQSR [3], a source-routed link-state protocol
that supports link quality (unconditional) metrics. Similar to
LQSR, every 2 seconds, each node sends a message that carries

0

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Time (seconds)

R
o

u
te

 c
h

o
se

n

LQSR-LM

MMSR

Fig. 6. Scenario 1: Mixing performance. State 1 denotes an optimal mixing
route whereas 0 denotes a suboptimal mixing route.

information about the links from this node; this message
floods throughout the network. Such a message, called the
WireInfo message, describes the unconditional and condi-
tional link costs. Here ETX is used as the unconditional link
cost, and ERC is used as the conditional link cost. To compute
ERC, we useN = 10 slots, each of length0.5s. If there
are 25 or more packets crossing a wire, then the ERC of the
slot is computed as the average according to (3). Otherwise,
a simplified rule (instead of maintaining the virtual output
queue) is applied in our current implementation. Specifically,
for a wireeij → ejk, if there are less than 25 packets crossing,
then we examine the number of unmixed packetsy in the
reverse wireekj → eji. If y ≥ 25, then we set the ERC as
0.5 of the ETX (50% discount); otherwise, we set the ERC as
the ETX (no discount). The ERCs of the slots are combined
with exponentially delaying weights, usingα = 0.8 in (4).

A conditional link cost, saycost(ejk|eij), is included in the
message only if it is at least 5% less than the ETX forejk.
Each node maintains aLinkCache that stores its current
picture of the dot graph. TheLinkCache is updated upon
receiving eachWireInfo message. Since the conditional link
costs are load-dependent and may not be periodically reported,
stale conditional link cost entries are removed after time-out.

The route stabilization techniques of Section IV-C are used.
The mandatory holding timeThold is drawn uniformly from
[1, 3] (sec). When a source packet is just generated, if the
current mandatory holding time has elapsed, then the node
looks for the optimal route in the dot graph. If the cost of the
new route is at least 5% lower than that of the old route, then
the new route is adopted. Otherwise, the old route is still used.

The simulations use the 802.11a MAC and a realistic signal
propagation model. All radios operate at a nominal physical
layer rate of 54Mbps. We use CBR flows in the evaluation.

A. Impact on Local Mixing: MMSR vs. LQSR+LM

We first demonstrate the performance of local mixing in
MMSR compared to LQSR+LM, which uses the unconditional
ETX metric for routing. This evaluation is performed in a 9-
node grid network topology.

1) Mixing performance evaluation:Consider the network
shown in Figure 3 with an existing flowv3 v1. After 3
seconds,v1 initiates a flow tov9. There are many possible
routes that this flow can take, but only one (v1−v2−v3−v6−
v9) is optimal in terms of the resource consumption. Figure 6
shows how often this optimal route is chosen by LQSR+LM
and MMSR, respectively. As the results show, MMSR causes
the flow v1 v9 to choose the mutually beneficial route

Scenario Mixed (MMSR) Mixed (LQSR+LM)

S1 20,366 1,593
S2 39,576 24,197

TABLE I

GAIN FROM MMSR COMPARED TOLQSR+LM.

0

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Time (seconds)

R
o

u
te

 c
h

o
se

n

LQSR-LM

MMSR

Fig. 7. Scenario 2: Mixing performance. State 1 denotes an optimal mixing
route whereas 0 denotes a suboptimal mixing route.

v1 − v2 − v3 − v6 − v9 and this route is chosen 100% of the
time, resulting in maximized mixing. Intuitively, the existing
flow v3 v1 creates a discount in terms of the conditional
ERC metric in the opposite direction, which attractsv1 to
choose routev1 − v2 − v3 − v6 − v9. Once the flows start in
both directions, they stay together and mix because both see
discounts. As shown in Table I, MMSR increases the number
of mixed packets in this scenario by12× in comparison to
LQSR+LM.

Next, we examine whether mixing can take place effectively
over longer routes. We thus now consider an existing flow
v9 v1 and examine the choice made by a new flowv1 v9

originating 3 seconds later. The results are shown in Figure7.
Notice that LQSR+LM only chooses the optimal route for less
than half of the time, whereas MMSR quickly locks on to the
opposite route due to the conditional discounts. In this case,
mixing is possible at 3 separate nodes and thus the number of
mixed packets increase.

