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ABSTRACT

In this paper we present a new system for doubletalk detection
that uses multiple signal detectors/discriminators based on recur-
rent networks. The goal is to build a simple system that learns
to combine information from different signal sources to make
robust decisions even under changing noise conditions. In this
paper we use three detectors - two of these are frequency domain
signal detectors, one at the far-end and one at the microphone
channel. The third detector determines the relative level of near-
end speech vs far-end echo in the microphone signal. The new
double-talk detector combines information from all these detec-
tors to make its decision. An important part of this proposed
design is that the features used by these detectors can be easily
tracked online in the presence of noise. We compare our results
with cross-correlation based doubletalk detectors to show its ef-
fectiveness.

1. INTRODUCTION

Acoustic echo cancelers (AEC) are important part of teleconfer-
encing systems - they are necessary to mitigate the deleterious
effect of acoustic feedback from the speaker signal to the micro-
phone input [1]. In an AEC, the echo path is adaptively modeled
using a filter, which is then used to synthesize a replica of the
echo and subtract it from the echo-corrupted microphone signal
[2]. When the near-end talker is active, or when there is no far-
end signal, the filter coefficients will diverge from the true echo
path impulse response; hence is it crucial to have a gooddou-
bletalk detectorwhich indicates periods of simultaneous far-end
and near-end speech. During these periods the adaptation of the
filter coefficients is stopped [1].
Double-talk detection can use statistics computed from the both
the microphone- and the far-end signal. Typically a cross-correlation
based statistic is used in these scenarios [3]. In addition, some
statistics based on each individual signal may also be computed
which can assist in the detection. It may not be straighforward to
analytically compute and combine all this information based on
correlation analysis alone; in this paper we propose a machine
learning based approach.
In our new approach, we propose to use multiple speech detec-
tors/discriminators (D/D) at various points, and then combine
them for effective doubletalk detection. The system is modular
in nature, so it is extendable to multi-channel scenarios. But in
this paper we demostrate the idea on a system with a single mi-
crophone channel. In this system, we use three different D/D
units. Two of them are signal detectors and are used to detect the
presence of a signal at the far-end (FESD) and at the near-end

(NESD) as shown in Figure 1. At the near-end, the signal can
be due to near-end speech or due to echo from the far-end talker.
Thus we need a third unit, which is a discriminator - it estimates
the relative influence of far-end echo vs the near-end speech in
the microphone signal. For lack of a better term, we call this
third unit simply “signal discriminator” (SD). The final part of
our double-talk detector combines the output of all these units to
make robust decision regarding double-talk.
Since the detectors have to be robust to changining noise con-
ditions, we propose to use SNR dependent features which have
been shown to be effective for speech detection [4], and can be
easily tracked online in the presence of noise.
This paper is structured as follows: In section 2 we present our
method for singal detectors/discriminators and for doubletalk
detection. In section 3 we discuss the experiments and results
which is followed by a summary and conclusion in section 4.

2. SIGNAL DETECTORS/DISCRIMINATORS

One of our primary goals is to make the overall system have
low complexity - this requires that the D/D units themselves be
very simple. Recently logistic [4] networks were shown be very
simple and effective for speech detection even in changing noise
conditions. This idea can be easily carried over to detecting other
types of signals in noise.
In our acoustic application, all the signals are influenced by re-
verberation, whose effect typically lasts for hundreds of millisec-
onds; further speech itself is a highly correlated signal. Hence it
is important that our detectors incorporate this long-term effect
in them automatically. One way to achieve this is to take multi-
ple frames of data (spanning the desired time-length of interest)
and use them as inputs to the network. One problem with this
approach is that the correct number to include will depend upon
the situation, and will have to be determined by trial and error.
This also makes the network more complex. Another option is
to use past decisions rather than features.Recurrent networks
[2] are excellent examples of systems that achieve this - they
dynamically re-use information about the state of the network
from the past (these typically constitute the previous outputs of
the network) as inputs to the current decision.
Combining the above two ideas, we propose to use a single layer
network with recurrent feedback (shown in Figure 3). The state
space model of our system can be written as:

x(n) = (1−α)(
N

∑
i=1

wiui)+αx(n−1) (1)

y(n) =
1

1+exp(−x(n))
(2)
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Figure 1: An AEC system showing various modules of our double-talk detector

where[u1(n)u2(n) . . .uN−1(n)1] is the current input data andwis
andα are the parameters of the system.y(n) is a value between
0 and 1, and hence can be interpreted as a probability. Since
the input features are time-dependent, and arrive one per time-
segment, it is appropriate to train this network continuously in
on-line fashion after every frame of data arrives. This type of
learning is appropriate for a non-stationary signal like speech,
and is calledreal-time recurrent learning(RTRL) [5]. RTRL
uses stochastic gradient descent to train this network to minimize
the cross-entropy error [6]. This error metric makes the network
discriminative, and provides the maximum likelihood estimate
of the class probability for a wide variety of class conditional
densities of the data [6]. The reason this is useful for us is that,
since the outputs represent probabilities, it is easy for us to make
decisions based on them, or combine their decisions with others.
Further details of the training can be found at [?].
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Figure 2: Recurrent network architecture

