
SecPAL: Design and Semantics
of a Decentralized Authorization Language

Moritz Y. Becker Cédric Fournet Andrew D. Gordon

September 2006
(Revised on 7 February 2007)

Technical Report
MSR–TR–2006–120

Microsoft Research
Roger Needham Building
7 J.J. Thomson Avenue
Cambridge, CB3 0FB

United Kingdom

SecPAL Specification Use Terms
c©2007 Microsoft Corporation. All rights reserved.

By using or providing feedback on the SecPAL Specification (comprised of the SecPAL formal model,
SecPAL Schema Specification, and SecPAL Schema) (“Specification”), you agree to the following terms
and conditions:

• Microsoft hereby grants you permission to copy and review the Specification (a) as a reference to assist you in planning
and designing your implementation of the Specification and (b) to provide feedback on the Specification to Microsoft. You
may not modify, create derivative works from, subset, or extend the Specification.

• Provided that you comply with all the terms of use for the Specification, Microsoft agrees to grant you a royalty-free
license under reasonable and non-discriminatory terms and conditions to Microsoft patents that Microsoft deems necessary
to implement the Specification. You must comply with and implement all normative portions of the Specification in its
entirety; you may not elect to implement only portions of the Specification. Unless otherwise specifically mentioned all
sections of the Specification should be considered normative.

• You have no obligation to give Microsoft any suggestions, comments or other feedback (“Feedback”) relating to the
Specification. If you do give Microsoft Feedback on the Specification, You agree: (a) Microsoft may freely use, reproduce,
license, distribute, and otherwise commercialize Your Feedback in any Microsoft product or service offering; (b) you also
grant third parties, without charge, only those patent rights necessary to implement those portions of the Specification that
incorporate your Feedback; and (c) you will not give Microsoft any Feedback (i) that you have reason to believe is subject
to any patent, copyright or other intellectual property claim or right of any third party; or (ii) subject to license terms
which seek to require any Microsoft product offering incorporating or derived from such Feedback, or other Microsoft
intellectual property, to be licensed to or otherwise shared with any third party.

THE SPECIFICATION IS PROVIDED “AS IS”, AND MICROSOFT MAKES NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

MICROSOFT WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE , IMPLEMENTATION OR DISTRIBUTION OF ANY
IMPLEMENTATION OF THE SPECIFICATION.

The name and trademarks of Microsoft may NOT be used in any manner, including advertising or publicity pertaining to the
Specification or its contents without specific, written prior permission from Microsoft. Title to copyright in the Specification will
at all times remain with Microsoft. No other rights are granted by implication, estoppel or otherwise.

The SecPAL project is a collaboration between the Advanced Technology Incubation Group of Mi-
crosoft’s Chief Research and Strategy Officer and Microsoft Research, Cambridge.

The members of the Incubation Group are Blair Dillaway, Gregory Fee, Jason Hogg, Larry Joy,
Brian LaMacchia, John Leen, and Jason Mackay.

SecPAL: Design and Semantics
of a Decentralized Authorization Language

Moritz Y. Becker Cédric Fournet Andrew D. Gordon

September 2006
(Revised on 7 February 2007)

Abstract

We present a declarative authorization language. Policies and credentials are expressed using pred-
icates defined by logical clauses, in the style of constraint logic programming. Access requests are
mapped to logical authorization queries, consisting of predicates and constraints combined by con-
junctions, disjunctions, and negations. Access is granted if the query succeeds against the current
database of clauses. Predicates ascribe rights to particular principals, with flexible support for delega-
tion and revocation. At the discretion of the delegator, delegated rights can be further delegated, either
to a fixed depth, or arbitrarily deeply.

Our language strikes a careful balance between syntactic and semantic simplicity, policy expres-
siveness, and execution efficiency. The syntax is close to natural language, and the semantics consists
of just three deduction rules. The language can express many common policy idioms using con-
straints, controlled delegation, recursive predicates, and negated queries. We describe an execution
strategy based on translation to Datalog with constraints and table-based resolution. We show that this
execution strategy is sound, complete, and always terminates, despite recursion and negation, as long
as simple syntactic conditions are met.

Contents
1 Introduction 1

2 A Simple Example 3

3 Syntax and semantics 4

4 Authorization queries 7

5 Policy idioms 9

6 Translation into constrained Datalog 13

7 Evaluation of authorization queries 15

8 Evaluation of authorization queries 17

9 Discussion 18

A Assertion expiration and revocation 20

B Proof graph generation 21

C Auxiliary definitions and proofs 22
C.1 Authorization queries . 22
C.2 Translation into constrained Datalog . 23
C.3 Datalog evaluation with tabling . 24
C.4 Evaluation of authorization queries . 28

1 Introduction
Many applications depend on complex and changing authorization criteria. Some domains, such as
electronic health records or eGovernment, require that authorization complies with evolving legislation.
Distributed systems, such as web services or shared grid computations, involve frequent ad hoc collabo-
rations between entities with no pre-established trust relation, each with their own authorization policies.
Hence, these policies must be phrased in terms of principal attributes, asserted by adequate delegation
chains, as well as traditional identities. To deploy and maintain such applications, it is essential that all
mundane authorization decisions be automated, according to some human readable policy that can be
refined and updated, without the need to change (and re-validate) application code.

To this end, several declarative authorization management systems have been proposed; they feature
high-level languages dedicated to authorization policies; they aim at improving scalability, maintenance,
and availability by separating policy-based access control decisions from their implementation mecha-
nisms. Despite their advantages, these systems are not much used. We conjecture that the poor usability
of policy languages remains a major obstacle to their adoption.

In this paper, we describe the design and semantics of SecPAL, a new authorization language that im-
proves on usability in several respects. The following is an overview of the main technical contributions
and features of SecPAL.

Expressiveness Our design is a careful composition of three features for expressing decentralized
authorization policies: delegation, constraints, and negation.

• Flexible delegation of authority is the essence of decentralized management.

We introduce a novel delegation primitive (“can say”) that covers a wider spectrum of delegation
variants than existing authorization languages, including those specifically designed for flexible
delegation such as XrML [19], SPKI/SDSI [25] and Delegation Logic (DL) [37].

• Support for domain-specific constraints is also important, but existing solutions only consider a
specific class of constraints [11, 10, 54] or are very restrictive to preserve decidability and tractabil-
ity [39, 8], and disallow constraints required for expressing idioms commonly used in practice.

We provide a set of mild, purely syntactic safety conditions that allow an open choice of constraints
without loss of efficiency. SecPAL can thus express a wide range of idioms, including policies with
parameterised roles and role hierarchies, separation of duties and threshold constraints, expiration
requirements, temporal and periodicity constraints, policies on structured resources such as file
systems, and revocation.

• Negation is useful for expressing idioms such as separation of duties, but its liberal adoption can
make policies hard to understand, and its combination with recursion can cause intractability and
semantic ambiguity [53].

We introduce a syntax for authorization queries, separate from policy assertions. We permit nega-
tion within queries (even universally quantified negation), but not within assertions. This separa-
tion avoids intractability and ambiguity, and simplifies the task of authoring policies with negation.

Clear, readable syntax The syntax of some policy languages, such as XACML [44] and XrML, is
defined only via an XML schema; policies expressed directly in XML are verbose and hard to read and
write. On the other hand, policy authors are usually unfamiliar with formal logic, and would find it hard
to learn the syntax of most logic-based policy languages (e.g. [37, 34, 21, 40, 29, 39, 8]). SecPAL has a
concrete syntax consisting of simple statements close to natural language. (It also has an XML schema
for exchanging statements between implementations.)

1

Succinct, unambiguous semantics Languages such as XACML, XrML, or SPKI/SDSI [25] are spec-
ified by a combination of lengthy descriptions and algorithms that are ambiguous and, in some cases,
inconsistent. Post-hoc attempts to formalise these languages are difficult and reveal their semantic am-
biguities and complexities (e.g. [31, 30, 1]).

For example, it was recently proved that the evaluation algorithms of XrML and the related MPEG
REL are not guaranteed to terminate.1 Moreover, the analysis in [38] shows that the algorithm for
SPKI/SDSI is incomplete; in fact, the language is likely to be undecidable due to the complex structure
of SPKI’s authorization tags.

Logic-based languages have a formal semantics and, thus, are unambiguous. In many cases, how-
ever, the semantics is specified only indirectly, by translation to another language with a formal seman-
tics, such as Datalog [34, 21, 40], Datalog with Constraints [39, 8] or Prolog [37]. Instead, for the
purpose of succinct specification, we define three deduction rules that directly specify the meaning of
SecPAL assertions, independently of any other logic.

Effective decision procedures We show that SecPAL query evaluation is decidable and tractable (with
polynomial data complexity) by translation into Datalog with Constraints. We describe a deterministic
tabling resolution algorithm tailored to efficient evaluation of SecPAL authorization queries with con-
straints and negation, and present correctness and complexity theorems for the evaluation of policies that
meet our syntactic safety conditions.

Extensibility SecPAL builds on the notion of tunable expressiveness introduced in [7] and defines
several extension points at which functionality can be added in a modular and orthogonal way. For
example, the parameterized verbs, the environment functions, and the language of constraints can all be
extended by the user without affecting our results.

In combination, we believe that SecPAL achieves a good balance between syntactic and semantic
simplicity, policy expressiveness, and execution efficiency for decentralized authorization. Although
system implementation is not the subject of this paper, SecPAL has been implemented and deployed as
the core authorization mechanism of a large system-development project, initially targeted at grid ap-
plications [24]. The system provides a PKI-based, SOAP-encoded infrastructure for exchanging policy
assertions. It also includes a policy-editing tool and support for invoking authorization queries from C#.
It relies on an instance of our evaluation algorithm specialized for some fixed, domain-specific verbs and
constraints. The development of a formal semantics for SecPAL, in parallel with its experimental use for
access control within a distributed computing environment, has led to many improvements in its design.

Contents The rest of the paper is organized as follows. Section 2 illustrates SecPAL on a simple
example. Section 3 defines the syntax and semantics of SecPAL assertions. Section 4 defines SecPAL
authorization queries, built as conjunctions, disjunctions and negations of facts and constraints. Section 5
shows how to express a variety of authorization policy idioms in SecPAL. Sections 6, 7, and 8 give our
algorithm for evaluating authorization queries and establish its formal soundness and completeness.
SecPAL assertions are first translated into constrained Datalog (Section 6); the resulting program is
then evaluated using a deterministic variant of resolution with tabling (Section 7) for a series of Datalog
queries obtained from the SecPAL query (Section 8). Section 9 summarizes related works and concludes.

Appendix A explains how assertions are filtered to remove expired or revoked assertions prior to
evaluating authorization queries. Appendix B discusses representations of proof trees. Appendix C
provides auxiliary definitions and all proofs.

1Personal communication, Vicky Weissman.

2

2 A Simple Example
To introduce the main features of SecPAL, we consider an example in the context of a simplified grid

system. Access control in grids typically involves interaction between several administrative domains
with individual policies and requires attribute-based authorization and delegation [56, 16, 55].

Assume that Alice wishes to perform some data mining on a computation cluster. To this end, the
cluster needs to fetch Alice’s dataset from her file server. A priori, the cluster may not know of Alice,
and the cluster and the file server may not share any trust relationship.

We identify principals by names Alice, Cluster, FileServer, . . . ; these names stand for public
signature-verification keys in the SecPAL implementation.

Alice sends to the cluster a request to run the command dbgrep file://project/data plus a
collection of tokens for the request, expressed as three SecPAL assertions:

STS says Alice is a researcher (1)
FileServer says Alice can read file://project (2)
Alice says Cluster can read file://project/data if

currentTime()≤ 07/09/2006
(3)

Every assertion is XML-encoded and signed by its issuer. Assertion (1) is an identity token issued by
STS, some security token server trusted by the cluster. Assertion (2) is a capability for Alice to read
her files, issued by FileServer. Assertion (3) delegates to Cluster the right to access a specific file on
that server, for a limited period of time; it is specifically issued by Alice to support her request.