Note that MMSR is crucial when specific small opportuni-
ties exist for mixing (e.g. at one node in scenario S1). In this
case it is unlikely that LQSR+LM will be able to exploit such
opportunities. In scenario S2, mixing is possible at many hops
and by pure random choice, LQSR+LM can also locate a non-
trivial number of mixing opportunities. However, MMSR still
provide a 63% increase in mixed packets over LQSR+LM.

2) Stabilizing routes:As mentioned in Section IV-C, an
important but subtle requirement for a Markovian metric is to
avoid potential route oscillations. Occasionally, if two flows
that can potentially mix (such asv9 v1 andv1 v9) start
right at the same time and choose different routes, they could
be attracted to each other repeatedly and potentially oscillate.
As described in Section IV-C, we deal with this by holding
each route for a random amount of time. Figure 8 shows the
route evolution when both flows start exactly together. Due
to the randomized route holding strategy, the oscillation is
resolved quickly (in 7 seconds in this case), allowing the two
flows to mix effectively. Note that such pathological cases
are unlikely to occur frequently; nonetheless, the randomized
route holding strategy ensures correct operation even in such
pathological cases.

0

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Time (seconds)

R
o

u
te

 c
h

o
se

n

MMSR

Fig. 8. MMSR randomization provides robustness to oscillations. State 1
denotes an optimal mixing route whereas 0 denotes a suboptimal mixing route.

3) Summary: In summary, we find that MMSR reliably
chooses the optimal mixing route and the ERC discounting
system, together with the randomized route holding strategy,
facilitate flows to settle down into a mutually beneficial
equilibrium in a distributed and dynamic manner.

B. Impact on Overall Performance

We next study how MMSR compares to LQSR+LM as well
as basic LQSR in terms of the overall performance.

1) Grid Network Scenario:We continue with the 9-node
grid network scenario and evaluate the performance with three
flows: (1)v9 v1, (2) v1 v9, and (3) v3 v1. Each
flow begins randomly between 50–60 seconds into the simu-
lation. We evaluate the performance of LQSR, LQSR+LM and
MMSR for this scenario for different input loads. The results
are depicted in Figure 9. It is observed that LQSR cannot sus-
tain the throughput imposed by the input flows to the network
as the load increases. MMSR provides significant throughput
gains compared to LQSR (up to 47%) and LQSR+LM (up to
15%). This is because not only does MMSR allow subsequent
flows to mix with existing flows, it explicitly tries to maximize
mixing. In contrast, without the Markovian metric routing,
flows mix essentially by chance. In the example, the flow
1-2-3-6-9 is mixed with 9-6-3-2-1 with MMSR, due to the
mutually beneficial discounts enjoyed by both flows.

Figure 10 gives the amount ofresourcesaved by using
MMSR. MMSR consistently provides reduction of packet
transmissions of over 10,000 packets across a wide variety of
traffic demands. Indeed, as discussed in Section IV-B, MMSR
functions by directly trying to minimize the resource usage.
Another observation from Figure 10 is that the saved trans-
missions reduce as network load increases. This is counter-
intuitive since more packets should indicate more mixing
opportunities. However, this occurs because of thecapture
effect in the 802.11 MAC layer which is amplified at high
loads. Due to this, packets from only one node (the capturing
node) fill queues for large durations of time without allowing
other traffic to come in. This reduces mixing opportunities at
high load. This problem can potentially be addressed through
a better MAC layer design that avoids capture.

We also considered a pathological case to stress MMSR,
where all three flows start exactly at the same time. We found
that even in this case, throughput gains were still significant,
although lower. The convergence time of MMSR is quite fast
(on the order of 4–7 seconds); as a result, there is some time
for long-lived flows to fully benefit from mixing.

