

Code Thumbnails: Using Spatial Memory to Navigate Source Code

Robert DeLine, Mary Czerwinski, Brian Meyers, Gina Venolia, Steven Drucker, and George Robertson
Microsoft Research, Microsoft Corporation, Redmond, USA

rdeline, marycz, brianme, ginav, sdrucker, ggr @ microsoft.com

Abstract

Modern development environments provide many
features for navigating source code, yet recent studies
show the developers still spend a tremendous amount of
time just navigating. Since existing navigation features
rely heavily on memorizing symbol names, we present a
new design, called Code Thumbnails, intended to allow
a developer to navigate source code by forming a spa-
tial memory of it. To aid intra-file navigation, we add a
thumbnail image of the file to the scrollbar, which
makes any part of the file one click away. To aid inter-
file navigation, we provide a desktop of file thumbnail
images, which make any part of any file one click away.
We did a formative evaluation of the design with eleven
experienced developers and present the results.

1. Introduction
Recent studies have shown that experienced developers
doing maintenance tasks on unfamiliar source code
spend a large fraction of their time simply navigating
around the code. In a modern development environ-
ment, such as Microsoft Visual Studio or Eclipse, a
developer typically uses many features to navigate:
opening, switching between, and scrolling within tabbed
documents; clicking on items in hierarchical overviews
(class view, project file view); clicking on source code
entities (go to definition); and issuing textual queries or
structural queries (find definition, find callers, find all
references) and jumping to the results. In a study of
experienced student developers modifying a 500-line
Java program, Ko, Aung and Myers found that partici-
pants spent an average of 35% of their task time navi-
gating [12]. In a similar study, in which experienced
professional developers modified a 3000-line C# pro-
gram, DeLine, Khella, Czerwinski and Robertson found
that the inefficiencies of code navigation played a large
role in participants‟ poor task completion rates [5]. In
both studies, experienced programmers had difficulty
navigating around programs of very modest size; the
problem is presumably worse in larger programs.

One reason why code navigation is so inefficient is
that most of the provided UI mechanisms are based on
memorizing symbol names. To open a file requires
knowing its name; to click on a method in a class over-

view requires knowing the name of the method, its
containing class and the class‟s containing nam espace;
to find an object using search requires knowing the
name of the sought object or a nearby object. The num-
ber of symbols in even a modest program can over-
whelm a developer‟s w ork ing m em ory , causing confu-
sion and false navigation steps. A second problem is
that source code‟s visual uniformity makes code diffi-
cult to recognize at a glance, leading to disorientation.
(DeLine, Khella, Czerwinski and Robertson report an
instance where a developer viewed a method, briefly
navigated away and returned without realizing it was the
same method as before.) Hence, a developer spends
considerable cognitive resources both on remembering
symbols in order to navigate and on distinguishing one
part of the code form another.

To lower this cognitive burden, we introduce new
overview features to a development environment to
better support the use of spatial memory to navigate
source code. We call these new features Code Thumb-
nails, shown in Figures 1 and 2. The rest of this paper
will describe Code Thumbnails (CT) and its preliminary
evaluation.

2. Code Thumbnails
Our design introduces two user interface features to
Microsoft Visual Studio: the Code Thumbnail Scrollbar
(CT Scrollbar, or CTS) for navigating within a file; and
the Code Thumbnail Desktop (CT Desktop, or CTD) for
navigating between files. The CT Scrollbar, shown in
Figure 1, su pplem ents the docu m ent‟s vertical scrollbar
with a thumbnail image of the entire document. The
document text is shrunk to fit the height of the scrollbar.
For short files, the thumbnail font size is capped at a
maximum of 2.5 points, keeping the text just below the
threshold of readability; when this is the case (not
shown in Figure 1), the unused portion of the display is
filled with gray. Our intention is that the developer can
use the text shape for visual landmarks (a perceptual
activity), without reading the text (a cognitive activity).
The currently visible portion of the document is reflect-
ed both in the scrollbar’s “thumb” (as usual) and with a
box drawn around the corresponding text in the thumb-
nail. Since Visual Studio provides a folding editor for
code (that is, the text is parsed into a tree with collapsi-

ble nodes), we reflect this tree in the code thumbnail
with brackets representing the second- and third-level
nodes, which are typically types and their members. The
brackets provide another form of visual landmark.

