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ABSTRACT

Content providers base their business on their ability ¢eive and
answer requests from clients distributed across the lete@ince
disruptions in the flow of these requests directly trandiatie ost
revenue, there is tremendous incentive to diagnose why seme
quests fail and prod the responsible parties into correcition.
However, a content provider has only limited visibilityarthe state
of the Internet outside its domain. Instead, it must minkifaidi-
agnoses from available information sources to infer whabisg
wrong and who is responsible.

Our ultimate goal is to help Internet content providers hesoe-
liability problems in the wide-area network that are affiegtend-
user perceived reliability. We describe two algorithms tlegre-
sent our first steps towards enabling content providers t@ae&x
actionable debugging information from content provideysioand
we present the results of applying the algorithms to a weekith
of logs from a large content provider, during which time intdeed
over 1 billion requests originating from over 10 thousandeAS

1. INTRODUCTION

Networks by themselves have little value. Rather, theiueal
comes from a user’s ability to contact servers that prouigecon-
tent they want. In this way, content providers are, in essetie
public face of the Internet. In particular, they are in theam-
fortable position of being labeled by users as “unreliabiéen a
failure occurs at a network provider between the user anddhe
tent provider’s servers. Moreover, there is a tremendoumn{ial
incentive for content providers to ensure that user reguastable
to reach them, since it is the flow of requests that brings a flow
of money (ad generated, e-commerce or otherwise) to thebnt
provider—missing requests means lost income.

Ultimately, we endeavor to provide content providers witfoi-
mation they can use to improve the experience of their ud#/ess.
assume that content providers can make a limited numbehofip
calls” to badger unreliable network providers, so they nugst
rectly target their energy at the most appropriate netwookigers.
The likelihood of the network provider fixing a problem inases
as the content provider provides more information abouptob-

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGCOMM’'06 WorkshopSeptember 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/000955.00.

lem, motivating content providers to do as much “remote miag
sis” as possible to avoid the “it's working now, what do youniva
us to do?” response, only to have the failure recur later.

In this paper, we begin to address this goal by framing and the
answering the question: How can a content provider miner-info
mation already available from their systems and the Inténfias-
tructure to improve their end-to-end reliability in the sy& their
clients? We study this question through analysis of webesenas
they are the most prevalent form of service provided ovetrites-
net today. The contributions of this paper include: (1) eixémgy
the feasibility of using web log analysis (processing theords
of HTTP request successes and failures) to survey and iraprov
the end-to-end reliability of an Internet service. (2) ahtéque
for identifying when user-affecting events started angséal; and
(3) a technique for attributing failed requests to potdm#aises of
failures, including network failures, broken client-sgt&tware, or
server-side outages.

2. THE PROBLEM

Our ultimate goal is to help Internet content providers hesoe-
liability problems in the wide-area network that are affiegtend-
user perceived reliability. The goal is not necessarily tal fall
reliability problems affecting end-users, but to priagtiand detect
the most significant and actionable ones. This is espedially
considering the wide disparity in size and reliability oktkari-
ous Autonomous Systems (ASes) through which end-userseece
Internet connectivity.

As an example of how the goal of finding significant and action-
able problems differs from that of simply finding the largiediure
rate, consider the following two cases: Case (I): a small A w
failure rates that make the service effectively unavaddtbm that
AS. Case (ll) alarge AS, from which emanates many requédss, t
has a small failure rate. Even though the failure rate is liigh
one case and low in the other, there is significant busindse va
in fixing both of these cases. Having the customers of aneentir
AS unable to reach a service negatively affects the rejputadf
the content provider in a broad way, even if the number ofcadid
customers is small. Whereas for a large AS, even a smalréailu
rate can indicate many unhappy customers.