Our results exemplify that local mixing itself cannot provide

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

3821 4585 5731 6550 7642 9170 11463

Offered traffic load (Kbps)

T
h

ro
u

g
h

p
u

t (
K

b
p

s)

LQSR

LQSR-LM

MMSR

Fig. 9. Throughput comparison of MMSR, LQSR+LM and LQSR.

3000

13000

23000

33000

43000

53000

63000

3821 4585 5731 6550 7642 9170 11463

Offered traffic load (Kbps)

T
ra

n
sm

is
si

o
n

s
sa

ve
d

 (P
ac

ke
ts

)

LQSR-LM

MMSR

Fig. 10. Transmissions saved through mixing in MMSR and LQSR+LM.

the best achievable performance and a protocol such as MMSR
can help local mixing achieve its potential.

2) Office Mesh Scenario:We now consider how MMSR
performs in a wireless office scenario [11]. Figure 11 gives
the topology, which is the actual topology of the mesh testbed
at Microsoft Research (with 42 nodes). We set nodes 1–7
as servers offering different services and the remaining 35
nodes as clients. Note that a client may contact servers other
than the closest one, because many servers provide a special-
ized service (e.g., Email/Source Control/Domain Controller).
Eriksson et al. [11] observed that the traffic in an office
network is predominantly download (i.e., server client).
Taking this observation into account, we simulated a traffic
pattern consisting of 7 download connections, one from each
server. Each connection starts and ends at random times in the
simulation.

The results are depicted in Table II. The results show that
MMSR outperforms LQSR+LM by 16% and LQSR by 17% in
throughput. MMSR also saved 15% of the transmissions (i.e.,
MMSR sentm source packets using85%m transmissions).

������ ����		
	�		�

� 		�		� 		
 	� 	
� 	
� 	
		� 	
� 	
�	

 	��
� �� 	�
 ��	���	 	�		�� ��	�

	
�	��
���	��
�
� 	��

	

 	
�	�	
� �
 �����

376

38

40

42

39

41

35

31

33

7

4 24 22 17 12

8

2

1

5

29

3

28

32

34

36

25
27

30
20

21

18

19

14

15

10

11 9

26

23

16 13

~
32m

~73m

Server

Client

Fig. 11. The topology of the mesh testbed.

Scenario Avg. Client Throughput % Transmissions Saved

LQSR 865 Kbps -
LQSR+LM 877 Kbps 3%
MMSR 1014 Kbps 15%

TABLE II

MMSR PERFORMANCE IN AN OFFICE MESH SCENARIO.

Note that the extent of gain depends on the traffic patterns
and the scale of the network. A larger network with more
hops would provide enhanced mixing and limit interference
between flows. Additionally, if clients generate both uploads
and downloads this can also provide additional gains from
local mixing. At any rate, MMSR can exploit mixing oppor-
tunities if and when they occur.

C. Summary of Results
In summary, our evaluation of MMSR has shown that

Markovian metrics are useful and practically applicable. The
results showed that a Markovian metric can significantly
improve the benefit of an advanced link-layer technique:
local mixing. We found that MMSR can tolerate pathological
cases (that can potentially cause oscillations) with a good
convergence time, while in typical scenarios adapting flows
quickly to routes that have good mixing opportunities. Finally,
evaluations in an office mesh scenario also confirmed the
benefit offered by MMSR and hence the Markovian metric.

VI. CONCLUSION

In this paper we introduced the notion ofMarkovian metric.
A Markovian metric models the cost of a path as the sum of
the individual conditional link costs, in a way analogous to
the decomposition of the joint probability of a Markov chain
into a product of conditional probabilities. We introducedthe
dot graphto represent the conditional and unconditional link
costs. We showed that minimum cost routing with a Markovian
metric can be done by finding a shortest path in the dot
graph; hence it has polynomial complexity. We showed how to
support a Markovian metric in representative routing protocols.

As a case study, we demonstrated how to use a Markovian
metric to make routing decisions that better take advantageof
local mixing. We proposed the expected resource consumption
(ERC) as a conditional link metric that models the cost
reduction due to local mixing. Markovian metric routing using
the ERC link metric maximizes the total resource consumption
of a path, leading to improved system efficiency. With such
a Markovian metric, flows tend to self-organize themselves
toward an equilibrium arrangement that can benefit each other.
We proposed techniques that can facilitate flows to settle down
into an equilibrium.