Before processing the request, the cluster authenticates Alice as the requester, validates her tokens,
and runs the query Cluster says Alice can execute dbgrep against the set of assertions formed by its
local policy plus these tokens. (In practice, an authorization query table on the cluster maps user requests
to corresponding queries.) Assume the local policy of the cluster includes the assertions:

Cluster says STS can say0 x is a researcher (4)
Cluster says x can execute dbgrep if x is a researcher (5)

Assertions (4) and (5) state that Cluster defers to STS to say who is a researcher, and that any researcher
may run dbgrep. (More realistic assertions may well include more complex conditions.) Here, we
deduce that Cluster says Alice is a researcher by (1) and (4), then deduce the target assertion by (5).

The cluster then executes the task, which involves requesting chunks of file://project/data
hosted on the file server. To support its requests, the cluster forwards Alice’s credentials. Before granting
access to the data, the file server runs the query Cluster can read file://project/data against its
local policy plus Alice’s tokens. Assume the local policy of the server includes the assertion

FileServer says x can say∞ y can read file if
x can read dir, file� dir, markedConfidential(file) 6= Yes

(6)

Assertion (6) is a constrained delegation rule; it states that any principal x may delegate the right to
read a file, provided x can read a directory dir that includes the file and the file is not marked as con-
fidential. The first condition is a conditional fact (that can be derived from other assertions), whereas
the last two conditions are constraints. Here, by (3) and (6) with x = Alice and y = Cluster, the first
condition follows from (2) and we obtain that FileServer says Cluster can read file://project/
data provided that FileServer successfully checks the two constraints currentTime() ≤ 07/09/2006
and markedConfidential(file://project/data) 6= Yes.

In the delegation rules (4) and (6), the “can say” assertions have different subscripts: in (4), can say0
prevents STS from re-delegating the delegated fact; conversely, in (6), can say∞ indicates that y can re-
delegate read access to file by issuing adequate can say tokens.

3

Assume now that the cluster distributes the task to several computation nodes, such as Node23. In
order for Node23 to gain access to the data, Cluster may issue its own delegation token, so that the
query FileServer says Node23 can read file://project/data may be satisfied by applying (6)
twice, with x = Alice then x = Cluster. Alternatively, FileServer may simply issue the assertion

FileServer says Node23 can act as Cluster (7)

With this aliasing mechanism, any assertion FileServer says Node23 verbphrase follows from File-
Server says Cluster verbphrase.

3 Syntax and semantics
We give a core syntax for SecPAL. (The full SecPAL language provides additional syntax for grouping
assertions, for instance to delegate a series of rights in a single assertion; these additions can be reduced
to the core syntax. It also enforces a typing discipline for constants, functions, and variables, omitted
here.)

Assertions An authorization policy is specified as a set of assertions (called assertion context) of the
form

A says fact if fact1, ..., factn,c

where the facts are sentences that state properties on principals, defined below. In the assertion, A is the
issuer; fact1, . . . , factn are the conditional facts; and c is the constraint. Assertions are similar to Horn
clauses, with the difference that (1) they are qualified by some principal A who issues and vouches for
the asserted claim; (2) facts can be nested, using the verb phrase can say, by means of which delegation
rights are specified; and (3) variables in the assertion are constrained by c, a first-order formula that
can express e.g. temporal, inequality, path and regular expression constraints. The following defines the
grammar of facts.

e ::= x (variables)
| A (constants)

pred ::= can read [-] (user-defined predicates with “holes”)
| has access from [-] till [-]
| . . .

D ::= 0 (no re-delegation)
| ∞ (with re-delegation)

verbphrase ::= pred e1 ... en for n = Arity(pred)≥ 0
| can sayD fact (delegation)
| can act as e (principal aliasing)

fact ::= e verbphrase

Constants represent data such as IP addresses, URLs, dates, and times. We use A, B, C as meta vari-
ables for constants, usually for denoting principals. Variables only range over the domain of constants —
not predicates, facts, claims or assertions. Predicates are verb phrases (intended to express capabilities
of a subject) of fixed arity with holes for their object parameters; holes may appear at any fixed position
in verbphrases, as in e.g. has access from [−] till [−]. In the grammar above, pred e1 ... en denotes the
verb phrase obtained by inserting the arguments e1 up to en into the predicate’s holes. We say that a fact
is nested when it includes a can say, and is flat otherwise. For example, the fact Bob can read f is flat,
but Charlie can say0 Bob can read f is nested.

4

Constraints Constraints c range over any constraint domain that extends the basic constraint domain
shown below. Basic constraints include numerical inequalities (for e.g. expressing temporal constraints),
path constraints (for hierarchical file systems), and regular expressions (for ad hoc filtering):

f ∈ {+,−,CurrentTime, ...} (built-in functions)
e ::= x

| A
| f (e1, ...,en) for n = Arity(f)≥ 0

pattern ∈ RegularExpressions
c ::= True

| e1 = e2
| e1 ≤ e2 (numerical inequality)
| e1 � e2 (path constraint)
| e matches pattern (regular expression)
| not(c) (negation)
| c1,c2 (conjunction)

Additional constraints can be added without affecting decidability or tractability. The only require-
ment is that the validity of ground constraints is decidable in polynomial time. (A phrase of syntax is
ground when it contains no variables.)

We use a sugared notation for constraints that can be derived from the basic ones, e.g. False, e1 6= e2,
and c1 or c2. We usually omit the True constraint, and also omit the if in assertions with no conditional
facts, writing A says fact for A says fact if True. We write keywords, function names and predicates in
sans serif, constants in typewriter font, and variables in italics. We use a vector notation to denote a
(possibly empty) list of items, e.g. writing f (~e) for f (e1, ...,en).

For a given constraint c, we write |= c iff c is ground and valid. The following defines ground validity
within the basic constraint domain. The denotation of a constant A is simply [[A]] = A. The denotation
of a function f (~e) is defined if ~e is ground, and is also a constant, but may depend on the system state
as well as [[~e]]. For example, [[CurrentTime()]] returns a different constant when called at different times.
However, we assume that a single authorization query evaluation is atomic with respect to system state.
That is, even though an expression may be evaluated multiple times, we require that its denotation not
vary during a single evaluation.

|= True
|= e1 = e2 iff [[e1]] and [[e2]] are equal constants
|= e1 ≤ e2 iff [[e1]] and [[e2]] are numerical constants and [[e1]]≤ [[e2]]
|= e1 � e2 iff [[e1]] and [[e2]] are path constants and

[[e1]] is a descendant of, or equal to, [[e2]]
|= e matches pattern iff [[e]] is a string constant that matches pattern
|= not(c) iff |= c does not hold
|= c1,c2 iff |= c1 and |= c2

Safety Conditions The expressiveness of an authorization language depends to a large extent on the
supported classes of constraints. However, adding a wide range of different constraint classes to a
language is nontrivial: even if the constraint classes are tractable on their own, mixing them can result in
an intractable or even undecidable language. Therefore, constraints have so far been either excluded or
heavily restricted, to an extent that not even our basic constraint domain would be allowed. For example,
RTC [39] allows only a subclass of unary constraints, and Cassandra [8] allows only constraint-compact

5

constraint domains. [54] only consider set constraints, and in [10], only temporal periodicity constraints
are considered. Furthermore, these systems require complex operations such as satisfiability checking
or existential quantifier elimination that can be hard to implement, although ease of implementation is
crucial for the success of a standard.

We observe that a wide range of constraints are used in authorization policies, but that their variables
are always instantiated before constraint evaluation. Accordingly, rather than restricting constraints,
SecPAL’s safety conditions only ensure that constraints will be ground at runtime, once all conditional
facts have been satisfied. Our approach facilitates high expressiveness while preserving decidability
and tractability, and also simplifies the evaluation algorithm (Section 7), thus making it much easier to
implement.

Definition 3.1. (Assertion safety) Let A says fact if fact1, ..., factn,c be an assertion. Then the assertion
is safe iff the following conditions hold:

• all conditional facts are flat;

• all variables in c also occur somewhere else in the assertion;

• if fact is flat, all variables in fact also occur in a conditional fact.

For example, the assertion A says x can read Foo if x 6= Alice is unsafe because x does not occur
in any conditional fact, but it can be made safe by inserting e.g. the conditional fact x is a user. The
assertion A says x can say0 y can read z if x 6= Alice is safe because x occurs not only in the constraint,
but also in the fact.

The safety condition guarantees that the evaluation of the Datalog translation, as described in Sec-
tion 7, is complete and terminates in all cases.

Semantics To be practically usable, a policy language should not only have a simple, readable syntax,
but also a simple, intuitive semantics. We now describe a formal semantics consisting of only three
deduction rules that directly reflect the intuition suggested by the syntax. This proof-theoretic approach
enhances simplicity and clarity, far more than if we had instead taken the constrained Datalog translation
in Section 6 as the language specification.

Let a substitution θ be a function mapping variables to constants and variables, and let ε be the
empty substitution. Substitutions are extended to constraints, predicates, facts, claims, assertions etc. in
the natural way, and are usually written in postfix notation. We write vars(X) for the set of free variables
occurring in a phrase of syntax X .

Each deduction rule consists of a set of premises and a single consequence of the form AC ,D |= A
says fact where vars(fact) = /0 and the delegation flag D is 0 or ∞. Intuitively, the deduction relation
holds if the consequence can be derived from AC . If D = 0, no instance of the rule (can say) occurs in
the derivation.

(cond)

(A says fact if fact1, ..., factk where c) ∈ AC
AC ,D |= A says factiθ for all i ∈ {1..k} |= cθ vars(factθ) = /0

AC ,D |= A says factθ

(can say)
AC ,∞ |= A says B can sayD fact AC ,D |= B says fact

AC ,∞ |= A says fact

(can act as)
AC ,D |= A says B can act as C AC ,D |= A says C verbphrase

AC ,D |= A says B verbphrase

6

Rule (cond) allows the deduction of matching assertions in AC with all free variables substituted by
constants. All conditional facts must be deducible with the same delegation flag D as in the conclusion.
Furthermore, the substitution must also make the constraint ground and valid.

Rule (can say) deduces an assertion made by A by combining a can say assertion made by A and
a matching assertion made by B. This rule applies only if the delegation flag in the conclusion is ∞.
The matching assertion made by B must be proved with the delegation flag D read from A’s can say
assertion. In other words, if D is 0, then the matching assertion must be proved without any application
of the (can say) rule.

Rule (can act as) asserts that all facts applicable to C also apply to B, when
B can act as C is derivable. A corollary is that can act as is a transitive relation.

Corollary 3.2. If AC ,D |= A says B can act as B′ and AC ,D |= A says B′ can act as B′′ then AC ,D |= A
says B can act as B′′.

The following propositions state basic properties of the deduction relation; they are established by
induction on the rules.

Proposition 3.3. If AC ,D |= A says fact then vars(fact) = /0.

Proposition 3.4. If AC ,0 |= A says fact then AC ,∞ |= A says fact.

Proposition 3.5. If AC 1,D |= A says fact then AC 1∪AC 2,D |= A says fact.

Proposition 3.6. Let AC A be the set of all assertions in AC whose issuer is A. AC ,0 |= A says fact iff
AC A,0 |= A says fact.

Proposition 3.6 implies that if A says fact is deduced from a zero-depth delegation assertion A says
B can say0 fact then the delegation chain is guaranteed to depend only on assertions issued by B. XrML
and DL [37] also support depth restrictions, but these can be defeated as their semantics do not have the
stated property. Section 5 discusses this issue in more detail.