To navigate using the CT Scrollbar, a developer can
either use the scrollbar at left in the usual way, or she
can click on a location in the thumbnail to jump to the
corresponding place in the code. Whenever the mouse
cursor is inside the thumbnail area, labels appear show-
ing the names of likely navigation targets, specifically
the names of second-level items with no children (e.g.,
enums) and third-level items (fields and methods) as
shown on the right side of Figure 1. In the current de-
sign, these pop-up labels occlude the code shape, which
is an area for improvement.

 The CT Desktop, shown in Figure 2, shows a
thumbnail image of every source file in the project,
arranged on a desktop surface. Each thumbnail has a
label at the top, which shows the file name and serves as
a handle for moving the thumbnail. A developer can
arrange the thumbnails on the desktop as she sees fit.
The code thumbnails are drawn exactly like those in the
CT Scrollbar, except that the currently visible portion is
drawn with a filled rectangle to make it more apparent.
We use the same font size for all thumbnails on the
desk top, w hich m eans that each thu m bnail‟s height is
proportional to its file‟s length. The document whose

editor is active is highlighted with a thicker border than
the others. Documents that are currently closed are
shown with a grey background, grey title and no scroll
area. As with the CT Scrollbar, moving the cursor over
a thumbnail pops up target labels, and clicking on a
thumbnail activates the docu m ent‟s editor and scrolls to
the chosen part of the document. C lick ing a thu m bnail‟s
title area activates the docu m ent‟s editor w ithou t scro l-
ling the document. Double-clicking a grayed thumbnail
opens the document and activates its editor.

When the programmer uses any of the standard
search tools, the search results are highlighted in both
the CT Scrollbar and CT Desktop. This makes it easy to
see all search results at a glance.

Both the CT Scrollbar and Desktop are intended to
allow the developer to form spatial memory of the code.
The CT Scrollbar provides a stable, one-dimensional
space per document, with visual landmarks to help the
user distinguish different parts at a glance (namely, the
code shape, the brackets and the target labels). The CT
Desktop provides a stable, two-dimensional space of all
the documents, again with visual landmarks (namely,
the thumbnail landmarks, plus their placement).

Our UI design choices were driven by our study
goals. Specifically, we were interested in whether de-
velopers could form spatial memory of the code and
how that would affect their navigation choices. We

Figure 1. The Code Thumbnail Scrollbar adds a thumbnail image of the document to the scrollbar, with a rectangle indicating the
current view (left). On mouse-over, it the names of potential navigation targets are revealed (right).

chose thumbnail images of the code to define the space
and provide visual landmarks because this depiction
requires little learning from the user. In future studies,
we could weigh the spatial-memory benefits of Code
Thumbnails against existing techniques or other, poten-
tially unfamiliar representations, like UML diagrams,
Voronoi Treemaps [1], or Software Terrain Maps [6].
Our intention here is to do an initial evaluation of the
potential of the idea of Code Thumbnails.

3. Spatial Memory and Visual Code Cues
There is a large body of literature on the use of spatial
cognition while navigating graphical user interfaces (see
E hret‟s dissertation [8] for a recent example) and way-
finding [3][4][18], both for real and electronic spaces.
Some of these studies have culminated in a set of guide-
lines for designers of virtual worlds [16]. For instance,
leveraging knowledge from the architectural domain
[13][15], Darken and Silbert [4] have shown that adding
real world landmarks, such as borders, paths, boundaries
and directional cues, can greatly benefit navigation
performance in virtual reality. In particular, they found

that stationary or predictably moving cues are optimal,
and that multiple sensory modalities can be combined to
assist searching through an electronic space. They also
have shown that if the space is not divided using a sim-
ple, organizing principle, that users will impose their
own, conceptual organization upon the space.

However, in previous research, Jones and Dumais
[11] suggested that, for document retrieval, adding
spatial information to the document has little value
beyond giving the document a semantic label. In their
study, participants were able to accurately and efficient-
ly retrieve stored documents in the real world with as
impoverished a semantic label as a two-letter cue! Stor-
ing the document in a spatial position did improve per-
formance over baseline control conditions, however.

Our goal is to build on research as to how land-
marks and spatial layouts generalize to the retrieval of
information in large, semi-structured, electronic worlds
in new domains like software development. In addition,
it is our intention here to leverage what we know about
spatial memory and perceptual cues in an effort to help

Figure 2. The Code Thumbnail Desktop window shows thumbnail images of all source files, which the user arranges on a
desktop surface.

programmers stay oriented in their code, in addition to
helping them navigate more effectively.

