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Abstract
Many commercial applications rely on pre-compiled parameterized procedures to interact with a database. Unfortunately, executing a procedure with a set of parameters different from those used at compilation may be arbitrarily sub-optimal. Parametric query optimization (PQO) attempts to solve this problem by exhaustively determining the optimal plans in each point of the parameter space at compile time. However, PQO is likely not cost-effective if the query is executed infrequently or if it is executed with values only within a subset of the parameter space. In this chapter we propose instead to progressively explore the parameter space and build a parametric plan during several executions of the same query. We introduce algorithms that, as parametric plans are populated, are able to frequently bypass the optimizer but still execute optimal or near-optimal plans.
Introduction
There are two trivial alternatives to deal with the optimization and execution of parameterized queries. One approach, termed Optimize-Always, is to call the optimizer and generate a new execution plan every time the query is invoked. Another trivial approach, termed Optimize-Once, is to optimize the query just once with some set of parameter values and reuse the resulting physical plan for any other set of parameters. Both approaches have disadvantages. Optimize-Always requires an optimization call for each execution. The optimization call may be a significant part of the total execution time especially for simple queries. In addition, Optimize-Always may limit the number of concurrent queries in the system, as the optimization process itself may consume too much memory and may limit throughput. On the other hand, Optimize-Once returns a single plan that is used for all points in the parameter space. The problem is that the chosen plan may be arbitrarily sub-optimal in all points of the parameter space other then the point for which the query was optimized for.

1.1. Parametric Query Optimization

An alternative to Optimize-Always and Optimize-Once is Parametric Query Optimization (PQO). At optimization time, PQO determines a set of plans such that, for each point in the parameter space, there is at least one plan in the set that it is optimal. The regions of optimality of each plan are also computed. PQO proposals often assume that the cost formulas of physical plans are linear or piece-wise linear with respect to the cost parameters or that the regions of optimality are connected and convex. However, in reality, the cost functions of physical plans are not necessarily linear or piece-wise linear and the regions of optimality are not necessarily connected nor convex. In addition, PQO has a much higher cost than optimizing a query a single time (e.g., PQO may require multiple invocations of the optimizer with different parameters [4, 5]). Thus, from the database perspective, when a parametric query execution request arrives, it is not clear if PQO should be used or not: it may not be cost-effective to solve the PQO problem if the procedure is not executed frequently or if it is executed with values only within a sub-space of the entire parameter space.
1.2. Contributions

The main contributions of this paper are:

· In Section 2 we propose Progressive Parametric Query Optimization (PPQO), a new technique to improve the performance of processing parameterized queries. We also propose the Parametric Plan Interface as a way to incorporate PPQO in a DBMS with minimal changes to query processing.

· In Section 3 we propose Bounded, an implementation of PPQO with proven guarantees of optimality.

· In Section 4 we propose Ellipse, another implementation of PPQO with higher hit rates and better scalability than Bounded.

· Finally, in Section 5 we present an extensive performance evaluation of PPQO using a prototype implementation and Microsoft’s SQL Server 2005 DBMS.

Progressive Parametric Query Optimization
We propose a new technique called Progressive Parametric Query Optimization (PPQO) that addresses the shortcomings of PQO listed in Section 1.1. In essence, we want to progressively solve or approximate the solution to the PQO problem (formalized in Section 2.1) as successive query execution calls, with potentially different input parameters, are submitted. Given a query and its parameter values, an optimization call returns the optimal physical plan and the estimated cost of executing it. PPQO intercepts the inputs and outputs to and from the optimizer and registers which plans are estimated to be optimal for which points in the parameter space in a structure called Parametric Plan (PP), as described in Section 2.2.
Eventually, as parametric plans are populated, PPQO may be able to bypass the optimization process. Instead, when a query execution request arrives, PPQO uses its parametric plan to infer which plan to use for a particular set of parameter values. If it is able to find a plan, then optimization is avoided. Otherwise, an optimization call is made and its estimated optimal plan and cost is added to the query’s parametric plan for future use. Due to the size of the parameter space, parametric plans cannot be implemented simply as an exact lookup against a cache of plans as there would be too many cache misses. Also, due to the non-linear and discontinuous nature of cost functions, parametric plans should not be implemented as nearest neighbor lookup structures as there will be no guarantee that the optimal plan of the nearest neighbor is optimal or close to optimal for the parameter point being considered.