4 Authorization queries
Authorization requests are decided by querying an assertion context (containing local as well as imported
assertions). In SecPAL, authorization queries consist of atomic queries of the form A says fact and
constraints, combined by logical connectives including negation:

q ::= e says fact
| q1, q2
| q1 or q2
| not(q)
| c
| ∃x(q)

Negative conditions enable policies such as separation of duties, threshold and prohibition policies (see
Section 5). However, coupling negation with a recursive language may cause semantic ambiguities [53],
higher computational complexity, or even undecidability [46]. Our solution is based on the observation
that for most policies, negated conditions can be effectively separated from recursion by allowing nega-
tion only in authorization queries. Collecting negations at the level of authorization queries also makes
for clearer policies whose consequences are easier to foresee. Indeed, SecPAL authorization queries

7

could be further extended by even more powerful composition operators such as aggregation (as in Cas-
sandra [7]) or threshold operators (as in RTT [40]), without changing the assertion semantics and without
affecting the complexity results.

We write θ−x to denote the substitution that has domain dom(θ)−{x} and is equivalent to θ on this
domain. The semantics of authorization queries is defined by the relation AC ,θ ` q, as follows:

AC ,θ ` e says fact iff AC ,∞ |= eθ says factθ, and dom(θ)⊆ vars(e says fact)
AC ,θ1θ2 ` q1, q2 iff AC ,θ1 ` q1 and AC ,θ2 ` q2θ1
AC ,θ ` q1 or q2 iff AC ,θ ` q1 or AC ,θ ` q2
AC ,ε ` not(q) iff AC ,ε 0 q and vars(q) = /0

AC ,ε ` c iff |= c
AC ,θ|−x ` ∃x(q) iff AC ,θ ` q

One can easily verify that AC ,θ ` q implies dom(θ) ⊆ vars(q). (Note that vars(∃x(q)) is defined as
vars(q)−{x}.)

Given a query q and an authorization context AC , an authorization algorithm should return the
answer set of all substitutions θ such that AC ,θ ` q. If the query is ground, the answer set is either
empty (meaning “no”) or a singleton set containing the empty substitution ε (meaning “yes”). In the
general case, i.e. if the query contains variables, the substitutions in the answer set are all the variable
assignments that make the query true. For example, the answer set for the query Alice says x can
read Foo contains all assignments to x of principals who can read Foo according to Alice. This returns
more information than just “yes, the query can be satisfied for some x”. Section 8 gives an algorithm for
finding this set of substitutions.

Safety Conditions We now give a safety condition on queries to guarantee that (1) the answer set
includes a finite number of substitutions, given that the assertions in the assertion context are safe; and
(2) subqueries of the form not(q) or c are always ground when they are evaluated, under the assumption
that conjunctive queries are evaluated from left to right (see Section 8).

We first define a deduction relation
 with judgments of the form I
 q : O where q is a query and
I,O are sets of variables. Intuitively, the set I collects the variables that can be assumed to be instantiated
before evaluating q, and I]O collects the variables that are guaranteed to be instantiated after evaluating
q.

fact is flat
I
 e says fact : vars(e says fact)− I

I
 q1 : O1 I∪O1
 q2 : O2

I
 q1, q2 : O1∪O2

I
 q1 : O1 I
 q2 : O2

I
 q1 or q2 : O1∩O2

I
 q : O vars(q)⊆ I
I
 not(q) : /0

vars(c)⊆ I
I
 c : /0

I
 q : O x /∈ I
I
 ∃x(q) : O−{x}

Definition 4.1. (Authorization query safety) An authorization query q is safe iff there exists a set of
variables O such that /0
 q : O.

8

Examples

Safe queries Unsafe queries
A says C can read Foo A says B can say0 C can read Foo
x says y can read f , x = A x = A, x says y can read f
x says A can read f , B says y can read f , x 6= y x says A can read f , B says y can read f , x 6= w
(x says y can read f or y says x can read f), x 6= y (x says y can read f or y says z can read f), x 6= y
x says y can read f , not(y says x can read f) x says y can read f , not(y says z can read f)
not(∃x(A says x can read Foo)) ∃x(not(A says x can read Foo))

Safety can be checked by recursively traversing all subqueries and thereby constructing the set O (which
is uniquely determined by the query and I).

Authorization query tables Conceptually, authorization queries are part of the local policy and should
be kept separate from imperative code. In SecPAL, authorization queries belonging to a local assertion
context are kept in a single place, the authorization query table. This table provides an interface to
authorization queries by mapping parameterized method names to queries. Upon a request, the resource
guard calls a method (instead of issuing a query directly) that gets mapped by the table to an authorization
query, which is then used to query the assertion context.

For example, an authorization query table could contain the mapping:

check-access-permission(x) :
FileServer says x has access from t1 till t2,
t1 ≤ currentTime()≤ t2
not ∃t3, t4(FileServer says x has no access from t3 till t4,

t3 ≤ currentTime()≤ t4)

(8)

When the method check-access-permission is called, the above authorization query (with x instan-
tiated) is evaluated against the assertion context, and the answer is returned to the resource guard, which
can then enforce the policy.

This example features a universally quantified negated statement, encoded by a negated existential
quantifier. It also illustrates how a prohibition policy with a Deny-Override conflict resolution rule can
be written in SecPAL. More elaborate conflict resolution rules such as assertions with different priorities
can also be encoded on the level of authorization queries. Just as with negative conditions, prohibition
makes policies less comprehensible and should be used sparingly, if at all [26, 22].

5 Policy idioms
In this section, we give examples of assertions and queries to show how SecPAL can express a wide
range of policy idioms, in comparison with other authorization languages.

Discretionary Access Control (DAC) The following assertion specifies that users can pass on their
access rights to other users at their own discretion.

FileServer says user can say∞ x can access resource if
user can access resource (9)

For example, if it follows from the assertion context that FileServer says Alice can read file://
docs/ and FileServer says Bob can read file://docs/, then FileServer says Bob can read file://
docs/. Languages with restricted or no recursion such as XACML [44] or Lithium [29] cannot express
such a policy.

9

Mandatory Access Control (MAC) We assume a finite set of users U and a finite set of files S, charac-
terised by the verb phrases is a user and is a file. Additionally, every such user and file is associated with
a label from an ordered set of security levels. The constraint domain uses the function level to retrieve
these labels, and the relation ≤ to represent the ordering. Assertions (10) and (11) below implement the
Simple Security Property and the *-Property from the Bell-LaPadula model [9], respectively.

FileServer says x can read f if
x is a user, f is a file, level(x)≥ level(f)

(10)

FileServer says x can write f if
x is a user, f is a file, level(x)≤ level(f)

(11)

Role hierarchies The can act as verb phrase can express role membership as well as role hierarchies
in which roles inherit all privileges of less senior roles. The following assertions model a part of the
hierarchy of medical careers in the UK National Health Service (NHS).

NHS says FoundationTrainee can read file://docs/ (12)
NHS says SpecialistTrainee can act as FoundationTrainee (13)
NHS says SeniorMedPractitioner can act as SpecialistTrainee (14)
NHS says Alice can act as SeniorMedPractitioner (15)

The first assertion assigns a privilege to a role; the second and third establish seniority relations between
roles; and the last assertion assigns Alice the role of a Senior Medical Practitioner. From these assertions
it follows that NHS says Alice can read file://docs/. This example illustrates that SecPAL principals
can represent roles as well as individuals; the principal FoundationTrainee is a role, while the principal
Alice is an individual.

Parameterized attributes Parameterized roles can add significant expressiveness to a role-based sys-
tem and reduce the number of roles [28, 41]. In SecPAL, parameterized roles, attributes and privileges
can be encoded by introducing verb phrases, as in Assertion (16). The following example uses the verb
phrases can access health record of [−] and is a treating clinician of [−].

NHS says x can access health record of patient if
x is a treating clinician of patient (16)

Separation of duties In this simple example of separation of duties, a payment transaction proceeds
in two phases, initiation and authorization, which are required to be executed by two distinct bank man-
agers. The following shows a fragment of the authorization query table. The method can-initiate-
payment(R,P) is called by the resource guard when a principal R attempts to initialize a payment P. If
this is successful, the resource guard adds Bank says R has initiated P to the local assertion context. The
method can-authorize-payment is called when a principal attempts to authorize a payment:

can-initiate-payment(requester,payment) :
Bank says requester is a manager,
not(∃x(Bank says x has initiated payment))

(17)

can-authorize-payment(requester,payment) :
Bank says requester is a manager,
Bank says x has initiated payment,
x 6= requester

(18)

10

Threshold-constrained trust SPKI/SDSI has the concept of k-of-n threshold subjects (at least k out
of n given principals must sign a request) to provide a fault tolerance mechanism. RT T has the language
construct of “threshold structures” for similar purposes [40]. There is no need for a dedicated threshold
construct in SecPAL, because threshold constraints can be expressed directly. In the following example,
Alice trusts a principal if that principal is trusted by at least three distinct, trusted principals.

Alice says x is trusted by Alice if
x is trusted by a, x is trusted by b, x is trusted by c,
a 6= b, b 6= c, a 6= c

(19)

Alice says x can say∞ y is trusted by x if x is trusted by Alice (20)

Hierarchical resources Suppose the assertion

FileServer says Alice can read file://docs/ (21)

is supposed to mean that Alice has read access to the path /docs/ as well as to all descendants of that
path. For example, Alice’s request to read /docs/foo/bar.txt should be granted. To encode this, one
might try to write

FileServer says Alice can read x if x matches file://docs/* (22)

Unfortunately, this assertion is not safe. Instead, we can stick with the original assertion and use the path
constraint � inside queries:

canRead(requester,path) :
FileServer says requester can read path2, path� path2 (23)

The same technique can be used in conditional facts. With the following assertion, users can not only
pass on their access rights, but also access rights to specific descendants; Alice could then for example
delegate read access for file://docs/foo/.

FileServer says user can say∞ x can access path if
user can access path2,
path� path2

(24)

The support of hierarchical resources is a very common requirement in practice, but existing policy
languages cannot express the example shown above. For example, in RTC [39], the � relation cannot
take two variable arguments, because it only allows unary constraints in order to preserve tractability.
Again, it is SecPAL’s safety conditions that allow us to use such expressive constraint domains without
losing efficiency.

Attribute-based delegation Attribute-based (as opposed to identity-based) authorization enables col-
laboration between parties whose identities are initially unknown to each other. The authority to assert
that a subject holds an attribute (such as being a student) may then be delegated to other parties, who in
turn may be characterised by attributes rather than identity.

In the example below, a shop gives a discount to students every Friday. Both this temporal period-
icity requirement and the expiration date of the student attribute can be expressed by a constraint. The
authority over the student attribute is delegated to holders of the university attribute, and authority over

11

the university attribute is delegated to a known principal, the Board of Education.

Shop says x is entitled to discount if
x is a student till date,
currentTime()≤ date, currentDay() = Friday

(25)

Shop says univ can say∞ x is a student till date if univ is a university (26)
Shop says BoardOfEducation can say∞ univ is a university (27)

SPKI/SDSI [25], DL [37], Binder [21], RT [40] and Cassandra [8] can all express attribute-based del-
egation and linked local name spaces. SecPAL makes the delegation step explicit and thus allows for
more fine-grained delegation control, as demonstrated in the following examples of various sorts of del-
egation. There are other general techniques to constrain delegation; for example, Bandmann, Firozabadi
and Dam [4] propose the use of regular expressions to constrain the shape of delegation trees.

Constrained delegation Delegators may wish to restrict the parameters of the delegated fact. Such
policies typically require domain-specific constraints that are not supported by previous languages for
the sake of tractability. In the example below, a Security Token Server (STS) is given the right to issue
tickets for accessing some resource for a specified validity period of no longer than eight hours.

FileServer says STS can say∞ x has access from t1 till t2 if t2− t1≤ 8 hours (28)

The delegation depth in Assertion (28) is unlimited, so STS can in turn delegate the same right to some
STS2, possibly with additional constraints. For example, with Assertion (29) issued by STS, File-
Server accepts tickets issued by STS2 with a validity period of at most eight hours, where the start date
is not before 01/01/2007 (but STS2 may not re-delegate).