2.1 Available Information and Actions

Figure 1 shows how requests for web content flow from a user’s
web browser through the network to the content providersess
and back. At the transport and application layer, requegimate
on a client machine as the client uses DNS to resolve the name
of the desired web site. The DNS response may specify a server
owned by the content provider, or that of an infrastructumider
operating between the client and the content provideg, (Aka-
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Figure 1: A content provider’s view of the network, with clients
connected via distant ASes, potentially with network infras-
tructure servers in between. DNS servers not shown.

mai [1]). When the client opens a TCP connection to transisit i
request, the connection may be directed through a proxy; in-a
frastructure server, or directly to the content providéan infras-
tructure provider or proxy is involved, they may internatbyute
the request through several hops and/or DNS lookups. Forafac
the transport and application layer steps described alpaakets
might need to flow across and between multiple ASes. In each AS
and at each peering point, routing policy or congestion naase
packets to be delayed or lost, and the request to fail.

An ideal set of HTTP request logs would be: chmplete con-
taining records of all HTTP requests, whether they wereessfal
or not, 2)deep capturing information about requests’ dependen-
cies on infrastructure components, including client-sigetwork
and server-side systems, and any observations of failardsese
components; and 3ccessiblemeaning the logs are easily avail-
able to content providers and fast to collect. While thisalded
web log does not exist, today’s typical content providens cap-
ture part of this information from three different vantagans,
each with its advantages and disadvantages:

Client-side logs: Internet services often have a subset of cus-
tomers (such as paid or volunteer beta-testers, 3rd pHnaesmea-
sure site reliability, etc.) who have agreed to log and regrair
view of the service. These logs can have very detailed indition
about the end-to-end reliability of the service from thebents’
viewpoint, but these clients are often a poor sample of tlezail
population. For example, many enthusiasts might be corateat
in a particular region of the world, or have particularlyiable In-
ternet connections.

CDN logs: Content-distribution networks (CDNSs), such as Aka-
mai, record logs of request success and failure of everyestqu
that passes through their proxies, even if wide-area né&tfadures
keep these requests from reaching the Internet servide itkmv-
ever, these logs still do not contain information about syuest
that fails to reach the CDN proxy. Moreover, because of verie-
ographic distribution, load, and engineering constraitfisse logs
are often not accessible for hours after requests initcdbur.

Central logs: These logs contain records of every request that
reaches the web servers at an Internet service. These gsier-
ally very easy to access, but do not contain direct inforomedibout
requests that never reach the service because of netwhniefai

The actions a content provider can take after determiniagit
clients are seeing poor performance varies with the typeabp
lem. Common actions include:

Reengineering connectivity:If congestion or routing policy ap-
pear to be a problem, contact the operators of the AS invawved
ask them to move the site’s traffic to a different peering padd

more capacity to the link to the AS’s peer or perhaps add a link
directly to the AS hosting the content provider’s site.

Targeted nagging: If a misconfiguration, such as a proxy prob-
lem, appears to be the issue, locate the operators of themfige
ured system in questioe ., the IP address block) and ask them to
fix their system.

Content changes:If a browser version incompatibility appears
to be the issue, contact the content producers with a retuesp-
port the browser.

2.2 Challenges

Serious challenges confront the content provider who iagrio
help its customers see better service.

Defining failure in the presence of noise:A request may be
marked as “failed” for many reasons that are unrelated tevaorit
infrastructure problems. For example, client-side broviaiures,
where some version of a browser, robot, or malicious worm con
sistently makes invalid HTTP requests. A converse examplddv
be a server-side problem in the content provider’s syst&enal
user behavior, like canceling requests or “clicking awagfdoe a
response arrives, may also cause a request to be logged i&s a fa
ure. This may indicate an impatient user or a serious slomdow
in the network infrastructure. Working with request stdogs re-
quires techniques to separate “background” odd behavion Be-
rious failures. Section 3.1 describes a technique that eparate
out several classes of noise from network infrastructutertzs.

Coalescing of failures into incidents:While content providers
are very alert to major interruptions in connectivity, mimetwork
issues are more likely to be dealt with after-the-fact, niticed
in accordance with their recurrence and longer-term impdct
avoid overwhelming operators with all the individual fa#s that
occurred over the course of a day or week, we must be ready with
techniques that can coalesce groups of related failuressingle
incidents. Section 3.2 presents one such a technique fermliet
ing the boundaries at which incidents begin and end.

Incomplete information: Packets can be lost anywhere, for many
reasons, and many kinds of failures can prevent requestsréach-
ing a logging point. Given the few points of visibility forercon-
tent provider, failures can result in seeing fewer requestther
than requests that fail. We must be able to infer the existerfic
particular failure from absences of requests, and are asidigthis
challenge in future work.