1.3. The PQO Problem

A formal description of the PQO problem (adapted from other work [2, 4]) is presented below:

· A (parametric) query Q is a text representation of a relational query with placeholders for m values vpt=(v1, …, vm). Vector vpt is called a ValuePoint.

· Let plan p be some execution plan that evaluates query Q for vpt. The cost function of p, p(cpt), is a function of n cost parameters, cpt=(s1, …, sn). Vector cpt is called a CostPoint and each si is a cost parameter with an ordered domain.

· For every legal value of the parameters, there is some plan that is optimal. Given a parametric query Q, the maximum parametric set of plans (MPSP) is the set of plans, each of which is optimal for some point in the n-dimensional cost-based parameter space. MPSP = {p | p is optimal for some point in the cost-based parameter space}.
· The region of optimality for plan p is denoted r(p), r(p) = {(t1, …, tn) | p is optimal at (c1=t1, …, cn=tn)}.
· A parametric optimal set of plans (POSP) is a minimal subset of MPSP that includes at least one optimal plan for each point in the parameter space.

· The parametric query optimization (PQO) problem is to find a POSP and the region of optimality for each plan in POSP.

1.4. The Parametric Plan Interface

The Parametric Plan (PP) interface has two operations, addPlan and getPlan described below. PP is used during query processing as shown in Figure 1.

· addPlan(Q, cpt, p, cost) – registers that plan p, with estimated cost cost, is optimal for query Q at CostPoint cpt.

· getPlan(Q, cpt) – returns the plan that should be used for query Q and CostPoint cpt or returns null.
processQuery (
inputs: Query Q, ValuePoint vpt

inputs/outputs: PP pp) {

    CostPoint cpt←φ(Q, vpt);
// Convert ValuePoint to CostPoint

    Plan p←pp.getPlan(Q, cpt);
// what plan to use?

    if (p == NULL) {

        Cost cost;
// cost is output parameter in call below

        p←optimize(Q, vpt, cost);
// calls  optimizer
        pp.addPlan(Q, cpt, p, cost);
// stores info in PP
    };

    execute(p);

};

Figure 1 – Using Parametric Plans

Function φ consults the database catalog and query Q, and transforms ValuePoint vpt into CostPoint cpt. Function φ is optimizer specific. Section 2.4 justifies why φ is needed.
Besides PPQO, strategies Optimize-Always and Optimize-Once can also be coded with simple implementations of the PP interface. For Optimize-Always, addPlan is an empty method and getPlan simply returns null, forcing an optimization for every query, as shown in Figure 2. For Optimize-Once, as shown in Figure 3, addPlan saves the plan it is given as input the first time it is called and getPlan returns that plan in all calls.
01: class Optimize-Always implements PP
// Implements PP interface

02: begin-class
03:    addPlan(inputs: Query Q, CostPoint cpt, Plan p, Cost cost) {};
// do nothing

04:    getPlan(inputs: Query Q, CostPoint cpt; outputs: Plan p) {
05:       return null;
// always returns null
06:    };
07: end-class;

Figure 2 – Implementation of Optimize-Always
01: class Optimize-Once implements PP
// Implements PP interface

02: begin-class

03:    Plan p;

04:    Optimize-Once() {p==null;}
// constructor
05:    addPlan(inputs: Query Q, CostPoint cpt, Plan p, Cost cost) {

06:       if (!this.p) {this.p=p;}
// saves first plan it gets
07:    };


08:    getPlan(inputs: Query Q, Cost-Point cpt; outputs: Plan p) {

09:       return this.p;
// returns first plan
10:    }

11: end-class;

Figure 3 – Implementation of Optimize-Once
1.5. Requirements and Goals

With PPQO we want to avoid as many optimization calls as possible and we are willing to execute sub-optimal plans if they have costs close to the cost of the optimal plan. Thus, PP implementations must obey the Inference Requirement below.