STS says STS2 can say0 x has access from t1 till t2 if t1≥ 01/01/2007 (29)

Depth-bounded delegation The verb phrase can say0 fact allows no further delegation of fact, while
can say∞ fact allows arbitrary further delegation. This dichotomy may seem restrictive at first sight.
However, SecPAL can express any fixed integer delegation depth by nesting can say0. In the following
example, Alice delegates the authority over is a friend facts to Bob and allows Bob to re-delegate at most
one level further.

Alice says Bob can say0 x is a friend (30)
Alice says Bob can say0 x can say0 y is a friend (31)

Suppose Bob re-delegates to Charlie with the assertion Bob says Charlie can say∞ x is a friend. Now,
Alice says Eve is a friend follows from Charlie says Eve is a friend. Since Alice does not accept any
longer delegation chains, Alice (in contrast to Bob) does not allow Charlie to re-delegate with Charlie
says Doris can say0 x is a friend.

SPKI/SDSI has a boolean delegation depth flag that corresponds to the 0 or ∞ subscript in can say
but cannot express any other integer delegation depths. In XrML [19] and DL, the delegation depth can
be specified, and can be either an integer or ∞. However, in both languages, the depth restrictions can be
defeated by Charlie:

Charlie says x is a friend if x is a friend2 (32)
Charlie says Doris can say0 x is a friend2 (33)

12

In XrML and DL, Charlie can then re-delegate to Doris via is a friend2, thereby circumventing the depth
specification. The SecPAL semantics prevents this by threading the depth restriction through the entire
branch of the proof; this is a corollary of Proposition 3.6. It would be much harder to design a semantics
with this guaranteed property if the depth restriction could be any arbitrary integer; this is also why
XrML and DL cannot be easily “fixed” to support integer delegation depth that is immune to this kind
of attack.

Width-bounded delegation Suppose Alice wants to delegate authority over is a friend facts to Bob.
She does not care about the length of the delegation chain, but she requires every delegator in the chain
to satisfy some property, e.g. to possess an email address from fabrikam.com. The following assertions
implement this policy by encoding constrained transitive delegation using the can say verb phrase with a
0 subscript. Principals with the is a delegator attribute are authorized by Alice to assert is a friend facts,
and to transitively re-delegate this attribute, but only amongst principals with a matching email address.

Alice says x can say0 y is a friend if
x is a delegator

(34)

Alice says Bob is a delegator (35)
Alice says x can say0 y is a delegator if

x is a delegator,
y possesses Email email,
email matches *@fabrikam.com

(36)

If these are the only assertions by Alice that mention the predicate is a friend or is a delegator, then
any derivation of Alice says x is a friend can only depend on Bob or principals with a matching email
address. As with depth-bounded delegation, this property cannot be enforced in SPKI/SDSI, DL or
XrML.

6 Translation into constrained Datalog
We now give a translation from SecPAL assertion contexts into equivalent constrained Datalog pro-
grams. In Section 7, we then exploit Datalog’s computational complexity properties (polynomial data
complexity) and use translated Datalog program for query evaluation.

Our terminology for constrained Datalog is as follows. (See [15] or [3] for a detailed introduction to
Datalog and [47, 46] for constrained Datalog.) A literal, P, consists of a predicate name plus an ordered
list of parameters, each of which is either a variable or a constant. A literal is ground if and only if
it contains no variables. A clause, written P0 ← P1, . . . ,Pn,c, consists of a head literal, a list of body
literals, and a constraint. We assume the sets of variables, constants, and constraints are the same as for
SecPAL. A Datalog program, P , is a finite set of clauses. The semantics of a program P is the least
fixed point of the standard immediate consequence operator TP .

Definition 6.1. (Consequence operator) The immediate consequence operator TP is a function be-
tween sets of ground literals and is defined as:

TP (I) = {P′θ | (P′← P1, ...,Pn,c) ∈ P ,
Piθ ∈ I for each i,
cθ is valid,
cθ and P′θ are ground }

13

The operator TP is monotonic and continuous, and its least fixed point T ω

P (/0) contains all ground
literals deducible from P .

We treat expressions of the form e1 saysk fact as Datalog literals, where k is either a variable or 0 or
∞. This can be seen as a sugared notation for a literal where the predicate name is the string concatenation
of all infix operators (says, can say, can act as, and predicates) occurring in the expression, including
subscripts for can say. The arguments of the literal are the collected expressions between these infix
operators. For example, the expression A saysk x can say∞ y can say0 B can act as z is shorthand for
says can say infinity can say zero can act as(A,k,x,y,B,z).

Algorithm 6.2. The translation of an assertion context AC proceeds as follows:

1. If fact0 is flat, then an assertion A says fact0 if fact1, ..., factn,c is translated into the clause A
saysk fact0← A saysk fact1, ...,A saysk factn,c where k is a fresh variable.

2. Otherwise, fact0 is of the form e0 can sayK0
... en−1 can sayKn−1

fact, for some n≥ 1, where fact
is flat. Let ˆfactn ≡ fact and ˆfacti ≡ ei can sayKi

ˆfacti+1, for i ∈ {0..n−1}. Note that fact0 = ˆfact0.
Then the assertion

A says fact0 if fact1, ..., factm,c

is translated into a set of n+1 Datalog clauses as follows.

(a) We add the Datalog clause

A saysk
ˆfact0← A saysk fact1, ...,A saysk factm,c

where k is a fresh variable.

(b) For each i ∈ {1..n}, we add a Datalog clause

A says∞
ˆfacti← x saysKi−1

ˆfacti, A says∞ x can sayKi−1
ˆfacti

where x is a fresh variable.

3. Finally, for each Datalog clause created above with head A saysk e verbphrase we add a clause A
saysk x verbphrase← A saysk x can act as e, A saysk e verbphrase where x is a fresh variable.

Example For example, the assertion

A says B can say∞ y can say0 C can read z if y can read Foo

is translated into

A saysk B can say∞ y can say0 C can read z ← A saysk y can read Foo

A says∞ y can say0 C can read z ←
x says∞ y can say0 C can read z ,
A says∞ x can say∞ y can say0 C can read z

A says∞ C can read z ←
x says0 C can read z ,
A says∞ x can say0 C can read z

14

in Steps 2a and 2b. Finally, in Step 3, the following clauses are also added:

A saysk x can say∞ y can say0 C can read z ←
A saysk x can act as B,
A saysk B can say∞ y can say0 C can read z

A says∞ x can say0 C can read z ←
A saysk x can act as y,
A says∞ y can say0 C can read z

A says∞ x can read z ←
A saysk x can act as C,
A says∞ C can read z

Intuitively, the says subscript keeps track of the delegation depth, just like the D in the three semantic
rules in Section 3. This correspondence is reflected in the following theorem that relates the Datalog
translation to the SecPAL semantics.

Theorem 6.3. (Soundness and completeness) Let P be the Datalog translation of the assertion context
AC . We have A saysD fact ∈ T ω

P (/0) iff AC ,D |= A says fact.

7 Evaluation of authorization queries
This section describes an algorithm for evaluating authorization queries (Section 4) against a SecPAL
assertion context.

The first step is to evaluate atomic Datalog queries of the form e says∞ fact (i.e., computing all
query instances that are in T ω

P (/0)) against the Datalog program P obtained by translation. The usual
bottom-up approach [3], where the fixed-point model is precomputed for all queries, is not suitable,
as the assertion context may be completely different between different requests. Furthermore, top-
down resolution algorithms are usually more efficient in computing fully or partially instantiated goals.
However, standard SLD resolution (as used in e.g. Prolog) may run into loops even for simple assertion
contexts. Tabling, or memoing, is an efficient approach for guaranteeing termination by incorporating
some bottom-up techniques into a top-down resolution strategy [50, 23, 18]. Tabling has also been
applied to Datalog with Constraints, but requires complex constraint solving procedures [52].

Our tabling algorithm is a simplified and deterministic version that is tailored to the clauses produced
by the translation of a safe assertion context (as described in Section 6). It does not require constraint
solving and is thus simpler to implement. A node is either a root node of the form 〈P〉, where the index P
is a literal, or a sextuple 〈P;~Q;c;S; ~nd;Cl〉, where ~Q is a list of literals (the subgoals), c a constraint, S a
literal (the partial answer), ~nd a list of sextuple nodes (the child nodes), and Cl a clause. The algorithm
makes use of two tables. The answer table Ans maps literals to sets of answer nodes (i.e., nodes where
~Q is empty and c = True). The set Ans(P) is used to store all the found answer nodes pertaining to a
query 〈P〉. The wait table Wait maps literals to sets of nodes with nonempty lists of subgoals. Wait(P)
is a list of all those nodes whose current subgoal (i.e., the left-most subgoal) is waiting for answers from
〈P〉. Whenever a new answer for 〈P〉 is produced, the computation of these waiting nodes is resumed.

Before presenting the algorithm in detail, we define a number of terms. The function simplify is
a function on constraints whose return value is always an equivalent constraint, and if the argument is
ground, the return value is either True or False. The infix operators :: and @ denote the cons and the
append operations on lists, respectively. Let P and Q range over literals. A variable renaming for P
is an injective substitution whose range consists only of variables. A fresh renaming of P is a variable
renaming for P such that the variables in its range have not appeared anywhere else. A substitution θ is

15

RESOLVE-CLAUSE(〈P〉)
Ans(P) := /0;
foreach (Q← ~Q,c) ∈ P do

if nd = resolve(〈P;Q :: ~Q;c;Q; [];Cl〉,P)
exists then
PROCESS-NODE(nd)

PROCESS-ANSWER(nd)
match nd with 〈P; [];c; ; ; 〉 in

if nd /∈Ans(P) then
Ans(P) := Ans(P)∪{nd};

foreach nd′ ∈Wait(P) do
if nd′′ = resolve(nd′,nd) exists then

PROCESS-NODE(nd′′)

PROCESS-NODE(nd)
match nd with 〈P;~Q;c; ; ; 〉 in

if ~Q = [] then
PROCESS-ANSWER(nd)

else match ~Q with Q0 :: in
if there exists Q′0 ∈ dom(Ans)

such that Q0⇒ Q′0 then
Wait(Q′0) := Wait(Q′0)∪{nd};
foreach nd′ ∈Ans(Q′0) do

if nd′′ = resolve(nd,nd′) exists then
PROCESS-NODE(nd′′)

else
Wait(Q0) := {nd};
RESOLVE-CLAUSE(〈Q0〉)

Figure 1: A tabled resolution algorithm for evaluating Datalog queries.

more general than θ′ iff there exists a substitution ρ such that θ′ = θρ. A substitution θ is a unifier of
P and Q iff Pθ = Qθ. A substitution θ is a most general unifier of P and Q iff it is more general than
any other unifier of P and Q. When P and Q are unifiable, they also have a most general unifier that is
unique up to variable renaming. We denote it by mgu(P,Q). Finding the most general unifier is relatively
simple (see [35] for an overview) but there are more intricate algorithms that run in linear time, see e.g.
[45, 42]. Let P be an instance of Q iff P = Qθ for some substitution θ, in which case we write P⇒ Q.

A node nd ≡ 〈P;Q :: ~Q;c;S; ~nd;Cl〉 and a literal Q′ are resolvable iff some Q′′ is a fresh vari-
able renaming of Q′, θ ≡ mgu(Q,Q′′) exists and d ≡ simplify(cθ) 6= False. Their resolvent is nd′′ ≡
〈P;~Qθ;d;Sθ; ~nd;Cl〉, and θ is their resolution unifier. We write resolve(nd,Q′) = nd′′ if nd and Q′ are re-
solvable. By extension, a node nd ≡ 〈P;Q :: ~Q;c;S; ~nd;Cl〉 and an answer node nd′ ≡ 〈 ; [];True;Q′; ; 〉
are resolvable iff nd and Q′ are resolvable with resolution unifier θ, and their resolvent is nd′′ ≡
〈P;~Qθ;d;Sθ; ~nd@[nd′];Cl〉. We write resolve(nd,nd′) = nd′′ if nd and nd′ are resolvable.