Experimental challenges: While perhaps less of an issue for
content providers, as researchers one of our major chaleisy
finding ways to validate our techniques generally. This lraggn
difficult as the ground truth cause of failure incidents ischto
obtain. For this “first-impressions” paper, results werédeded
through manual investigation that ruled out other causesalter-
nate approach might be to implement a test service on Plahesth
that known faults could be experimentally injected, butitessrom
such tests would be suspect as not replicating the full cexityl
of a content provider’s service, the infrastructure previl and the
diaspora of clients. Conducting solid evaluation remaitpic of
current work.

3. APPROACH AND DATA ANALYSIS

We first attack the issue of finding likely locations of fagsrin
the network, while explicitly accounting for failures due DoS
attacks, broken problematic clients, etc. Secondly, weesddthe
challenge of identifying when incidents begin and end.

We focus our analysis on 3-hours of logs bracketing a problem
atic period one afternoon in the fall of 2005, and presentraaryg
results from analyzing a full week of web logs from Januaf&



The logs we analyze were recorded at servers in Akamai's CDN,
co-located in over 1000 networks close to end-users. Aliests
answered locally by the Akamai servers were pruned fromags, |
leaving only those that traversed the wide-area networkda@on-
tent provider and back. This pruning was done to focus ouyaisa

on faults occuring in the wide-area network between the Adam
servers and the MSN data centers. A future analysis will ocu
on failures, such as network problems between clients arat Ak
mai proxies, that would affect requests satisifed by Akaonaxies.

For each request, the log records whether the request slattee
failed. We consider “abandoned requests”—where a useetsac
request before receiving a response—to be failures as eting

this week, we saw over 1 billion requests coming from over 10k
distinct ASes. During these periods, there were no knowtesys
failures, nor did our analyses point to any system failures.

3.1 Where are the problems?

Fundamentally, our goal is to help Internet content prawde
identify and fix any problems in the network infrastructunattare
affecting end-user perceived reliability. Our first stefigstimate
the failure probability of each piece of the network infrasture
(including the client’s browser and the content provideesvers).
When a serious problem occurs, our estimate of the failueeofa
some piece of the infrastructure should increase, and tieenkt
content provider can contact the owner of that infrastmecand
encourage them to repair it. Since contact information iegaly
available for each Autonomous System (AS), our first cut enid
tifying failed network infrastructure operates at the gianty of
ASes.

A naive method of estimating the failure rate of ASes wodddo
simply count the fraction of of successful and failed redgsié®m
every AS. However, as pointed out earlier, a request cotilldoia
many reasons other than network infrastructure problenfaildre

sider three types of candidates: 1 the specific Internetbsiteg
contacted i(e., the site’s hostname); (2) the client's AS; and (3)
the client’s browser type. We are currently working to imtgg
BGP feeds into our analysis, so that we can also explicithsmter
transit ASes between the servers and clients. We label thef se
candidates associated with each requestC;.

Then, we calculate the probabiligy that any given requestis
going to fail as a noisy-OR of the probabilitigs that any of the
candidateg € C; associated with the request fails:

pi=1-[[(—-g) @

JjEC;
We parameterizeg; to be a standard logistic function of the log-
oddsz;:

1
Titres @)

For every new request we can update our estimates of the fail-
ure probabilities of the candidates associated with theest This
update is in the direction of the gradient of the log of theoiimal
likelihood of generating the observations given the falproba-
bilities:

aj

D = y;log(p:) + (1 — yi)log(1 — pi) (3)
AZ]‘ _ n? _ Qj(yi _pl) (4)
25 i

wheren is a weight that controls the impact of each update, and
yi € {0,1} indicates the observed succegs & 0) or failure
(y; = 1) of a request.

at MSN's servers or the sudden spread of a worm sending broken We use an initial value of; = —5 for all candidateg. For each

HTTP requests would unfairly penalize the estimated faihate of
many ASes. A more accurate method must take into accourd thes
alternate explanations for failures, in effect estimating failure
rate of other possible causes of problems as well as thedaiite
of network infrastructure. We call each potential cause faiilare
acandidate

General Algorithm: Formally, to estimate the failure rates of
candidates given the success/failure of requests, we uEea@R
model for root cause finding, a technique first used in theeoaraf
medical diagnosis [2, 3]. That is, we assume that if any ortbef
candidates on which a request depends fails, then the tefqiles
as well. Alternatively, we can state that when an HTTP regues
succeeds, every associated candidate has also “sucCedilgg.
when an HTTP request fails, we only know tlzétieast oneof the
candidates involved with the request has failed.