The local mixing engine, on its own, can improve the link
layer efficiency; it identifies mixing opportunities on the fly
and takes advantage of them if they are present. Routing
with a Markovian metric makes local mixing more useful
as it creates more mixing opportunities. This can translateto
notable resource saving and throughput gain, as confirmed by
simulations.

As a next step, we plan to develop a prototype system on
a mesh testbed and conduct more extensive experiments. We
plan also to investigate mobile scenarios.

v1 v2 v4v3

e1

e2

e3

e4

e5

e6

Fig. 12. An example multi-radio mesh network.

Outlook: The potential of Markovian metric extends be-
yond promoting local mixing. For example, we envision it to
be useful for routing in a multi-radio mesh network. Using
multiple radios is a promising technique for improving the
capacity of mesh networks. However, similar to the case for
local mixing, maximizing the benefit of multiple radios calls
for intelligent routing decisions that are aware of multiple
radios and best take advantage of them.

Consider the example multi-radio mesh network illustrated
in Figure 12. Here each node is equipped with two radios,
which are tuned to two orthogonal channels. This creates
two orthogonal (bidirectional) links between two neighbors;
in Figure 12 we denote these two orthogonal links by a solid
line and a dashed line, respectively. Suppose we want to find
a route fromv1 to v4. If there is low background traffic, then
a route that alternates between the two radios is a good route,
because the forwarding and receiving of packets can happen
in parallel at a node for the flow, instead of competing with
each other. A Markovian metric fits naturally in this scenario.
To encourage using different radios in adjacent hops, we can
set the the conditional cost ofcost(e3|e1) to a lower value
than the unconditional cost of transmitting on linke3.

Furthermore, a Markovian metric can potentially provide a
unified solution for a wireless network equipped with multiple
radiosand local mixing.

ACKNOWLEDGMENTS

The authors thank their colleagues J. Padhye, P. A. Chou
and V. Padmanabhan for their help and the useful discussions.

REFERENCES

[1] Y. Wu, P. A. Chou, and S.-Y. Kung, “Information exchange inwireless
networks with network coding and physical-layer broadcast,” in Proc.
39th Annual Conf. Inform. Sci. and Systems (CISS), Baltimore, MD,
Mar. 2005, [Online] http://research.microsoft.com/∼yunnanwu.

[2] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” inSIGCOMM.
Pisa, Italy: ACM, Sept. 2006.

[3] R. Draves, J. Pahdye, and B. Zill, “Comparison of routing metrics for
static multi-hop wireless networks,” inSIGCOMM, Sept. 2004.

[4] ——, “Routing in multi-radio, multi-hop wireless mesh networks,” in
MobiCom. ACM, 2004.

[5] T. Clausen and P. Jacquet, “Optimized link state routing protocol
(OLSR),” Oct. 2003, Internet Engineering Task Force (IETF), RFC3626.

[6] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector protocol (DSDV) for mobile computers,”ACM SIG-
COMM: Computer Communications Review, vol. 24, no. 4, Oct. 1994.

[7] D. B. Johnson and D. A. Maltz, “Dynamic source routing in adhoc
wireless networks,” inMobile Computing, T. Imielinski and H. Korth,
Eds. Kluwer Academic Publishers, 1996, ch. 5, pp. 153–181.

[8] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “High throughput
path metric for multi-hop wireless routing,” inMobiCom. ACM, 2003.

[9] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (AODV) routing,” July 2003, IETF, RFC3561.

[10] Y. Wu, J. Padhye, R. Chandra, V. Padmanabhan, and P. A. Chou, “The
local mixing problem,” inProc. Information Theory and Applications
Workshop. San Diego, CA: Univ. of California, San Diego, Feb. 2006.

[11] J. Eriksson, S. Agarwal, P. Bahl, and J. Padhye, “Feasibility study of
mesh networks for all-wireless offices,” inMobiSys. Upsalla, Sweden:
ACM/USENIX, June 2006.