Figure 1 shows the pseudocode of our Datalog evaluation algorithm. Let P be a literal and Ans be
an answer table. Then AnswersP (P,Ans) is defined as

{θ : 〈 ; ; ;S; ; 〉 ∈Ans(P′),S = Pθ,dom(θ)⊆ vars(P)}

if there exists a literal P′ ∈ dom(Ans) such that P⇒ P′. In other words, if the supplied answer table
already contains a suitable answer set, we can just return the existing answers. If no such literal exists in
the domain of Ans and if the execution of RESOLVE-CLAUSE(〈P〉) terminates with initial answer table
Ans and an initially empty wait table, then AnswersP (P,Ans) is defined as

{θ : 〈 ; ; ;S; ; 〉 ∈Ans′(P),S = Pθ,dom(θ)⊆ vars(P)}

where Ans′ is the modified answer table after the call. In all other cases AnswersP (P,Ans) is undefined.
Theorem 7.2 states the termination, soundness and completeness properties of AnswersP . These proper-
ties will be exploited in Section 8 where we present an algorithm for evaluating composite authorization
queries.

At first sight, completeness with respect to T ω

P (/0) depends on P being Datalog-safe, i.e., all variables
in the head literal must occur in a body literal. However, the translation of a safe SecPAL assertion
context does not always result in a Datalog-safe program. We define an alternative notion of safety for
Datalog programs that is satisfied by the SecPAL translation and that still preserves completeness.

Every parameter position of a predicate is associated with either IN or OUT. A Datalog clause is
IN/ OUT-safe iff any OUT-variable in the head also occurs as an OUT-variable in the body, and any

16

IN-variable in a body literal also occurs as IN-variable in the head or as OUT-variable in a preceding
body literal. A Datalog program P is IN/ OUT-safe iff all its clauses are IN/OUT-safe. A query P is
IN/ OUT-safe iff all its IN-parameters are ground.

Lemma 7.1. If AC is a safe assertion context and P its Datalog translation then there exists an IN/OUT
assignment to predicate parameters in P such that P is IN/OUT-safe.

An answer table Ans is sound (with respect to some program P) iff

for all P ∈ dom(Ans) : 〈P′; [];True;S; ; 〉 ∈Ans(P) implies P = P′,S⇒ P, and S ∈ T ω

P (/0).

Ans is complete (with respect to P) iff for all P ∈ dom(Ans): S ∈ T ω

P (/0) and S⇒ P implies that S is
the answer of an answer node in Ans(P). Note, in particular, that the empty answer table is sound and
complete.

Theorem 7.2. (soundness, completeness, termination) Let Ans be a sound and complete answer table,
P an IN/OUT-safe program and P an IN/OUT-safe query. Then AnswersP (P,Ans) is defined, finite
and equal to {θ : Pθ ∈ T ω

P (/0),dom(θ)⊆ vars(P)}.

Actually, the modified answer table after evaluation is still sound and complete and contains enough
information to reconstruct the complete proof graph for each answer: an answer node 〈 ; ; ;S; ~nd;Cl〉
is interpreted to have edges pointing to each of its child nodes ~nd and an edge pointing to the clause Cl.
Appendix B shows how this Datalog proof graph can be converted back into a corresponding SecPAL
proof graph.

8 Evaluation of authorization queries
Based on the algorithm from the previous section, we can now show how to evaluate complex authoriza-
tion queries as defined in Section 4.

Let AC be an assertion context and P its Datalog translation. We define the function AuthAnsAC on
authorization queries as follows.

AuthAnsAC (e says fact) = AnswersP (e says∞ fact, /0)

AuthAnsAC (q1, q2) = {θ1θ2 | θ1 ∈ AuthAnsAC (q1) and θ2 ∈ AuthAnsAC (q2θ1)}
AuthAnsAC (q1 or q2) = AuthAnsAC (q1)∪AuthAnsAC (q2)

AuthAnsAC (not(q)) =


{ε} if vars(q) = /0 and AuthAnsAC (q) = /0

/0 if vars(q) = /0 and AuthAnsAC (q) 6= /0

undefined otherwise

AuthAnsAC (c) =


{ε} if |= c
/0 if vars(c) = /0 and 6|= c
undefined otherwise

AuthAnsAC (∃x(q)) = {θ|−x | θ ∈ AuthAnsAC (q)}

The following theorem shows that AuthAnsAC is an algorithm for evaluating safe queries.

Theorem 8.1. (Finiteness, soundness, and completeness of query evaluation) For all safe assertion
contexts AC and safe authorization queries q,

17

1. AuthAnsAC (q) is defined and finite, and

2. AC ,θ ` q iff θ ∈ AuthAnsAC (q).

The evaluation of the base case e says fact calls the function AnswersP with an empty answer table.
But since the answer table after each call remains sound and complete with respect to its domain (it will
just have a larger domain), an efficient implementation could initialize an empty table only for the first
call in the evaluation of an authorization query, and then reuse the existing, and increasingly populated,
answer table for each subsequent call to AnswersP .

Finally, the following theorem states that SecPAL has polynomial data complexity. Data complexity
[3, 20] is a measure of the computation time for evaluating a fixed query with fixed intensional database
(IDB) but variable extensional database (EDB). This measure is most often used for policy languages,
as the size of the EDB (the number of “plain facts”) typically exceeds the size of the IDB (the number
of “rules”) by several orders of magnitude.

Theorem 8.2. Let M be the number of flat atomic assertions (i.e., those without conditional facts) in
AC and let N be the maximum length of constants occurring in these assertions. The time complexity
of computing AuthAnsAC is polynomial in M and N.

9 Discussion
Related work The ABLP logic [2, 36] introduced the “says” modality and the use of logic rules
for expressing decentralized authorization policies. The ABLP logic includes a “speaks for” relation,
governing when the right to assert a statement is delegated from one principal to another. SecPAL’s
delegation operators “can say∞” and “can act as” are related to but not the same as forms of “speaks
for”. Initial investigations suggest there is a model of a fragment of SecPAL, without “can say0” or
constraints, within a mild extension of ABLP, but we leave a precise study as future work.

PolicyMaker and Keynote [14, 13] introduced the notion of decentralized trust management. Quite
a few other authorization languages have been developed since. SPKI/SDSI [25] is an experimental
IETF standard using certificates to specify decentralized authorization. Authorization certificates grant
permissions to subjects specified either as public keys, or as names defined via linked local name spaces
[49], or as k-out-of-n threshold subjects. Grants can have validity restrictions and indicate whether they
may be delegated.

XrML [19] (and its offspring, MPEG REL) is an XML-based language targeted at specifying licenses
for Digital Rights Management. Grants may have validity restrictions and can be conditioned on other
existing or deducible grants. A grant can also indicate under which conditions it may be delegated
to others. XACML [44] is another XML-based language for describing access control policies. A
policy grants capabilities to subjects that satisfy the specified conditions. Deny policies explicitly state
prohibitions. XACML defines policy combination rules for resolving conflicts between permitting and
denying policies such as First-Applicable, Deny-Override or Permit-Override. XACML does not support
delegation and is thus not well suited for decentralized authorization.

The OASIS SAML [43] standards define XML formats and protocols for exchanging authenticated
user identities, attributes, and authorization decisions, such as whether a particular subject has access to
a particular object. SAML messages do not themselves express authorization rules or policies.

The original Globus security architecture [27] for grid computing defines a general security policy
for subjects and objects belonging to multiple trust domains, with cross-domain delegation of access
rights. More recent computational grids rely on specific languages, such as Akenti [51], Permis [17],
and XACML, to define fine-grained policies, and exchange SAML or X.509 certificates to convey iden-
tity, attribute, and role information. Version 1.1 of XACML has a formal semantics [31] via a purely

18

functional implementation in Haskell. To the best of our knowledge, XACML and SecPAL are the only
authorization languages for grid computing that have a formal semantics.

Policy languages such as Binder [21], SD3 [34], Delegation Logic (DL) [37] and the RT family of
languages [40] use Datalog as basis for both syntax and semantics. To support attribute-based delegation,
these languages allow predicates to be qualified by an issuing principal. Cassandra [8, 7] and RTC [39]
are based on Datalog with Constraints [32, 46] for higher expressiveness. The Cassandra framework
also defines a transition system for evolving policies and supports automated credential retrieval and
automated trust negotiation.

Much research has been done on logic-based access control languages for single administrative do-
mains that do not require decentralized delegation of authority. Many of these are also based on Datalog
or Datalog with Constraints, e.g. [10, 12, 33, 5, 54]. Lithium [29] is a language for reasoning about dig-
ital rights and is based on a different fragment of first order logic. It is the only language allowing real
logical negation in the conclusion as well as in the premises of policy rules. This is useful for analysing
merged policies, but Lithium restricts recursion and cannot easily express delegation.

Conclusions We have designed an authorization language that supports fine-grained delegation con-
trol for decentralized systems, highly expressive constraints and negative conditions that are needed in
practice but cannot be expressed in other languages. Combining all these features in a single language
without sacrificing decidability and tractability is nontrivial. If authorization queries are extended by
an aggregation operator (which can be easily done without modifying the assertion semantics and with-
out sacrificing polynomial data complexity), SecPAL can (safely) express the entire benchmark policy
in [6], one of the largest and most complex examples of a formal authorization policy to date. Despite
its expressiveness, we argue that SecPAL is relatively simple and intuitive, due to the resemblance of its
syntax to natural language, its small semantic specification and its purely syntactic safety conditions.

A prototype of SecPAL, including an auditing infrastructure and editing tools, has been imple-
mented as part of a project investigating access control solutions for large-scale Grid computing en-
vironments [24]. A primary focus of this effort is on developing flexible and robust mechanisms for
expressing trust relationships and constrained delegation of rights within a uniform authentication and
authorization framework. Scenarios, similar to the one described in Section 1, have been demonstrated
using the prototype. Future work includes tools for policy authoring, deployment, and formal analysis.

Acknowledgements Blair Dillaway and Brian LaMacchia authored the original SecPAL design; the
current definition is the result of many fruitful discussions with them. In a separate whitepaper, Dill-
away [24] presents the design goals and introduces the language informally. Gregory Fee and Jason
Mackay implemented the SecPAL prototype. Martı́n Abadi, Blair Dillaway, Peter Sewell, and Vicky
Weissman suggested improvements to a draft of this paper. We also thank Tuomas Aura, Michael Roe,
and Sebastian Nanz for valuable discussions.

19

A Assertion expiration and revocation
This appendix describes how expiration and revocation can be expressed in SecPAL. Expiration dates
can be specified as ordinary verb phrase parameters:

UCambridge says Alice is a student till 31/12/2007 if

currentTime()≤ 31/12/2007

Sometimes it should be up to the acceptor to specify an expiration date or set their own recency require-
ments [48]. In this case, the assertion could just contain the date without enforcing it:

UCambridge says Alice is a student till 31/12/2007

An acceptor can then use the date to enforce their own recency requirements:

Admin says x is entitled to discount if
x is a student till date,
currentTime()≤ date,
date− currentTime()≤ 1 year

Assertions may have to be revoked before their scheduled expiration date. To deal with compromise
of an issuer’s key, we can use existing key revocation mechanisms. But sometimes the issuer needs to
revoke their own assertions. For instance, the assertion in the example above has to be revoked if Alice
drops out of her university. Historically, revocation is most commonly associated with X.509-based
PKIs, which only support revocation of issued certificates. SecPAL includes a simple mechanism for
finer-grained revocation, at the level of an individual assertion, as explained below.

We assume that every assertion M is associated with an identifier (e.g., a serial number) IDM . Re-
vocation (and delegation of revocation) can then be expressed in SecPAL by revocation assertions with
the verb phrase revokes IDM . For example, the revocation assertion

A says A revokes ID if currentTime() > 31/7/2007

revokes all assertions that are issued by A and have identifier ID, but only after 31 July 2007.