INFERENCE REQUERIMENT: After a number of addPlan calls, there must be cases where PP.getPlan(Q, cpt) returns a (near-)optimal plan p for query Q and CostPoint cpt, even if PP.addPlan(Q, cpt, p, cost)  was never called.

Given a sequence of execution requests of the same query with potentially different input parameters, PPQO has two conflicting goals:

· GOAL 1: Minimize the number of optimization calls; and

· GOAL 2: Execute plans with costs as close to the cost of the optimal plan as possible.

Note that a cache implementation of the PP interface–storing (Q, cpt) pairs as the lookup key and (p, cost) as the inserted value–cannot fulfill the inference requirement because it would returns hits only for previously inserted (Q, cpt) pairs. Instead, we propose two PPQO implementations, each giving priority to one of the above goals: Bounded–described in Section 3–gives priority to Goal 2; Ellipse–described in Section 4–gives priority to Goal 1.

1.6. The Parameter Transformation Function φ
This section justifies why φ is needed and how is it implemented. A value parameter refers to an input parameter of a parametric SQL query to be executed. A cost parameter is an input parameter in formulas used by the optimizer to estimate the cost of a query plan. Cost parameters are estimated during query optimization from value parameters and from information in the database catalog. (Physical characteristics that affect the cost of query plans but do not depend on the query parameters–e.g., the average size of tuples in a table or the cost of a random I/O–are considered physical constants, not cost parameters.)
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An important type of cost parameter used during optimization is the estimated number of tuples in (intermediate) relations processed by the query plan: most query plans have cost formulas that are monotonic with the number of tuples processed by the query. On the other hand, there is no obvious relationship between the value parameters and the cost of the query plans. Thus, it becomes much easier to characterize the regions of optimality using a cost-based parameter space than using a value-based parameter space. In Example 1, below, and in what follows, we use a cost-based parameter space whose dimensions are (predicate or join) selectivities. (The estimated number of tuples of each relation processed by a query is typically derived from selectivities of sub-expressions computed during query optimization.)
Example 1: Relation freshmen(name, age) describes 1st-year graduate students. The age distribution of students is showed in Figure 4. Consider different queries of the form SELECT * FROM freshmen WHERE age=$X$ OR age=$Y$. Assume that the optimal plan for queries that retrieve less than 5% of freshmen tuples is PIDX, a plan using an index on column age. For all other queries, the optimal plan is PFS, a full-table scan on freshmen. The parameters of this query can be represented as the absolute values used for parameters $X$ and $Y$ or as the selectivities of predicate age=$X$ and predicate age=$Y$. Accordingly, the costs of physical PIDX and PFS can be represented in value-based parameter spaces or in selectivity-based parameter spaces as seen in Figure 5.
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Figure 4 – Age distribution in table freshmen
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Figure 5 – Value-based and selectivity-based parameter space
In our implementation, function φ takes query Q and its SQL parameters–the ValuePoint vpt–and returns cpt as a vector of selectivities. Computing the selectivities in cpt corresponds to selectivity estimation, a sub-task of query optimization. Other components of query optimization–e.g., plan enumeration, rule transformation, plan costing, and plan pruning–are not executed by function φ. (Note that the arity of the value-based parameter space and of the selectivity-based parameter space are not necessarily the same.) For range predicates and equality predicates, computing selectivity values from actual values–the task of φ–can be done efficiently by lookups on cumulative histograms.