4. Related Work
SeeSoft [9] was a family of novel software visualization
techniques designed to show various textual properties
of large software systems. One SeeSoft view showed all
the code in all of the files of a software system, shrun-
ken so that they were all visible on the same display.
Lines of text were replaced with colored lines (or pix-
els) that represented various properties of the line of
source code. For example, color coding could show
where recent changes were made in the code. While this
view has some similarity to the CT Desktop of Figure 2,
the main objective of CT Desktop is to provide a con-
text for spatial memory for code navigation.

Eclipse displays markers in the editor scrollbar to
localize information about the code [7]. Each warning
or error is marked by a line in the scrollbar at the loca-
tion it appears in the source file. These markers enable
programmers to navigate directly to regions of concern
within the program without reading symbol names.

Similar to both the Eclipse scrollbar and SeeSoft,
Aspect Browser presents the source files of a system as
rectangles proportional to the file size, tiled from left to
right, with color-coded lines showing the locations of
search results. [10][17] Although Aspect Browser was
designed to visualize search results and not to aid navi-
gation, Shonle, Neddenriep and Griswold note that a
developer can use spatial memory to track long tasks by
remembering how far she has progressed in a top-down,
left-to-right sweep of the results.

The Data Mountain [16] was a novel user interface
for document management designed specifically to take
advantage of human spatial memory (i.e., the ability to
remember where you put something). Users freely ar-
ranged document thumbnails on an inclined plane tex-
tured with passive landmarks. A user study of the Data
Mountain [2] demonstrated that it was an effective al-
ternative for current web Favorites mechanisms, and
that it leveraged spatial memory. The Data Mountain
allowed users to informally arrange their space in a very
personal way. This informality appeared to play an
important role in forming spatial memory and was
enabled by having the ability to view the whole space,
by the spatial relationships between the thumbnails, and
by the manual control of those relationships in space.
Hence, the CT Desktop retains these aspects of Data
M ou ntain‟s design.

The Data Mountain user study also suggested that
spatial memory did in fact play a role in virtual envi-
ronments. Subjects were reported to say things such as,
“it‟s right here” and “I know it‟s back there”, and then
move directly to the location of the view. Also, when

thu m bnails w ere “turned off”, u sers w ere not slow er at
retrieving their web pages even after 6 months of
elapsed time without interacting with the system. This
remarkable result emphasizes the power of spatial
memory. Storage times, retrieval times, and retrieval
failures were all reduced because of this aspect of spa-
tial memory‟s influence.

5. Formative Evaluation
Eleven intermediate to experienced developers (as de-
termined by an internal, well-validated screening ques-
tion) were recruited for a formative evaluation of Code
Thumbnails. All participants were recruited from the
greater Puget Sound area, although one participant from
our own company was included to replace a cancella-
tion. Participants had an average age of 34, had been
programming on average for 15 years and had used
Visual Studio for an average of nine years. They worked
on development teams that had nine colleagues, on
average. All participants were male, which was an arti-
fact of the gender-skewed roster of study volunteers, not
by design.

Each session started with an overview description
of the code base used for the study, which was a C#
implementation of the Tetris game. All participants had
played Tetris before and remembered the game flow.
Following this discussion, each participant was pro-
vided a brief overview of Code Thumbnails. We gave
participants five minutes to explore Code Thumbnails to
see how the software worked, and we encouraged par-
ticipants to perform global searches to see how Code
Thumbnails showed search hits across the project files
in the desktop window.

Once participants had successfully used and under-
stood Code Thumbnails, they started the programming
tasks. We were presented with three tasks, listed in
increasing order of difficulty. The tasks were:
1. The game contains a dialog box for setting the color

of each of the seven types of falling game pieces.
This color defaults to gray for each type of game
piece. Participants were asked to change the code
so that each type of game piece defaulted to a dif-
ferent color.

2. In the existing implementation, a game piece al-
ways fell at a constant rate of one square per
second. Participants were asked change the game so
that game pieces fell faster as the player scored
more points.

3. The third task was to change the game so that hit-
ting the space key during game play caused the cur-
rent figure to fall immediately as far down as it can.

Participants programmed and performed the study tasks
at their own pace, with the goal of finishing all three

tasks within 75 minutes. They worked independently,
though we ran two participants at a time for logistical
reasons. Nine participants were able to complete all
three tasks within the allotted time, one got very close to
completion, and one had not completed the second task
when the session concluded.