Definition A.1. (revocation assertion) An assertion is a revocation assertion if it is safe and of the form

A says A revokes ID if c, or
A says B1 can sayD1

... Bn can sayDn A revokes ID if c.

Given an assertion context AC and a set of revocation assertions AC rev where AC ∩AC rev = /0,
we remove all assertions revoked by AC rev in AC before evaluating authorization queries. The filtered
assertion context is defined by

AC −{M |M ∈ AC , A is the issuer of M, and AC rev,∞ |= A says A revokes IDM}

The condition that AC and AC rev must be disjoint means that revocation assertions cannot be revoked
(at least not within the language). Allowing revocation assertions to be revoked by each other causes the
same problems and semantic ambiguities as negated body predicates in logic programming. Although
these problems could be formally overcome, for example by only allowing stratifiable revocation sets or
by computing the well-founded model, these approaches are not simple enough for users to cope with in
practice.

20

Figure 2: Left: Datalog proof node with parent from Translation Step 1 or 2a. Right: corresponding
SecPAL proof node using Rule (cond).

Figure 3: Left: Datalog proof node with parent from Translation Step 2b. Right: corresponding SecPAL
proof node using Rule (can say).

B Proof graph generation
When testing and troubleshooting policies, it is useful to be able to see a justification of an authorization
decision. This could be some visual or textual representation of a corresponding proof graph constructed
according to the rule system in Section 3.

Given a Datalog program P , a proof graph for P is a directed acyclic graph with the following
properties. Leaf nodes are either Datalog clauses in P or ground constraints that are valid. Every non-
leaf node is a ground instance P′θ of the head of a clause P′←P1, . . . ,Pn,c, where θ substitutes a constant
for each variable occurring in the clause; the node has as child nodes the clause, the ground instances
P1θ, . . . ,Pnθ of the body literals, and the ground instance cθ of the body constaint. A ground literal P
occurs in T ω

P (/0) if and only if there is a proof graph for P with P as a root node. The algorithm in Figure
1 constructs such a Datalog proof graph during query evaluation of the Datalog program P obtained by
translating an assertion context AC . Each answer to a query is a root node of the graph. Every non-leaf
node is a ground Datalog literal of the form A saysD fact. Leaf nodes are either Datalog clauses in the
program P , or ground constraints that are valid. (See left panels of Figures 2, 3 and 4.)

Similarly, we can define a notion of proof graph for SecPAL such that there is a derivation of
AC ,∞ |= A says fact according to the three deduction rules of Section 3 if and only if there is a SecPAL
proof graph with AC ,∞ |= A says fact as a root node.

If during execution of Algorithm 6.2, each generated Datalog clause is labelled with the algorithm
step at which it was generated (i.e., 1, 2a, 2b, or 3), the Datalog proof graph contains enough information
to be easily converted into the corresponding SecPAL proof graph. The conversion is illustrated in
Figures 2, 3 and 4.

21

Figure 4: Left: Datalog proof node with parent from Translation Step 3. Right: corresponding SecPAL
proof node using Rule (can act as).

C Auxiliary definitions and proofs
This appendix contains proofs of all theorems stated in the main part of the paper as well as supporting
lemmas and definitions.

C.1 Authorization queries
Lemma C.1. If AC ,θ ` q then dom(θ)⊆ vars(q), and θ grounds all x ∈ dom(θ).

Proof. By induction on the definition of `.

Lemma C.2. If AC ,θ ` e says fact then dom(θ) = vars(e says fact).

Proof. Follows immediately from the definitions of ` and |=.

Lemma C.3. If I
 q : O then for all substitution θ, I−dom(θ)
 qθ : O−dom(θ).

Proof. By induction on q.

Corollary C.4. If I
 q : O and I ⊆ dom(θ) then qθ is safe.

Lemma C.5. If /0
 q : O and AC ,θ ` q then O⊆ dom(θ).

Proof. By induction on q.
Suppose q≡ e says fact. Then O = vars(e says fact) = dom(θ), by Lemma C.2.
Suppose q ≡ q1, q2 and θ ≡ θ1θ2. By the induction hypothesis, O1 ⊆ dom(θ1). Therefore, by

Lemma C.3, /0
 q2θ1 : O2− dom(θ1). Then by the induction hypothesis, O2− dom(θ1) ⊆ dom(θ2).
Therefore, O1∪O2 ⊆ dom(θ1θ2).

The other cases are straightforward.

Lemma C.6. If q1, q2 is safe and AC ,θ1 ` q1 then q2θ1 is safe.

Proof. From the definition of safety and
 it follows that /0
 q1, q2 : O1 ∪O2 where /0
 q1 : O1. By
Lemma C.5, O1 ⊆ dom(θ1). Then by Corollary C.4, q2θ1 is safe.

22

C.2 Translation into constrained Datalog
Definition C.7. (Consequence operator) The immediate consequence operator TP is a function be-
tween sets of ground literals and is defined as:

TP (I) = {P′θ | (P′← P1, ...,Pn,c) ∈ P ,
Piθ ∈ I for each i,
cθ is valid,
cθ and P′θ are ground }

Lemma C.8. (Soundness) Let P be the Datalog translation of the assertion context AC . If A saysD fact ∈
T ω

P (/0) then AC ,D |= A says fact.

Proof. We assume A saysD fact ∈ T ω

P (/0) and prove the statement by induction on stages of T n
P .

Case Step 1 and 2a If A saysD fact is added based on a clause produced by Step 1 or 2a, then by the
inductive hypothesis, AC ,D |= A says factiθ for i = 1...n. Furthermore, cθ is ground and valid, so by
Rule (cond), AC ,D |= A says fact.

Case Step 2b If A says∞ fact is added based on a clause produced by Step 2b, then by the inductive
hypothesis, AC ,K |= B says fact and AC ,∞ |= A says B can sayK fact, for some B and K. By Rule (can
say), AC ,∞ |= A says fact.

Case Step 3 If A saysD B verbphrase is added based on a clause produced by Step 3, then by the
inductive hypothesis, AC ,D |= A says B can act as C and AC ,D |= A says C verbphrase, for some C.
By Rule (can act as), AC ,D |= B says C verbphrase.

Lemma C.9. If AC ,D |= A says B verbphrase then there exists an assertion in AC of the form

A says e1 can sayD1
...en can sayDn e verbphrase′ if ...

for some e and ei, for i = 1...n where n≥ 0, and verbphrase is an instance of verbphrase′.

Proof. By induction on the SecPAL rules. If the last rule used in the deduction of AC ,D |= A says
B verbphrase was (cond), there exists an assertion in AC of the form

A says e verbphrase′ if ...

where B verbphrase = (e verbphrase′)θ.
If the last rule used was (can say), we have AC ,∞ |= A says B can sayD B verbphrase. Therefore,

by the induction hypothesis, there exists an assertion in AC of the required form.
If the last rule used was (can act as), we have AC ,D |= A says C verbphrase. Therefore, by the

induction hypothesis, there exists an assertion in AC of the required form.

Lemma C.10. (Completeness) Let P be the Datalog translation of the assertion context AC . If AC ,D |=
A says fact then A saysD fact ∈ T ω

P (/0).

Proof. Assume AC ,D |= A says fact. We prove the statement by induction on the SecPAL rules:

Case (cond) If the last rule used in the deduction was (cond), (A says fact if fact1, . . . , factk,c) ∈
AC is translated in Step 1 or 2a. Also, AC ,D |= A says factiθ, and by the induction hypothesis, A
saysD factiθ ∈∈ T ω

P (/0). Furthermore, S |= cθ and vars(factθ) = /0, so by definition of TP , A saysD fact ∈
T ω

P (/0).

23

Case (can say) If Rule (can say) was used last, we assume

1. D = ∞,

2. AC ,K |= B says fact, and

3. AC ,∞ |= A says B can sayK fact.

By Lemma C.9, there is an assertion in AC of the form

A says e1 can sayD1
...en can sayDn e can sayK fact′,

for some e, ei, Di with i = 1...n, n≥ 0 and where fact is an instance of fact′. In Step 2b, this is translated
into

A says∞ fact←
x saysK fact′,
A says∞ x can sayK fact′

where x is a fresh variable not occurring anywhere else in the clause, so it can in particular bind to B. By
the induction hypothesis, B saysK fact ∈ T ω

P (/0) and A says∞ B can sayK fact ∈ T ω

P (/0). By definition of
TP , A says∞ fact ∈ T ω

P (/0).

Case (can act as) If Rule (can act as) was used last, we assume AC ,D |= A says C verbphrase,
and AC ,D |= A says B can act as C, where fact = B verbphrase. By the induction hypothesis, A
saysD C verbphrase ∈ T ω

P (/0). This is only possible if there is a clause in P of the form

A saysk e verbphrase′← ...

where C verbphrase = (e verbphrase′)θ for some θ. By Step 3, there must also be a clause in P of the
form

A saysk y verbphrase′←
A saysk y can act as e
A saysk e verbphrase′

where y is a fresh variable not occurring anywhere else in the clause, so it can in particular bind to B. By
the induction hypothesis, we also have A saysD B can act as C ∈ T ω

P (/0). Therefore, by definition of TP ,
A saysD B verbphrase ∈ T ω

P (/0).

Restatement of Theorem 6.3. (Soundness and completeness) Let P be the Datalog translation of the
assertion context AC . We have A saysD fact ∈ T ω

P (/0) iff AC ,D |= A says fact.

Proof. Follows from Lemmas C.8 and C.10.

C.3 Datalog evaluation with tabling
The tabling evaluation algorithm in Section 7 can also be described as a non-deterministic labelled
transition system. We present this system here because it is easier to prove properties for it than for the
pseudocode in Figure 1. The results for the transition system apply also to the pseudocode, as the latter
is a straightforward implementation of the former.

24

({〈P〉}]Nodes,Ans,Wait) ResolveClause−−−−−−−−→ (Nodes∪Nodes′,Ans[P 7→ /0],Wait)
if Nodes′ = {nd : Cl ≡ Q← ~Q,c ∈ P ,

nd = resolve(〈P;Q :: ~Q;c;Q; [];Cl〉,P) exists }

({nd}]Nodes,Ans,Wait)
PropagateAnswer−−−−−−−−−−→ (Nodes∪Nodes′,Ans[P 7→Ans(P)∪{nd}],Wait)

if nd ≡ 〈P; [];True; ; ; 〉
nd /∈Ans(P)
Nodes′ = {nd′′ : nd′ ∈Wait(P), nd′′ = resolve(nd′,nd) exists}

({nd}]Nodes,Ans,Wait)
RecycleAnswers−−−−−−−−−→ (Nodes∪Nodes′,Ans,Wait[Q′ 7→Wait(Q′)∪{nd}])

if nd ≡ 〈 ;Q :: ; ; ; ; 〉
∃ Q′ ∈ dom(Ans) : Q⇒ Q′

Nodes′ = {nd′′ : nd′ ∈Ans(Q′), nd′′ = resolve(nd,nd′) exists}

({nd}]Nodes,Ans,Wait)
SpawnRoot−−−−−−→ (Nodes∪{〈Q〉},Ans[Q 7→ /0],Wait[Q 7→ {nd}])

if nd ≡ 〈 ;Q :: ; ; ; ; 〉
∀ Q′ ∈ dom(Ans) : Q 6⇒ Q′

Definition C.11. Every parameter position of a predicate is associated with either IN or OUT. A Datalog
clause is IN/ OUT-safe iff any OUT-variable in the head also occurs as an OUT-variable in the body,
and any IN-variable in a body literal also occurs as IN-variable in the head or as OUT-variable in a
preceding body literal. A Datalog program P is IN/ OUT-safe iff all its clauses are IN/OUT-safe. A
query P is IN/ OUT-safe iff all its IN-parameters are ground.