The Bounded PPQO Implementation
The first of the two proposed PPQO implementations, termed Bounded, is described in this section. This implementation provides guarantees on the quality of the plans returned by getPlan(Q, cpt), thus focusing on Goal 2 of PPQO (see Section 2.3). Either the returned plan p is null–meaning that an optimization call cannot be avoided–or plan p has a cost guaranteed to be within a bound (specified by the user) of the cost of the optimal plan.

1.7. Preliminaries and Definitions

· Relationship equal ((): Given cpt1=(c1,1, …, c1,n) and cpt2=(c2,1, …, c2,n), cpt1 ( cpt2 iff c1,i=c2,i, (i.

· Relationships below (() and above ((): Given cpt1=(c1,1, …, c1,n) and cpt2=(c2,1, …, c2,n), cpt1( cpt2 (cpt1 (cpt2) iff c1,i(c2,i (c1,i≥c2,i), (i and (i, c1,i(c2,i.

· Transitive property of ( and (. From the definitions it follows that if cpt1( cpt2 (cpt1 (cpt2) and cpt2( cpt3 (cpt2 (cpt3) then cpt1( cpt3 (cpt1 (cpt3).

· Monotonic Assumption (MA): Given plan p and CostPoints cpt1 and cpt2, if cpt1 ( cpt2 then p(cpt1)(p(cpt2).

· Opt(cpt): It is the cost of an optimal plan at cpt.
Theorem 1: If ((ti=(cpti, plani, costi), (tj=(cptj, planj, costj), such that plan plani (planj) is an optimal plan at cpti (cptj) with cost costi (costj), cpti ( cpt ( cptj and costj([costi, costi*M+A], then planj(cpt)([Opt(cpt), Opt(cpt)*M+A].
 
Proof: See Section 8
Theorem 1 states that the difference between the cost of planj at cptj and the cost of plani at cpti can be used to bound the cost of planj at cpt, as long as costs are monotonic and cpti( cpt ( cptj.

1.8. Implementation of addPlan 
Function addPlan(Q, cpt, p, cost)–shown in –associates with each parametric query Q a list, TQ, of triples (cpt, p, cost) ordered by cost, where p is an optimal plan at CostPoint cpt with an estimated execution cost of cost.
addPlan (inputs: Query Q, CostPoint cpt, Plan p, Cost cost) {
   List TQ←getList(Q);
// Get the list of triples for this query

   if (TQ ==null) {

      TQ = new List();
// If there is no list, create one
   }

   TQ.insert(cpt, p, cost);
// Inserts triple in cost order

   setList(Q, TQ)
// adds or replaces list TQ into catalog

}
Figure 6 – Bounded’s addPlan
1.9. Quality Guarantees of getPlan

Bounded’s getPlan(Q, cpt) is guaranteed to either return null or to return a plan with an estimated cost as close to the estimated optimal cost as desired. Specifically, for any constants M≥1 and A≥0, Bounded’s getPlan guarantees that, after calling p=getPlan(Q, cpt) one of the following holds:

· p is null or

· p(cpt)([Opt(cpt), Opt(cpt)*M+A].

Definition of bounding pair and bounded plan: Given two triples t1=(cpt1, p1, cost1) and t2=(cpt2, p2, cost2), where cpt1 and cpt2 are CostPoints, cost1 (cost2) is the positive cost of optimal plan p1 (p2) at cpt1 (cpt2), and any constants M≥1 and A≥0. If cpt1( cpt( cpt2 and cost2([cost1, cost1*M+A] then we say that:

· (t1, t2) bound cpt.

· Plan p2 is bounded at cpt.

Note that, by Theorem 1, if p2 is bounded at cpt then p2(cpt)([Opt(cpt), Opt(cpt)*M+A]. Given M≥1, A≥0, query Q and CostPoint cpt, Bounded’s getPlan (see Section 3.4) searches for a (t1, t2) pair that bounds cpt and returns p2, a bounded plan at cpt, fulfilling point ii) above. If no (t1, t2) bounding pair for cpt exists, getPlan returns null, fulfilling point i) above.