Once participants had finished the last coding task (or
75 minutes into the session), they performed a series of
targeted search tasks, designed to determine how and
how well they would utilize existing search and naviga-
tion features in Visual Studio with Code Thumbnails. In
these tasks participants were asked to find files by
name, methods by name, and methods by brief descrip-
tions of their functions. Task times were automatically
collected for these trials for a total of 18 search trials
(five trials of each type, plus three practice trials which
were not included in the analysis). Participants were
instructed that they could find these targets using any
means available, including local and global searching,
scrolling through the code, or using Code Thumbnails.
This was important for us to gauge whether or not par-
ticipants would use Code Thumbnails to navigate if
given the choice to use anything. All participant activity
in Visual Studio was to be logged to a data file for later
analysis, but unfortunately an error only allowed us to
collect this data for five of the participants.

Next, participants performed a series of spatial
memory trials divided into four sets: searching for files,
both without and with visual landmarks, and searching
for methods, both without and with visual landmarks.
Each set consisted of five trials for a total of 20 trials.
For each of the first five trials, the spatial memory quiz
prompted the participant with a file name and showed
him a blank border the same size as the CT Desktop.
The participant‟s task w as to click as close as possible
on the location within that border to where that file had
been located on the CT Desktop during the program-
ming tasks. If a click was anywhere within the target
location, the quiz program announced success and
prompted with the next file name. If the click was out-
side the target location, the quiz program displayed a
black “X ” at the click location as a reminder of where
previous clicks had been attempted. When the partici-
pant clicked on the correct location for the file, the next
trial would begin. The second set of trials was like the
first, except that the quiz program now revealed all the
files‟ thumbnails (without file names) in the CTD win-
dow.

The third and fourth sets of spatial memory trials
mimicked the CT Scrollbar and focused on finding
methods by name. For the third set, the quiz program
drew a long, blank rectangle centered in the window,

representing the CT Scrollbar. The quiz program
prompted the participant with five method names, pro-
viding the same correctness feedback as the previous
trials. A click w as considered “on” a m ethod if a corres-
ponding click in the CT Scrollbar would have caused
any part of the method text to appear in the editor win-
dow. The fourth set of spatial memory trials was like the
third except that the quiz program now revealed the
code thumbnail (without any text labels) within the
scrollbar rectangle.

For all the spatial memory trials, the quiz program
recorded the time and position of each click. From
these, we derived the dependent measures of the total
search time, the total number of clicks, and the distance
of the first click to the target.

As their final task in the session, participants filled
out a questionnaire about their experiences using Code
Thumbnails and added any comments or suggestions
they might have.

All tasks were carried out on identical Compaq
EVO 510 desktop computers with an Intel P4 2.8 GHz
processor, 2 GB of RAM and 40 GB hard drive, running
Windows XP Pro SP2. The computers had Dual NEC
18” flat panel m onitors, side-by-side, each running at
their native 1280x1024 resolution. We used Visual
Studio 2005 as the software development platform.

We ran a formative evaluation because we did not
have clear hypotheses about how Code Thumbnails
would be used to leverage spatial memory. To examine
this question, we explored several manipulations that we
believed would be useful in future benchmark studies of
Code Thumbnails and related techniques. For example,
in our targeted search task we indicated some target
methods by name and some by functional descriptions.
We thought having a concrete name would make the
task easier, but also wanted to see what techniques par-
ticipants used to search when they were only given a
general description. Likewise, for the spatial memory
quiz, half the trials were presented to the participant
without any landmarks at all— a true test of their spatial
memory. We expected these trials to be harder, but
wondered whether participants would be more success-
ful for frequently-accessed areas of code.

6. Results

6.1. Usage during Programming Tasks

As mentioned, we logged five of the participants‟ activi-
ties as they performed the coding tasks. We were inter-
ested to see whether and how often the Code Thumb-
nails features were utilized for navigation and selection,
relative to other navigation features. It was immediately
clear that all our participants frequently used the Code

Thumbnails features for navigation, searching and se-
lection. For a majority of the participants, Code Thumb-
nail activities represented by far the most frequent ways
to navigate and search. For the few participants for
which this was not the case, Find and Replace and Find
Results were the most frequent navigation features,
followed closely by both Go To Definition and Code
Thumbnails. Figure 3 summarizes the five logged par-
ticipants‟ navigation actions during the programming
tasks. Both the CTS and CTD interactions are broken
down into specific actions. Usage of CT varied by par-
ticipant between 40% and 91% of all logged navigation
activities.