We have a novel method for performing approximate inference
on the noisy-OR model. We apply stochastic gradient de$&&iD)
to the data likelihood to create on-line estimates of thesdgthg
probability that each candidate is the cause of observéuardai
This model was inspired by the noisy-OR boosting of [4], bogsl
not require boosting or that the underlying causes are tieghy
way. Unlike previous inference techniques, we maintainentres-
timates of candidate probabilities that update as new vhtens
arrive. Previous inference techniques for noisy-OR sdieecause
inference problem for a single fixed set of observationsrsaly
using known values for the parameterization of ghéelow.

First, for each request we determine which candidatightcause
that request to fail. This is equivalent to determining taea can-
didates on which a request depends. In our experiments, e co

request;, updates are applied only to the candidataésvolved in
that request. Since not all candidates are involved witln eae
quest, as requests are processed, the posterior proleahilittach
candidatej diverge from each other.

Empirically, we have found that using a relatively high \af
n = 0.1 and applying an exponential smoothing function on the
gradient,Az;, provides a good trade-off between responsiveness
to failures and stability in reported values. Thus, we daleua
smoothed gradienAz;, at timet as:

Azl = aAzfl + (1 —a)AZ} (5)

Interpretation and Motivation: We interpret the resultant prob-
abilities ¢; as follows. An estimated failure probability approach-
ing 100% implies that all the requests dependent on the datali
j are failing, while a probability approach 0% implies thatnee
quests are failing due to candidate If the estimated probability
of failure is stable at some value between 0% and 100%, then th
implies that the candidatgis experiencing a partial failure, where
some dependent requests are failing while others are noexam-
ple, an AS that drops half of its outgoing connections wowdeha
failure probability estimate approaching 50%.

The SGD technique was selected for several reasons. FRirst, i
avoids the problems of the naive approach described eénbe
only detect large failure rates (thereby missing the snzaliifes
in large ASes). Second, the algorithm produces a refinethatsti
of the probablity each candidate has failed after procgssath
request. This on-line/incremental nature should makeltguithm
well suited for ongoing monitoring (we currently use it difie, but
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Figure 2: The timeline of observed system-wide failure rate
during a 3-hour period. We redact the scale of the error rate b
avoid disclosing sensitive information.

are examining on-line applications). Third, it is a very egsive
framework to which it is easy to add additional candidatesurth,
we believe it makes maximal use of all the available infoiorat

Results: To test how well the success/failure of HTTP requests,
together with this SGD analysis, can estimate the failuobaiili-
ties of network infrastructure components, we examine®euour
logs from fall 2005. Figure 2 shows the observed system-veittie
ure rates during this period. The graph begins with a low oéte
background failures occurring due to broken browsers aond-pr
lems at small ASes. At 21:30, we see that an incident occarb, a
the failure rate increases for approximately 85 minutesr goal
is to see whether and how quickly SGD analysis can localiegseth
failures to some network infrastructure component.

We highlight SGD’s failure probability estimates for sealaran-
didates in Figure 3. Here, we show the timeline of estimatetdp
abilities for 1) two ASes that are associated with the incid@)
an AS that suffers a short-lived failure at time 21:07 and1a8Q,

3) a browser-type, ColdFusion, that is failing almost camiusly
throughout the 3-hour period, and 4) an AS that is not assstia
with any failure during this period.