Restatement of Theorem 7.1. If AC is a safe assertion context and P its Datalog translation then there
exists an IN/OUT assignment to predicate parameters in P such that P is IN/OUT-safe.

Proof. Literals introduced by Algorithm 6.2 are of the form e1 sayse2 fact. We assign OUT to the
parameter position of e1, and IN to the position of e2. The parameter positions in fact are all OUT if it
is flat, and IN otherwise. Then by inspection and by assertion safety, all OUT variables in the head of
a clause produced by the algorithm also occur in the body, and all IN variables in the body of a clause
also occur in its head.

A state is a triple (Nodes,Ans,Wait) where Nodes is a set of nodes, Ans is an answer table, and
Wait is a wait table. A path is a series of 0 or more labelled transitions between states, as defined in the
labelled transition system below. A state S ′ is reachable from a state S iff there is a path from S to S ′.
In the following, let A]B denote the union of A and B with the side condition that the sets be disjoint.
If Ans is a function mapping literals to sets of nodes, then Ans[P 7→ A] is a function that maps literals Q
to Ans(Q) if Q ∈ dom(Ans) and Q 6= P and additionally maps P to A.

A state (Nodes,Ans,Wait) is an initial state iff Nodes = {〈P〉} for some IN/OUT-safe query P
(with respect to the IN/OUT-safe program P), Ans is sound and complete, and Wait is empty. A state
S is a final state iff there is no state S ′ and no label ` such that S `−→ S ′.

Lemma C.12. (answer groundness) If (Nodes,Ans,Wait) is reachable from some initial state and
〈P; [];c;S; ~nd;Cl〉 ∈ Nodes then S and c are ground and c is valid.

Proof. We prove the following, stronger, invariant by induction on the transition rules. If 〈P〉 ∈ Nodes
then all IN-parameters in P are ground. If 〈P;~Q;c;S; ~nd;Cl〉 ∈ Nodes then all IN-parameters in S are

25

ground, and all OUT-parameters in S are either ground or occur as OUT-variable in ~Q. If the node has
a current subgoal Q (the head of ~Q), all IN-parameters of Q are ground.

The statement holds for any initial state because it only contains a root node with an IN/OUT-safe
query. Root nodes are only produced by SpawnRoot transitions. By induction, all IN-parameters of the
current subgoal Q are ground, hence the new root node 〈Q〉 satisfies the required property as well.

Suppose the node is produced by ResolveClause. The IN-parameters in its partial answer S are
ground because it is resolved with P which satisfies the same property, by the inductive hypothesis. If
an OUT-parameter in S is a variable, it must occur as an OUT-parameter in ~Q, as all clauses in P are
IN/OUT-safe. If the node has a current subgoal, its IN-parameters are either already ground in the
original clause, or they also occur as IN-parameters in the head of the clause, Q. But Q is resolved
against P which grounds its IN-parameters by the inductive hypothesis, therefore all IN-parameters in
Q are also grounded by the resolution unifier, which is also applied to the current subgoal.

In all other cases, the node is the resolvent of an existing node 〈P;Q0 :: ~Q; ;S′; ;Cl〉 with an existing
answer node 〈P′; []; ;S′′; ; 〉, both of which enjoy the stated property by the inductive hypothesis. All
IN-parameters of the partial answer S of the resolvent are ground because S is the product of applying
the resolution unifier to S′ which already has the same property. For the sake of contradiction, assume
an OUT-parameter of S is neither ground nor occurs as an OUT-parameter in ~Q. Then it must be an
OUT-variable in S′ which occurs as an OUT-variable in Q0. But the resolution unifier unifies Q0 with
(a renaming of) S′′, and S′′ is completely ground, by the inductive hypothesis. But then the resolution
unifier must also ground that variable, which contradicts the assumption. Finally, if ~Q is non-empty and
has a head Q, all its IN-parameters must be ground: if the corresponding parameter in the clause Cl
is a variable, it must be an IN-variable, therefore it must occur as an IN-variable in the head or as an
OUT-variable in a preceding body literal. In the former case, the corresponding parameter in S (which
originates from the head of Cl) is ground, and thus the parameter in Q is also ground. In the latter case,
it the corresponding OUT-parameter in the preceding Q0 is either ground or grounded by the resolution
unifier, as established before. Either way, the parameter in Q will therefore also be ground.

Lemma C.13. (node invariant) We write
⋃

Ans as short hand for
⋃

P∈dom(Ans) Ans(P). If (Nodes,Ans,Wait)
is reachable from some initial state and 〈P;~Q;c;S; ~nd;Cl〉 ∈ Nodes with Cl ≡ R← ~R,d, then:

1. S⇒ P;

2. Cl ∈ P ;

3. ~nd ⊆
⋃

Ans;

4. there is some θ such that Rθ = S, and ~Rθ = ~Q′@~Q (where ~Q′ are the answers in ~nd), and dθ is
equivalent to c.

Proof. By induction on the transition rules. The statements follow directly from the definition of the
transition rules and from the definition of resolution.

Lemma C.14. (soundness) If (Nodes,Ans,Wait) is reachable from an initial state S0 then Ans is
sound.

Proof. By induction on transition rules. The statement holds by definition for S0.
Now assume the state is not an initial state, and let Ans′ be the answer table of the preceding state.

For PropagateAnswer, we only have to consider the new answer nd ≡ 〈P; [];True;S; ~nd;Cl〉. By Lemma
C.13, S⇒ P; furthermore, Cl ≡ R← ~R,d ∈ P , and there exists θ such that Rθ = S and dθ = True. Also,
~Rθ is equal to the set of answers in ~nd which in turn is a subset of

⋃
Ans′. So by the inductive hypothesis,

~Rθ⊆ T ω

P (/0). Therefore, by definition of TP , S ∈ TP (T ω

P (/0)) = T ω

P (/0), as required.
For the other transition rules the statement trivially holds by the inductive hypothesis.

26

Lemma C.15. (table monotonicity) If S ≡ (Nodes,Ans,Wait) is reachable from an initial state, and
S ′≡ (Nodes′,Ans′,Wait′) is reachable from S , then dom(Ans)⊆ dom(Ans′), dom(Wait)⊆ dom(Wait′),
and dom(Wait) ⊆ dom(Ans). For all P ∈ dom(Ans): Ans(P) ⊆ Ans′(P). For all P ∈ dom(Wait):
Wait(P)⊆Wait′(P).

Proof. By induction on the transition rules. The statements follow from the observation that PropagateAnswer
and RecycleAnswers only increase Ans(P) and Wait(P), respectively; SpawnRoot always increases the
domains of Ans and Wait; and ResolveClause leaves Wait unchanged and either increases the do-
main of Ans (that can only happen if in the very first transition from the initial state) or leaves Ans
unchanged.

Lemma C.16. (completeness) If S f ≡ (Nodes,Ans,Wait) is a final state reachable from an initial state
S0 then Ans is complete.

Proof. By induction on n in T n
P (/0). The statement vacuously holds for n = 0.For n > 0, consider any

S ∈ T n
P (/0), P ∈ dom(Ans) and S⇒ P. If P is already in the domain of S0’s answer table the statement

holds by definition of initial state and by monotonicity of the transition rules with respect to the answer
table (Lemma C.15). So now assume that P was added to the domain as a result of a SpawnRoot
transition.

By definition of TP , there exists a clause Cl ≡ R← R1, ...,Rn,c ∈ P and a substitution θ such that
Rθ = S, Riθ ∈ T n−1

P (/0), and cθ is valid. By the inductive hypothesis, for all R′i ∈ dom(Ans) such that
Riθ⇒ R′i there is an answer node nd′i in Ans(R′i) with answer Riθ.

Let P′ be a fresh renaming of P, θ0 = mgu(R,P′), and for i = 1..n, let

θi = θi−1mgu(Riθi−1,Riθ).

Furthermore, let

ndi ≡ 〈P; [Ri+1θi, ...,Rnθi];cθi;P′θi; [nd′1, ...,nd′i];Cl〉

for i = 0..n. Note that ndn is an answer node with answer S, by Lemma C.12. We will now show that
ndn ∈Ans(P).

After P is added to the domain of the answer table in the SpawnRoot transition, there will eventually
be a ResolveClause transition producing a new set of nodes that contains nd0, because 〈P; [R,R1, ...,Rn];c;R; [];Cl〉
and P are resolvable with resolution unifier θ0.

Suppose for some i = 0..n−1 that ndi gets produced as a node along a path leading from S0 to S f .
Then there must be a later RecycleAnswers or a SpawnRoot transition where ndi is added to the wait
table for some R′i+1 where Ri+1θi⇒ R′i+1. Since θi is more general than θ, we also have Ri+1θ⇒ R′i+1,
so Ri+1θ is the answer of some answer node in Ans(R′i+1), by the inductive hypothesis. Therefore, this
answer node is resolved with ndi either in a PropagateAnswer or a RecycleAnswers transition, and the
set of nodes produced by this transition contains ndi+1.

Therefore, along all paths leading from S0 to S f the nodes nd0,...,ndn are produced. Therefore, ndn
is eventually added to the answer table for P in a PropagateAnswer transition, and hence it is in Ans(P)
(by Lemma C.15), as required.

Lemma C.17. (termination and complexity) All transition paths starting from an initial state are of
finite length, and the path lengths are polynomial in the number of facts (i.e., clauses with empty body)
in P .

Proof. Let S be the set of predicate names that occur in the body of a clause in P , and let C be the number
of constants in P that occur as a parameter of a predicate in S. Further, let N be the number of clauses

27

in P , M the maximum number of distinct variables in the head of any clause in P , and V the maximum
number of distinct variables occurring in the body of any clause in P . When a root node 〈P〉 is produced
in a SpawnRoot transition, P is permanently added to the domain of the answer table. Due to the side
conditions of SpawnRoot, such a node is only produced if there is no P′ in the domain of the answer table
for which P⇒ P′. Moreover, the only predicate names and constants that can occur in a path are the
ones that also occur in P , of which there are only finitely many. Therefore, the number of SpawnRoot
transitions is bounded by CM , and thus the number of ResolveClause transitions is bounded by CMN
which is also an upper bound on the number of nodes produced by ResolveClause. PropagateAnswer
and RecycleAnswers both replace a node with a number of nodes whose subgoal lists are strictly shorter
until an answer node is produced. From any given node, these two transition rules together produce no
more than CV new nodes. Thus the number of nodes produced by them is bounded by CM+V N.

It follows that the length of any path is bounded by 4CM+V N. Hence all path lengths are polynomial
in the number of facts in P as C is proportional to this number.

Theorem C.18. All paths from an initial state ({〈P〉}, ,) terminate at a final state. The answer table
of any such final state is sound and complete, and its domain contains P.

Proof. This follows immediately from Lemmas C.17, C.14 and C.16.

Restatement of Theorem 7.2. (soundness, completeness, termination) Let Ans be a sound and com-
plete answer table, P an IN/OUT-safe program and P an IN/OUT-safe query. Then AnswersP (P,Ans)
is defined, finite and equal to {θ : Pθ ∈ T ω

P (/0),dom(θ)⊆ vars(P)}.

Proof. This follows directly from Theorem C.18, noting that the pseudocode in Figure 1 is a determin-
istic implementation of the labelled transition system.

C.4 Evaluation of authorization queries
Restatement of Theorem 8.1. (Finiteness, soundness, and completeness of query evaluation) For all
safe assertion contexts AC and safe authorization queries q,

1. AuthAnsAC (q) is defined and finite, and

2. AC ,θ ` q iff θ ∈ AuthAnsAC (q).

Proof. By induction on the structure of q.
Case q≡ e says fact

1. By authorization query safety, fact is flat, hence all parameters in e says∞ fact can be assigned
OUT as in the proof of Lemma 7.1, hence q is an IN/OUT-safe Datalog query. Therefore,
AuthAnsAC (q) is defined and finite by Theorem 7.2.