Experimental observations of participants‟ use of
the tool verify the log data. Participants appeared to
quickly understand how to navigate with Code Thumb-
nails early in their programming tasks and continued to
use them often, augmenting their use of more-familiar
navigation methods. Given the time pressure of the
programming tasks, the rapid adoption of Code Thumb-
nails was surprising and encouraging.

6.2. Targeted Search Tasks

As we expected, searching for files was significantly
faster than searching for methods (9.3 v. 20.3 seconds
on average), which was in turn significantly faster than
searching for method descriptions (49.0 seconds on
average). More interestingly, since we logged five of the
participants‟ actions in the IDE, we were able to analyze
what features they used during the targeted search trials.
Because of the time pressure of the search trials, we
expected users to favor tried and true search techniques.
Nonetheless, the CT Desktop was used in 64% of the

search trials. The next most popular way of finding
targets was text search, which was used 16% of the
time. The CT Scrollbar and the Solution Explorer were
used 11% and 8% respectively. (The percentages do not
add up to 100% as participants sometimes used multiple
navigation features techniques in a trial). In short, even
in a “race”, participants frequently u sed Code Thumb-
nails, even when given the choice of familiar navigation
features.

6.3. Spatial Memory Task Times

We used a Repeated Measures Analysis of Variance
(RM-ANOVA) to analyze the time to click on the cor-
rect spatial location for files and methods and the num-
ber of misses before finding the target. Our analysis was
2×2×5, namely landmarks absent vs. present, file target
type vs. method target type, and five search trials. There
were significant main effects for target type,
F(1,10)=24.5, p<0.001 and landmarks, F(1, 10)=14.08,
p=0.003 and a significant interaction between target
type and landmark availability, F(1,10)=5.7, p=0.04. No
other interactions were significant.

In the spatial memory quiz, searching for files was
significantly slower than searching for methods (13.7
vs. 2.5 sec, on average). Also, file searches were signifi-
cantly slower when the thumbnail landmarks were not
available (files: 18.9 sec without landmarks vs. 5.7 sec
with landmarks, on average), as compared to method
searches (2.4 vs. 0.15 seconds, respectively, on average,
no significant difference). The fact that the landmarks
are providing speed benefits for file searching in the CT
Desktop means that the participants were beginning to
build up a cognitive map of the spatial layout of their
thumbnails in the overview window— a nice finding for
using the tool for such a relatively short period of time.
Spatial cognition research has consistently shown that
mental maps of spaces build up piecemeal, anchored
around landmarks [4, 11, 13, 15, 16]. We conjecture that
visual landmarks were not as useful for method searches
because method targets are much closer in the CTS
relative to file targets in the CTD and could be found
within a few clicks, even with no visual landmarks.

6.4. Spatial Memory— First Click Distance

For the spatial memory tasks we calculated the distance
from the participant‟s first click to the target. For file
targets, this distance is the pixel distance between the
click and the target rectangle; for methods, this distance
is the number of lines of code between the line clicked
and the lines occupied by the m ethod‟s code. Therefore,
we separately analyzed these two target types. For the
files, we used a 2×5 RM-ANOVA analysis (landmark
absent vs. present, over five trial repetitions). We did

Figure 3. Percentage of navigation actions where participants
used standard features (top four actions), CT Desktop (middle
three), and CT Scrollbar (bottom two), for each of the five
participants.

not detect a main effect for landmarks. The main effect
of trial repetitions was significant, F(4,36)=4.8,
p=0.003. Also, the interaction between whether land-
marks were absent or present and repetitions was signif-
icant, F(4,36)=10.6, p<0.001. This can mostly be ex-
plained in terms of varying familiarity with the targets.
The first two blind targets were files that the partici-
pants frequently accessed during the programming
tasks; the next three blind targets were infrequently
accessed files. For the first two blind search trials, the
average first click pixel distance was 368 pixels; for
next three blind trials, the pixel distance was 511 pixels,
showing users were much closer with familiar targets
than unfamiliar. This is also suggestive of the formation
of spatial memory with Code Thumbnails Desktop.