In Figure 4, we show the observed failure rates of the twantlie
ASes most closely correlated by the SGD analysis with the ma-
jor incident. Upon inspection, we find that these two ASegtogr
account for almost all of the additional error-load thatureed dur-
ing the time-period of the incident. The graph illustratesrangth
of our technique in that AS 2 is correctly identified as beisg a
sociated with the incident, even though AS 2 is small enobgh t
the total number of errors it contributes is dwarfed by ttikifas
from AS 1. According to their Whols entry, both of these ASes
are located in the same geographic area, leading us to &dhav
they share some relationship in the network topology, aridgles
failure caused both to be unable to reach the MSN service.'SGD
failure probability estimates for these ASes were immedijaaf-
fected, and rose to 95% within 2-3 minute of the incidengstst

We applied our SGD analysis to a full week of web logs, and we
analyzed the resultant failure probability estimates tiblbeinder-
stand how many different ASes a content provider might have t
contact and work with to resolve a problem during a week.tFirs
we found that most ASes are quite reliable: almost 75% of ASes
have a peak estimated failure probability less than 1% (herot
words, greater than 99% reliability in their worst minut&jore-
over, 99% of ASes maintained a mean estimated reliabiligogb,
over a fifth maintained 99.9% reliability, and many mainéairbet-
ter than “five 9's” of reliability. Only 2.9% of ASes had a peak
estimated failure probability greater than 50%, and of¢h&Ses,
only 19% had peaks greater than 50% for more than 10 minutes ou
of the week.
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Figure 3: A highlight of the estimated failure probabilitie s re-
sulting from our SGD analysis for two ASes associated with ta
major incident during this time, a third AS that is failing se pa-
rately, a browser type that is almost continuously failing,and a
good AS that sees no failures during this time.
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Figure 4: A timeline of the observed failure rate from the two
candidate ASes most correlated with the incident shown in Fg-
ure 2.



3.2 ldentifying incidents

Our goal in this subsection is to develop analysis techridoe
web logs that can discover when incidents affecting clgereeived
reliability begin and end. This information is importanthese it
can help focus further investigation efforts on alerts, nt&iance
activities, logs, etc. occurring at about the same time adrtbi-
dent. While humans are very good at manually analyzing dada a
recognizing the pattern-changes that indicate that suéhcésfent
has occurred, we wish to automate this procedure for twmresas
1) humans cannot scale to analyzing the volumes of data is day
of web logs of client requests from thousands of ASes; 2)avhil
humans are good at detecting major incidents, the many nmnor
cidents can get lost as “noise,” especially when lookinguaths
large amounts of data.

A simple but naive algorithm is to detect incidents by lomkfor
failure rates to rise above a predetermined threshold, andoyi-
toring for high minute-to-minute changes in the failuresratiow-
ever, because of the level of background noise, burstyrés|etc.,
these techniques generate too many false positives antivesga
failures that begin slowly might not be noticed, and an ienidthat
caused very noisy or bursty changes in failure rate woulddssi
fied as many incidents instead of just one.

General Algorithm: We approach this problem as one of seg-
menting a time-series of failure rates into regions, whiestime-
series values within each region are generally similar ¢ edgher,
and generally different from the time-series values in hiedaging
regions. This is equivalent to finding tiskkange pointsn the time
series [5], and this particular offline approach is origipnalue to
Fisher [6]. In this model, a transition boundary between teo
gions then represents abrupt changes in the mean fail@earad
thus, the potential beginning or end of one or more incideRiss
problem is mathematically equivalent to the v-Optimal dggam
problem, described in [7].

More formally, given a time-series of failure rates, - - - x,,, we
attempt to find a segmentation of the time-series iteegions,
such that we minimize the total distortion:

(6)

wheres,, represents the time-series index of the boundary be-
tween them'" region and thém + 1)'" region,so = 0, sx = n,

m
Zi:sm,I +1%i

D=Sho S (- )

andim,

them*" region. We implement a dynamic programming algorithm
to find the sek of boundaries that minimiz®.

To fit the parametek, we can use one of the many model fitting
techniques described in the literature of statisticalguattecogni-
tion and statistical learning [8, 9]. In the analyses perfed in this
paper, we iterated ovek, generating a curve of distortion rates.
We select the value df associated with the knee in the distortion
curve, as this balances our desire to fit the boundaries tdéte
while avoiding the problem of overfitting (since overall tdigion
approache$ ask — n and every time period becomes its own
region).