Example 2: For some query Q, assume that Bounded.addPlan was already called for the triples showed in Figure 7 (i.e., TQ=(t1, t2, t3, t4, t5, t6, t7).

[image: image5]
Figure 7 – Triples stored in Bounded
Given, cpt–showed as a black circle–in the cost-based parameter space, M=1.5, and A=0, what plan will Bounded.getPlan(Q, cpt) return? There are six pairs (cpti, cptj) such that cpti ( cpt ( cptj: (cpt1, cpt5), (cpt1, cpt6), (cpt1, cpt7), (cpt3, cpt5), (cpt3, cpt6), and (cpt3, cpt7). From those pairs, only two triples bound cpt: pair (t3, t5), because c5([c3, c3*1.5+0](8([6, 9], and pair (t3, t6), because c6([c3, c3*1.5+0](9([6, 9]. Thus, both plan p5 and plan p6 are bounded at cpt and either of them can be returned by getPlan.

1.10. Implementation of getPlan 

Consider TQ, the list containing k triples (cpti, pi, costi) maintained by method addPlan. A naïve implementation of getPlan enumerates all pairs of tuples (ti, tj), ti(TQ, tj(TQ, ti(tj and tests if any pair bounds cpt. If some pair (ti, tj) bounds cpt, then plan pj can be returned as the answer to getPlan.

To avoid the enumeration of all of pairs of triples that have to be checked, getPlan divides TQ into two lists. Then, given the properties of the two lists (described below), it is possible to trivially select a single triple, t1, from one list and a single triple, t2, from the other list such that only pair (t1, t2) needs to be checked.
Definition of ( (below) operator and ( (above) operator: Consider a list, TQ, containing k triples (cpti, pi, costi) ordered by costi, with i=0...k-1, where cpti is a CostPoint and costi represents the cost of executing the optimal plan pi at cpti. Given cpt, another CostPoint, TQ(cpt is the list of triples (cpti, pi, costi) from TQ, ordered by costi, such that cpti ( cpt. Similarly, TQ (cpt is the list of triples (cpti, pi, costi) from TQ ordered by costi, such that cpti ( cpt. TQ(cpt and TQ(cpt are trivially constructed from a single pass over TQ. Note that, by definition, cptb ( cpt ( cpta, (cptb:tb=(cptb, pb, costb) ( TQ(cpt, (cpta:ta=(cpta, pa, costba)(TQ(cpt.
Example 3: Let TQ=(t1, t2, t3, t4, t5, t6,), where the ti are the triples shown in Figure 7. Then TQ(cpt=(t1, t3) (the triples in the light gray area) and TQ(cpt=(t5, t6, t7) (the triples in the dark gray area).

Theorem 2: If (cptb:tb=(cptb, pb, costb), tb(T( cpt, (cpta:ta=(cpta, pa, costa), ta(T(cpt, such that costa([costb, costb*M+A], then costfirst([costlast, costlast*M+A], where costfirst is the cost of the first triple in T(cpt and costlast is the cost of the last triple in T( cpt.
Proof: See Section 8
Theorem 2 states that when searching list T for a pair of triples that bound cpt, we only need to test the pair composed by the last triple from T( cpt and the first triple from T(cpt.
As shown in Example 2 in Section 3.3, there is potentially more than one possible solution to getPlan(Q, cpt). However, if there is a solution, by Theorem 2, we need only to check if costfirst([costlast, costlast*M+A], where cfirst is the cost of the first triple in TQ(cpt and clast is the cost of the last triple in TQ(cpt. If costfirst([costlast, costlast*M+A], then pfirst, the plan in the first triple of TQ(cpt, is returned.