For the method data, we ran a similar 2×5 RM-
ANOVA analysis. Here a significant main effect for
landmark presence, F(1,9)=23.5, p<0.001 was a ob-
served, and nothing else was significant. When land-
marks were absent, the average number of lines from
the target method was 54.9; when present, the average
dropped down to 3.6 lines away from the method, on
average. This is further evidence that participants were
beginning to form a cognitive map for the layout of the
code within files.

6.5. Satisfaction Questionnaire

The results from the satisfaction questionnaire came out
surprisingly well for a first iteration of the Code
Thumbnails design. Table 1 shows the average results
across all participants. Highlights included high marks
for overall ease of use, learnability, overall satisfaction
and preference for Code Thumbnails over the existing
Visual Studio user interface.

6.6. Participant Feedback

The participants gave us many good ideas for improving
the design of Code Thumbnails. Most mentioned that
they wanted the method nam es’ hover text to be w ider,
so that the whole name could be seen. Some thought it
would be nice to be able to drag and drop the methods
(i.e., edit the file) within the thumbnails. A few wanted
more features in the CTD thumbnails, like highlighting
code that refers to the current definition (callers, callees,
field uses). Participants appreciated the search hits in
the global overview, although suggested that making the
search results readable in the thumbnails would useful.
One participant mentioned how useful Code Thumb-
nails were for navigating when you did not know where
you needed to go, but suggested better support for key-
board shortcuts to improve navigation speed. Most
participants saw the need for multiple monitors to de-
vote enough screen space to the CT Desktop and wanted
us to think about ways to quickly bring up the Desktop
and then easily send it away again. A few mentioned
that it was maybe not necessary to see all of the files in
a project, just those frequently accessed (what Ko, Aung
and Myers call a working set). Some participants recog-
nized that the stu dy’s code base is small and were con-
cerned about scaling to larger projects.

7. Discussion
For a first iteration design, users found Code Thumb-
nails easy to learn and obviously helpful for navigation,
even under time pressure. Participants used the Code
Thumbnails frequently to navigate and to search for and
find methods and files, even when they were told they
could use any method for these tasks that they preferred.
Usability issues were observed and valuable feedback

Table 1. User satisfaction questions and average responses (with standard deviations in parentheses), sorted by decreasing
average response. For most questions (except as noted) a high-number response was more favorable to Code Thumbnails.

Satisfaction Question Avg. Response (St. Dev.)
Learnability: The version of Visual Studio you used today was easy to learn. (Disagree=1,
Agree=5)

4.6 (0.5)

Ease of Use: The version of Visual Studio you used today was easy to use. (Disagree=1,
Agree=5)

4.5 (0.5)

Preference: How much would you prefer this version of VS over existing techniques for devel-
oping software? (Not at all=1, Very much=5)

4.3 (1.0)

Satisfaction: How satisfied were you with the version of VS you used for accomplishing the
tasks? (Low=1, High=5)

4.1 (1.1)

Global navigation: The code thumbnails (if you used them) were useful for rapid, global
navigation through the code. (Disagree=1, Agree=5)

4.0 (1.0)

Utility: How useful were the code thumbnails (if you used them) overall? (Not at all useful=1,
Very useful=5).

3.8 (0.9)

Divided attention: How much did you have to divide your attention between the code thumb-
nails (if you used them) and the code displayed? (High=1, Low=5)

3.5 (0.8)

Local navigation: The code thumbnails (if you used them) were useful for minute, local
movement through the code. (Disagree=1, Agree=5)

3.3 (1.5)

Frustration level: How discouraged, irritated, stressed or annoyed did you feel while complet-
ing the programming tasks? (Low=1, High=5)

1.7 (0.8)
(Note: lower is better)

for future designs was obtained. We note that this study
focuses on professional developers navigating unfami-
liar code. How these navigation patterns differ when the
code is familiar and how code familiarity affects the
utility of Code Thumbnails remain open questions. We
hope to address these questions in a future longitudinal
field study.

For the spatial memory test, several different kinds
of data were explored with the hope that they would
reveal something about Code Thumbnails supporting
better spatial memory. For files, participants could leve-
rage the file outlines as landmarks which improved
search speed in the overview window when available.
We think that this implies that our participants were
beginning to build up a cognitive map for the layout of
files in the overview window in just over an hour of
usage. This hypothesis needs to be followed up with a
more careful analysis and benchmark against a situation
in which code thumbnails are not available.