2. Assume AC ,θ ` e says fact. This holds iff AC ,∞ |= eθ says factθ, by definition of `. The
translated program P is IN/OUT-safe, by Lemma 7.1, and we have already established above
that the query e says∞ fact is also IN/OUT-safe. So by Theorems 6.3 and 7.2, this holds iff (eθ

says∞ factθ) ∈ AnswersP (e says∞ fact). Since dom(θ) ⊆ vars(e says∞ fact) (by Lemma C.1)
and vars(eθ says∞ factθ) = /0, this holds iff the most general unifier of the two is θ, and iff
θ ∈ AuthAnsAC (e says fact).

Case q≡ q1, q2

28

1. If q is safe, then q1 must also be safe, so by the induction hypothesis for finiteness, AuthAnsAC (q1)
is defined and finite. By the induction hypothesis for soundness, θ1 ∈ AuthAnsAC (q1) implies
AC ,θ1 ` q1. It follows from Lemma C.6 that q2θ1 is safe, so by the induction hypothesis for
finiteness, AuthAnsAC (q2θ1) is defined and finite, and hence AuthAnsAC (q) is defined and finite.

2. Assume AC ,θ ` q1, q2. This holds iff θ = θ1θ2 such that AC ,θ1 ` q1 and AC ,θ2 ` q2θ1. By
the induction hypothesis, this holds iff θ1 ∈ AuthAnsAC (q1) and θ2 ∈ AuthAnsAC (q2θ1) and hence
θ ∈ AuthAnsAC (q).

Case q≡ q1 or q2 The statements follow directly from the induction hypotheses.
Case q≡ not(q0)

1. By definition of authorization query safety, q0 must also be safe, hence AuthAnsAC (q) is defined
and finite.

2. Assume AC ,θ ` not(q0). By definition of `, q0 must be ground. Lemma C.1 implies that θ = ε,
therefore AC ,ε 0 q0. In other words, there exists no σ such that AC ,σ 0 q0. By the induction
hypothesis, this holds iff AuthAnsAC (q0) = /0 and hence AuthAnsAC (not(q0)) = {ε}.

Case q≡ c

1. By definition of authorization query safety, vars(c)⊆ /0, hence AuthAnsAC (q) is defined and finite.

2. This is similar to the previous case.

Case q≡ ∃x(q0)

1. If q is safe, then q0 is also safe, by definition of authorization query safety. By the inductive
hypothesis, AuthAnsAC (q0) is defined and finite, hence AuthAnsAC (q) is also defined and finite.

2. This is straightforward by the inductive hypothesis and the definition of `.

Restatement of Theorem 8.2. Let M be the number of flat atomic assertions (i.e., those without con-
ditional facts) in AC and let N be the maximum length of constants occurring in these assertions. The
time complexity of computing AuthAnsAC is polynomial in M and N.

Proof. The number of clauses with empty body in the translated Datalog program is proportional to
M. The constants stay unchanged, so the maximum length of any constant occurring in the set of those
clauses is N. From Lemma C.17 and the fact that each step in the labelled transition system can be
computed in time polynomial with respect to N (as the validity of a ground constraint can be checked
in polynomial time), we get that AnswersP is polynomial-time computable with respect to M and N.
The time complexity of AuthAnsAC for a fixed query is clearly polynomial in the computation time for
AnswersP , hence it is also polynomial in M and N.

29

References
[1] M. Abadi. On SDSI’s linked local name spaces. Journal of Computer Security, 6(1-2):3–22, 1998.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in distributed
systems. ACM Transactions on Programming Languages and Systems, 15(4):706–734, 1993.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[4] O. Bandmann, B. S. Firozabadi, and M. Dam. Constrained delegation. In IEEE Symposium on
Security and Privacy, pages 131–140, 2002.

[5] S. Barker and P. J. Stuckey. Flexible access control policy specification with constraint logic
programming. ACM Trans. Inf. Syst. Secur., 6(4):501–546, 2003.

[6] M. Y. Becker. Cassandra: Flexible trust management and its application to electronic health records
(Ph.D. thesis). Technical Report UCAM-CL-TR-648, University of Cambridge, Computer Labo-
ratory, 2005. See http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-648.html.

[7] M. Y. Becker and P. Sewell. Cassandra: distributed access control policies with tunable expres-
siveness. In IEEE 5th International Workshop on Policies for Distributed Systems and Networks,
pages 159–168, 2004.

[8] M. Y. Becker and P. Sewell. Cassandra: Flexible trust management, applied to electronic health
records. In IEEE Computer Security Foundations Workshop, pages 139–154, 2004.

[9] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and Multics interpre-
tation. Technical report, The MITRE Corporation, July 1975.

[10] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model supporting periodicity
constraints and temporal reasoning. ACM Trans. Database Syst., 23(3), 1998.

[11] E. Bertino, C. Bettini, and P. Samarati. A temporal authorization model. In CCS ’94: Proceedings
of the 2nd ACM Conference on Computer and communications security, pages 126–135, New
York, NY, USA, 1994. ACM Press.

[12] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for reasoning about access
control models. In SACMAT ’01: Proceedings of the sixth ACM symposium on Access control
models and technologies, pages 41–52, New York, NY, USA, 2001. ACM Press.

[13] M. Blaze, J. Feigenbaum, and A. D. Keromytis. The role of trust management in distributed
systems security. In Secure Internet Programming, pages 185–210, 1999.

[14] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In IEEE Symposium on
Security and Privacy, pages 164–173, 1996.

[15] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog (and never
dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166, 1989.

[16] D. Chadwick. Authorisation in Grid Computing. Information Security Technical Report, 10(1):33–
40, 2005.

[17] D. W. Chadwick and A. Otenko. The PERMIS X.509 role based privilege management infrastruc-
ture. Future Generation Computer Systems, 19(2):277–289, 2003.

30

[18] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. Journal
of the ACM, 43(1):20–74, 1996.

[19] ContentGuard. eXtensible rights Markup Language (XrML) 2.0 specification part II: core schema,
2001. At www.xrml.org.

[20] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic
programming. In CCC ’97: Proceedings of the 12th Annual IEEE Conference on Computational
Complexity, page 82, Washington, DC, USA, 1997. IEEE Computer Society.

[21] J. DeTreville. Binder, a logic-based security language. In IEEE Symposium on Security and Pri-
vacy, pages 105–113, 2002.

[22] S. D. C. di Vimercati, P. Samarati, and S. Jajodia. Policies, models, and languages for access
control. In Databases in Networked Information Systems, volume 3433, pages 225–237, 2005.

[23] S. W. Dietrich. Extension tables: Memo relations in logic programming. In Symposium on Logic
Programming, pages 264–272, 1987.

[24] B. Dillaway. A unified approach to trust, delegation, and authorization in large-scale
grids. Whitepaper, Microsoft Corporation. See http://research.microsoft.com/projects/
SecPAL/, Sept. 2006.

[25] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate
theory, RFC 2693, September 1999. See http://www.ietf.org/rfc/rfc2693.txt.

[26] M. Evered and S. Bögeholz. A case study in access control requirements for a health information
system. In CRPIT ’04: Proceedings of the second workshop on Australasian information security,
Data Mining and Web Intelligence, and Software Internationalisation, pages 53–61, 2004.

[27] I. T. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for computational
grids. In ACM Conference on Computer and Communications Security, pages 83–92, 1998.

[28] L. Giuri and P. Iglio. Role templates for content-based access control. In Proceedings of the 2nd
ACM Workshop on Role-Based Access Control (RBAC-97), pages 153–159, 1997.

[29] J. Y. Halpern and V. Weissman. Using first-order logic to reason about policies. In IEEE Computer
Security Foundations Workshop, pages 187–201, 2003.

[30] J. Y. Halpern and V. Weissman. A formal foundation for XrML. In CSFW ’04: Proceedings of
the 17th IEEE Computer Security Foundations Workshop (CSFW’04), page 251, Washington, DC,
USA, 2004. IEEE Computer Society.

[31] P. Humenn. The formal semantics of XACML (draft). Syracuse University, 2003. At lists.
oasis-open.org/archives/xacml/200310/pdf00000.pdf.

[32] J. Jaffar and M. J. Maher. Constraint logic programming: a survey. Journal of Logic Programming,
19/20:503–581, 1994.

[33] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple access
control policies. ACM Trans. Database Syst., 26(2):214–260, 2001.

[34] T. Jim. SD3: A trust management system with certified evaluation. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, pages 106–115, 2001.

31

[35] K. Knight. Unification: a multidisciplinary survey. ACM Computing Surveys (CSUR), 21(1):93–
124, 1989.

[36] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed systems: theory
and practice. ACM Transactions on Computer Systems, 10(4):265–310, 1992.

[37] N. Li, B. Grosof, and J. Feigenbaum. A practically implementable and tractable delegation logic.
In IEEE Symposium on Security and Privacy, pages 27–42, 2000.

[38] N. Li and J. Mitchell. Understanding SPKI/SDSI using first-order logic. In Computer Security
Foundations Workshop, 2003.

[39] N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust management languages.
In Proc. PADL, pages 58–73, 2003.

[40] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust management framework.
In Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages 114–130, 2002.

[41] E. C. Lupu and M. Sloman. Reconciling role-based management and role-based access control. In
ACM Workshop on Role-based Access Control, pages 135–141, 1997.

[42] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Program-
ming Languages and Systems, 4(2):258–282, 1982.

[43] OASIS. Security Assertion Markup Language (SAML). At www.oasis-open.org/committees/
security.

[44] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0 core specification,
2005. At www.oasis-open.org/committees/xacml/.

[45] M. S. Paterson and M. N. Wegman. Linear unification. In STOC ’76: Proceedings of the eighth
annual ACM symposium on Theory of computing, pages 181–186, New York, NY, USA, 1976.
ACM Press.

[46] P. Revesz. Introduction to constraint databases. Springer-Verlag New York, Inc., New York, NY,
USA, 2002.

[47] P. Z. Revesz. Constraint databases: A survey. In Semantics in Databases, volume 1358 of Lecture
Notes in Computer Science, pages 209–246. Springer, 1995.

[48] R. L. Rivest. Can we eliminate certificate revocations lists? In Financial Cryptography, pages
178–183, 1998.

[49] R. L. Rivest and B. Lampson. SDSI – A simple distributed security infrastructure, August 1996.
See http://theory.lcs.mit.edu/˜rivest/sdsi10.ps.

[50] H. Tamaki and T. Sato. OLD resolution with tabulation. In Proceedings on Third international
conference on logic programming, pages 84–98, New York, NY, USA, 1986. Springer-Verlag New
York, Inc.

[51] M. Thompson, A. Essiari, and S. Mudumbai. Certificate-based authorization policy in a PKI envi-
ronment. ACM Transactions on Information and System Security, 6(4):566–588, 2003.

[52] D. Toman. Memoing evaluation for constraint extensions of Datalog. Constraints, 2(3/4):337–359,
1997.

32

[53] J. D. Ullman. Assigning an appropriate meaning to database logic with negation. In H. Yamada,
Y. Kambayashi, and S. Ohta, editors, Computers as Our Better Partners, pages 216–225. World
Scientific Press, 1994.

[54] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute based access control.
In FMSE ’04: Proceedings of the 2004 ACM workshop on Formal methods in security engineering,
pages 45–55, 2004.

[55] V. Welch, I. Foster, T. Scavo, F. Siebenlist, and C. Catlett. Scaling TeraGrid access: A roadmap
for attribute-based authorization for a large cyberinfrastructure (draft August 24). 2006. http:
//gridshib.globus.org/docs/tg-paper/TG-Attribute-Authz-Roadmap-draft-aug24.
pdf.

[56] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman, S. Meder,
L. Pearlman, and S. Tuecke. Security for grid services. In HPDC ’03: Proceedings of the 12th
IEEE International Symposium on High Performance Distributed Computing (HPDC’03), page 48,
2003.

33