Before addPlan is called the first time, any getPlan call returns null. As new triples are added, the hit rate of getPlan is expected to increase. Intuitively, as more triples are added, the more likely it is that getPlan returns a plan because it is more likely that any two triples fulfill the requirements of the Theorem 2. Note also that the lower the values of M and A, the less likely it is to find pairs of triples that fulfill the requirements of Theorem 2, and thus, more added triples are needed to obtain higher hit rates.
getPlan (inputs: Query Q, CostPoint cpt; outputs: Plan p) {

   List TQ ←getList(Q);
// gets list of triples for Q
   if (TQ ==null) {
      return null;
   }           

   Triple last=null;
// last triple of TQ(cpt
   for Triple t in TQ {
// in cost order

      if (t.cpt ( cpt) {return t.p;}
// exact match?

      if (t.cpt ( cpt) {last = t;}
// keep track of last triple of TQ(cpt
      if (t.cpt ( cpt) {
// first triple of TQ(cpt
         if (last == null) {
            return null;
         }

         if (t.c([last.c, last.c*M+A]) {
            return t.p;
         }
      }

   }
}
Figure 8 – Bounded’s getPlan
Note that getPlan, shown in Figure 8, makes at most a single pass over TQ; thus, it has O(|TQ|) time complexity, where |TQ| is the number of elements in TQ.

The Ellipse PPQO Implementation
Bounded’s getPlan provides strong guarantees on the cost of plans returned. However, we expect low hit rates of Bounded’s getPlan for small values of M and A or before Bounded’s TQ has been populated. In this section we propose Ellipse, another PPQO implementation of the PP interface, designed to address PPQO’s Goal 1: to have higher hit rates.

To have higher hit rates, Ellipse drops the guarantee of only returning plans with near-optimal costs. Instead, Ellipse’s getPlan returns (-acceptable plans.

Definition of (-Acceptable Plans: For (([0, 1], if plan p is optimal at points cpt1 and cpt2 in the cost-based parameter space, then plan p is (-acceptable at point cpt in the cost-based parameter space iff distance(cpt1, cpt2)/(distance(cpt, cpt1) + distance(cpt, cpt2)) ≥ (, where the function distance returns the Euclidian distance between two points in an n-dimensional space.

It follows from the definition of (-acceptable that if p is optimal at cpt1 and cpt2, then p is 1-acceptable only on points between cpt1 and cpt2 and p is 0-acceptable at all points. Note that in a 2-dimentional space, the area where p is (‑acceptable is equivalent to the definition of an ellipse; if p is optimal for cpt1 and cpt2, then p is (-acceptable at cpt if cpt is on or inside an ellipse of foci cpt1 and cpt2 such that the distance between the foci, distance(cpt1, cpt2), over the sum of the distances between cpt and the foci, distance(cpt, cpt1) + distance(cpt, cpt2), is (. Figure 9 shows the areas where p is 0.5-acceptable, 0.8-acceptable, and 1-acceptable if p is optimal at cpt1 and cpt2.

[image: image6]
Figure 9 – Examples of (-acceptable plans
1.11. Implementation of addPlan

For each query Q and for each plan p that is optimal in some point of the parameter space, Ellipse’s addPlan(Q, cpt, p, cost) function–shown in Figure 10–maintains a list of (cpt, cost) pairs where p is optimal for Q.
addPlan(inputs: Query Q, CostPoint cpt, Plan p, Cost cost) {

   PointList L←getPointList(Q, p);
// where is p optimal?
   if (L==null) {
// if there are no points were p is optimal for Q…
      L = new PointList();
// … create new PointList

      PlanList P←getPlanList(Q);
// optimal plans for Q
      if (P==null) {

         P=new PlanList(p);
      } else {

         P.insert(p); 
// add new optimal plan to list
      }
      setPlanList(Q, P);
// adds or replaces list P in catalog

   }

   L.insert(cpt, cost);
// Adds the new (cpt, cost) information about plan p to L.