2.1. Feature design

One of the desired characteristics of any detector is that its fea-
tures are sufficiently simple, easily to calculate, have discrimi-
natory power and work well under changing noise conditions.
We use estimated posterior SNRχ(k, t) as the feature set for

the NESD and FESD (these have been shown to have all the
above desirable properties [4]).χ(k, t) is the ratio of the en-
ergy in a given time-frequency atomS to the noise energyN

χ(k, t) = |S(k,t)|2
N(k,t) wherek, t are the frequency bin and time in-

dices respectively. the FESD uses the speaker signalS as the
target signal, and the NESD uses the microphone signalY. The
short term spectra of speech are modeled well by log-normal
distributions; hence we use the logarithm of the SNR estimate
rather than the SNR estimate itself. Thus the inputs used are:

χFESD(k, t) = {log|S(k, t)|2− logNFE(k, t)} (3)

and

χNESD(k, t) = {log|Y(k, t)|2− logNNE(k, t)} (4)

whereNFE andNNE are the noise energies in frequency bink
and time-framet at the far-end and near-end respectively. The
noise powerN can be tracked using various algorithms such as
[7, 8]. In this paper we use a minima tracker (for each frequency
bin we look back a few frames e.g. 25, and choose the lowest
value of the signal) followed by smoothing, to track the noise
floor [8].
We describe the features for the speech discriminator (SD) next.
SD is trying to look at the microphone signal, and it is trying to
figure out how much of it is dominated by the near-end speech
(as opposed to the far-end echo). Thus it is trying to discriminate
the level of near-end speech. Thus for this system we use the
logarithm of the ratio of the microphone instantaneous powerY
to the far-end instantaneous powerS for each frequency bin per
frame as the feature i.e.

χSD(k, t) = log|Y(k, t)|2− log|S(k, t)|2. (5)

As can be seen in Figure 2, the extracted features are clearly dis-
tinct for different scenarios. As expected, the extracted features
are typically largest for only the near-end speech, smallest for the
echo-only case, and in between for the case of doubletalk. Dif-
ferent feature levels correspond to different probability levels;
larger features correspond to higher probabilities. For the echo-
only case, the extracted features are always low independent of
the echo-path; hence the discriminator performance is relatively
independent of the echo-path. We have verified this empirically



under a wide variety of situations. The decision from this dis-
criminator by itself is not very accurate for double-talk detec-
tion, but we hope to make better decisions when combined with
decisions from NESD and FESD. It is probably best to build an-
other learner which combines all these three decisions into one.
In this paper, we use a simple approach (outlined below). In
future works we hope to improve upon this.
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Figure 3: Extracted Features for the SD.

When the NESD and the SD of Figure 1 both indicate a high
probability of the presence of speech, above the selected thresh-
old, we confirm the presence of near-end speech. If the FESD
of Figure 1 indicates the presence of speech and we have a con-
firmed near-end talker, then we declare the current-frame of the
captured signal to be doubletalk. In short, we declare doubletalk
when all the three detectors indicate the presence of speech; we
declare the presence of near-end speech when NESD and SD
detect speech while the FESD indicates a low probability of
speech.

3. EXPERIMENTS AND RESULTS

We use the well known AURORA database [9] for our experi-
ments. The recorded digital speech is sampled at 16 KHz and is
used for the far-end speechsand the near-end speechv of Figure
1. We measured the room impulse response of a10′×10′×8′
room using a stereo system; the truncated 8000 sample (500 ms)
room response is used as the loudspeaker-microphone environ-
menth in Figure 1. A subset of the Aurora data base was used
for training the FESD of Figure 1 precisely 75 signals (50000
frames) consisting of a mixture of male and female speakers.
These signals were filtered through the left channel of the mea-
sured room impulse response to create the echo part of the micro-
phone signals; near-end speech signals (different signals taken
from the Aurora database) were added to simulate the micro-
phone signals for training the NESD and the SD of Figure 1.
Near-end speech was added at different near-end to far-end ra-
tios to improve training.
For testing we use a completely different set of 120 signals taken
from the Aurora data-base [9] to simulate the far-end speech.
These signals were filtered using the right channel of the mea-
sured room impulse response to simulate a different channel for
testing. To these artificially created echo signals we add near-end
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Figure 4: ROC Curve for the FESD, Original curve taken di-
rectly from [4].
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Figure 5: ROC Curve for Detecting NE Speech at Different
NFR.