For methods, having the outline of the code visible
significantly improved participants‟ ability to click near
the target. We suspect the participants were learning
something about the distinctive shape of the code within
files in order for this effect to be as strong as it was, and
further tests of this are certainly needed.

8. Conclusions
With our formative evaluation we were able to show
that users were quickly able to learn to navigate using
thumbnail images of the code. They enjoyed this style
of navigation, as measured both by their navigation
choices during programming and search tasks and by
their subjective ratings. We have some initial evidence
that they were forming a spatial memory of the code,
although the evidence could be strengthened by a longer
study with more participants. This leaves two important
questions unanswered: Is a developer more efficient
(spending less time) while navigating via spatial memo-
ry rather than traditional means? And, does navigating
via spatial memory free up cognitive resources that can
be applied to programming tasks— that is, does navigat-
ing via spatial memory increase overall programming
productivity? We intend to address these two questions
with a follow-on study.

9. References
[1] Balzer, M., Deussen, O., and Lewerentz, C. (2005), “V o-
ronoi T reem ap s for the visualization of softw are m etrics,” In
Proc. ACM Symposium on Software Visualization 2005.
[2] Czerwinski, M., van Dantzich, M., Robertson, G.G. &
Hoffman, H. (1999). The contribution of thumbnail image,
mouse-over text and spatial location memory to web page
retrieval in 3D. In Proc. of Interact '99, IOS press, pp. 163-
170.

[3] Darken, R. & Sibert, J. L. (1993). A Toolset for Naviga-
tion in Virtual Environments. In Proc. of U IST ’93 , ACM.
[4] Darken, R. & Sibert, J. L. (1996). Navigating large virtual
spaces. International Journal of Human-Computer Interac-
tion, 8, 49-72.
[5] DeLine, R., Khella, A., Czerwinski, M., and Roberson, G.
(2005), “T ow ards understand ing program s through w ear-
based filtering,” In Proc. Symp. on Software Visualization
2005.
[6] D eL ine, R . “S tayin g oriented w ith S oftw are T errain M aps
(2005),” In Proc. of the Workshop on Visual Languages and
Computation 2005.
[7] Eclipse home page, http://www.eclipse.org.
[8] Ehret, B.D. (2002). Learning where to look: Location
learning in graphical user interfaces.
[9] Eick, S.G., Steffen, J.L., Sumner, E.E.Jr. (1992), “S eesoft-
A T ool for V isualizin g L in e O riented S oftw are S tatistics”,
IEEE Trans. on Software Engineering, 18:11.
[10] Griswold, W., Yuan, J., and Kato, Y . “E xp lo iting th e m ap
m etaphor in a too l for softw are evo lution,” Proc. International
Conference on Software Engineering, 2001.
[11] Jones, W. & Dumais, S. (1986). The spatial metaphor for
user interfaces: Experimental tests of reference by location
versus name. ACM Transactions of Office Information Sys-
tems, 4, pp. 42-63.
[12] Ko, A.J., Aung, H.H., Myers, B.A. (2005), "Eliciting
Design Requirements for Maintenance-Oriented IDEs: A
Detailed Study of Corrective and Perfective Maintenance
Tasks", Proc. International Conference on Software Engineer-
ing 2005.
[13] Lynch, K. (1960). The Image of the City. Cambridge,
Massachusetts: The MIT Press.
[14] M ander, R ., S alom on, G . & W ong, Y .Y . (1992). A „P ile‟
Metaphor for Supporting Casual Organization of Information.
Proc. of C H I ’92 , 627-634.
[15] Passini, R. (1984). Wayfinding in Architecture. New
York: Van Nostrand Reinhold.
[16] Robertson, G. , Czerwinski, M., Larson, K., Robbins, D.,
Thiel, D. & van Dantzich, M. (1998), Data Mountain: Using
Spatial Memory for Document Management, In Proc. of UIST
'98, pp. 153-162, ACM.
[17] S honle, M ., N eddenriep, J. and G risw o ld, W ., “A s-
pectBrowser for Eclipse: A case study in plug-in retargetin g,”
Proc. of the OOPSLA workshop on eclipse technology eX-
change, 2004.
[18] Thorndyke, P. W. & Hayes-Roth, B. (1982). Differences
in Spatial Knowledge Acquired from Maps and Navigation,
Cognitive Psychology, 14, pp. 560-589.
[19] Vinson, N.G. (1999). Design guidelines for landmarks to
support navigation in virtual environments, Proc. of C H I’99 ,
p.278-285.