Results: In Figure 5, we show the result of applying this tech-
nigue to the problematic period from Fall 2005, segmentimg t
system-wide failure rate into five pieces as indicated bykifee
in the distortion curve. We have applied this segmentatiatyais
to system-wide failure rates, and are currently experimgnwith
applying it to timelines of failure rates of individual ASasd other
candidates.

We should be clear that each segment found by this algorithm
does not correspond to either an incident or an incidemt-fre-

the mean value of time-series throughout
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Figure 5: The 3-hour fall 2005 incident, as segmented by our
incident boundary technique. The segment boundaries corre
spond to when an failure incident begins or ends.

riod. Rather, since many independent incidents might baroog
simultaneously, each segment boundary corresponds taetfie-b
ning or end of one or more incidents. To better understantl suc
occurrences, we are currently working to combine the inédiom

we gain from our segmentation analysis with the results ofail

ure rate estimations for candidates. By comparing the $etanali-
dates with high failure rates before and after each segnantd
ary, we expect to be able to generate a list of incidents theg h
started or stopped at each boundary.

4. RELATED WORK

There is a large body of prior work measuring client peragive
performance of web servers. Two of the most related are WIND a
WAWM. The WIND project[10] uses wavelets to process packet-
level traces of interactions with web servers to find “instireg”
portions of the data. Our work differs in two ways. First, seg-
mentation technique identifies event boundaries rather ihai-
vidual bins of time that contain interesting data, theredgucing
the effort required from human operators. Second, we cdraten
on attributing problems to lacationin the network topology or an
alternate candidates(g, browser type), where WIND focuses on
finding networkpathswith issues but not the location of the issue
along the path. WAMN [11] uses packet-level traces col@ete
clients and web servers to “assess the relative impact eésde-
lay, network delay, packet loss, etc. on transfer laterowt work
seeks to determine where in the network lie the problemsirgus
failed requests. This forces us to develop techniques tpa with
a wider range of causes for failed requests, including AS RNED
failures that prevent the transfer from even starting.

Other researchers have addressed the issue of distribated n
work measurement [12, 13] and failure diagnosis in IP nete/it4]
and DNS infrastructure [15], but here we are concerned vt &
single content provider running a small number of data ecerten
leverage the data available to it. Incorporating informmatirom
public distributed network measurement services to refingte-
dictions of our techniques would be interesting future wdgkm-
ilar to these systems are the commercial services, suchyamte
and Alexa, that “rate” the performance of content providersc-
cessing them from a large number of distributed clients.

Recent research has also applied various statistical anbinga
learning analyses to detect and diagnose failures witleiimtiernal
systems of an Internet service [16, 17]. In general, thesegis
are complementary to our own, though some challenges aredsha
across domains: one such challenge is the visualizatiorigof a
rithmic results and the consideration of operator confidéndhe
techniques [18].



5. DISCUSSION AND FUTURE WORK

This paper presents our initial steps to analyze the loge-of r
guests made to Internet content providers with the goalesftiéy/-
ing and debugging wide-area network problems that interfigth
clients using the content provider. While we have begun by at
tacking two specific problems—estimating the failure rateset-
work infrastructure elements and identifying the start and of
incidents—there are many open, challenging problems &ettea,
such as recognizing recurring problems and discrimindieatgieen
classes of incidentse(g, distinguishing router issues from DNS
problems).

Currently, we are applying our analyses to longer periodisrod
to better characterize and explore the problems occurrintpé
wide-area network. To extend our visibility further int@thetwork
infrastructure, we are integrating into our analyses motgces of
data, including centralized web logs, client-side web lagd BGP
feeds. We are also extending our analyses to better deahvis
ing information, such as occurs when a network failure preve
request from reaching a proxy or server that would log itsifai

Finally, we are investigating the different kinds of resutihat
are useful to Internet content providers as they attempetug
failures in wide-area network infrastructure and work wiitird-
parties to repair and resolve these problems. Our hope tidtha
providing the right tools to the parties with the resourced m-
centives to resolve end-to-end connectivity issues, webgiable
to improve the reliability of the Internet as a whole.
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