speech from a second different set of 120 signals taken from Au-
rora data-base at 12 different near-end to far-end ratios (NFR).
We, thus have ten signals for testing at each NFR ratio where
each signal is approximately 8-10 seconds long.
The true labels on the speech signals were generated by thresh-
olding the energy in each time frame of the clean data; the thresh-
old was selected so that all the speech events were retained,
which was verified by listening to a small fraction of the training
data. To study the performance of the speech detectors we plot
the ROC curves (correct detection of speech versus false alarm).
As can be observed from Figure 4, results are compatible with
the speech detector of [4] which was trained with 8 KHz sam-
pled speech . As a result, we confer that the training is done
appropriately for the FESD.
The presence of near-end speech is confirmed when both the
NESD and the SD indicate presence of speech. We combine
both the NESD and the SD and plot the ROC curve in Figure 5
at different values of NFR. At a false alarm rate of 0.1, we detect
the near-end speech with a detection probability of 0.89 at 0 dB
NFR; as expected we detect the near-end speech with a lower de-
tection rate of 0.7 at -10.5 dB NFR. We can clearly observe that



−20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NFR dB

P
m

 

Conventional cross−correlation
Normalized cross−correlation
RTRL−16ms framesize
RTRL−64ms framesize

Figure 6:Pm as function of NFR for doubletalk detectors using
our method, normalized cross-correlation based detector and the
conventional cross-correlation based detector atPf = 0.1.

we have a better detection rate at 0 dB as compared to -10.5 dB
NFR as should be the case. The axes are truncated to highlight
the upper left quadrant of the plot.
To obtain the thresholds corresponding toPf = 0.1 (probability
of false alarm = 0.1), we follow [3]:

1. Setv = 0 (No near-end speech).

2. Select thresholds for all the speech detectors.

3. ComputePf .

4. Repeat steps 2, 3 over a range of threshold values.

5. Select the thresholds that correspond toPf = 0.1.

These thresholds were used to compute the probability of miss,
Pm , for the test signals. For the ten signals at each NFR, we av-
erage thePm over the respective signals to calculate the average
probability of missPm.
For evaluating the new RTRL doubletalk detector we closely
follow [10]. Results are compared with the new normalized
cross-correlation based detector [3] and the conventional cross-
correlation based detector [11]. ThePm characteristics of all
three methods under the constraint ofPf = 0.1 are shown in Fig-
ure 6. The RTRL doubletalk detector proposed here clearly out-
performs the conventional cross-correlation based detector over
a full range of NFR. Our new algorithm outperforms the normal-
ized cross-correlation based detector for lower values of NFR
and is comparable over the remaining region. It must be noted
that we work with a frame size of 16 ms (256 samples at 16
KHz) whereas the other methods use a frame of size 62.5 ms
(500 samples at 8 KHz).
Next we implement a bi-level architecture by aggregating 4 frames
into a single frame so as to have a frame of duration 64 ms com-
parable to that of the normalized cross-correlation based detec-
tor’s 62.5 ms. We observe in Figure 6, that the RTRL doubletalk
detector outperforms the normalized cross-correlation based de-
tector in almost half of the range of NFR values and is very close
in the remaining region.
The FESD has a detection rate of 0.88 at 15 dB SNR (Figure 4);
thus the RTRL based doubletalk detector is bounded by a miss
probability of 0.1 even at higher NFR values (Figure 6). Typ-
ically in a teleconferencing device such as the Microsoft Ring-

Cam [12] the loudspeaker is located very close to the micro-
phone, and the near-end talkers are relatively further away from
the microphone. Thus, we typically have low NFR values in such
devices. As can be observed from Figure 6, the RTRL based dou-
bletalk detector significantly outperforms the normalized cross-
correlation based detector over such lower NFR values making it
suitable to use for such applications. Computational complexity
of the RTRL doubletalk detector is of the order ofL, whereas for
the correlation based detectors it is of the order ofL logL,where
L = 256samples is the frame length.

4. CONCLUSION

We have proposed a new doubletalk detector based on a novel
near-end speech detector; we significantly outperform the con-
ventional cross-correlation based detector and are comparable to
the normalized cross-correlation based detector.
Echo is a delayed speech signal; typically the spectrum of the
echo is very similar to the spectrum of a speech signal with a
quicker falloff from the maxima. Since we work in the frequency
domain, we observe that the trained coefficients are equally ap-
plicable to any room responses. Similar results were observed
for different room responses and even better results were ob-
served with real data collected using the RingCam project at Mi-
crosoft Research [12]. Based on these observations we conclude
that the trained weights are equally applicable to any room re-
sponses if not independent of room responses.
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