   setPointList(Q, p, L)
// adds or replaces list L in catalog

}
Figure 10 – Ellipse’s addPlan
1.12. Implementation of getPlan 

The implementation of Ellipse.getPlan consists of, for each optimal plan plan, iterating over pairs of points where plan is optimal for the given query, Q. For each pair of points (cpt1, cpt2), we test if plan is (-acceptable at the given point cpt. If it is, getPlan returns plan, otherwise getPlan continues trying other points and other plans. If all pairs of points of all plans for Q are exhausted without an (-acceptable plan being found, Ellipse.getPlan returns null. The algorithm is shown in Figure 11.
getPlan (inputs: Query Q, CostPoint cpt; outputs: Plan p) {

   PlanList P ←getPlanList(Q);
// gets optimal plans

   if (P ==null) {return null;}
// tests for empty list

   for Plan plan in P { 

      PointList L←getPointList(Q, plan);
// gets list of points

      for PointPair (cpt1, cpt2) in L {
// enumerates point pairs

         if (dist(cpt1, cpt2) / (dist(cpt, cpt1) + dist(cpt, cpt2))≥() {

            return plan;
// found an (-acceptable plan

         }
      }
   }

   return null;

}

Figure 11 – Ellipse’s getPlan

Experimental Evaluation
In this section we describe an experimental evaluation of PPQO using Microsoft’s SQL Server 2005. The client application implements the pseudo-code described in Sections 2, 3, and 4; SQL Server is used only to obtain estimated optimal plans and estimated costs of plans and to implement function φ (lines 7 and 3 in Figure 1).

1.13. Dataset, Metrics, and Setup
The TPC-H benchmark [12] was used to evaluate the PPQO implementations. Table 1, below, shows which tables are joined by each query. (The queries’ full SQL text, too large to show here, is shown in section 10.) The tables are lineitem (L), orders (O), customer (C), supplier (S), part (P), partsupp (T), nation (N), and region (R).

As in Reddy and Haritsa [10], and unless otherwise noted, we added two extra selections to the TPC-H queries to more easily explore the parameter space. The two selections are of the form coli(vali, i=1,2, where, for each query, coli is one of the two columns shown in Table 1 and vali is a random value from the domain of the column. 

Table 1 – Description of TPC-H queries used

	Query
	Tables Joined
	Column 1
	Column 2

	7
	LOCSNN
	c_acctbal
	o_totalprice

	8
	LOCPSNNR
	s_acctbal
	l_extendedprice

	9
	LOTPSN
	s_acctbal
	l_extendedprice

	18
	LLOC
	c_acctbal
	l_extendedprice

	21
	LLLOSN
	s_acctbal
	l_extendedprice


For each query tested, we generated 10,000 random val1 and val2 values. (A (val1, val2) pair is a ValuePoint.) To guarantee that random parameter values uniformly explore the parameter space, we altered the values in the columns subject to the extra selections to enforce uniform distributions.

For each query and each ValuePoint vpt we make a PP.getPlan lookup call (see Figure 1 in page 3), where PP is an Optimize-Once, Optimize-Always, Bounded, or Ellipse object. If getPlan returns a plan we call it a hit and check if the plan is optimal; if it is not optimal we check how its estimated cost compares with the estimated optimal cost. These give rise to the following metrics:

· HitRate: The percentage of PP.getPlan(Q, cpt) calls that return a plan.

· OptRate: The percentage of such plans that are optimal.

· HitSubOpt: How sub-optimal a returned plan is: phit(cpt)/Opt(cpt), with phit=PP.getPlan(Q, cpt). HitSubOpt≥1.

· AvgHitSubOpt: The average of all HitSubOpt

· MaxHitSubOpt: The maximum of all HitSubOpt; reflects how risky a PP implementation can be.

· #Points: Number of (cpt, plan, cost) triples stored in a ParametricPlan. Equal to the number of misses.

· #Plans: Number of distinct optimal plans observed.

· QP: Number of queries processed.

The experiments were run on a lightly loaded Pentium M at 1.73GHz with 1GB of RAM and using TPC-H scale factor 1. Indexes and statistics were built on all columns subject to selections and on all primary and foreign key columns. The optimizer cache was emptied before each optimization call. To compute some of the metrics above, the cost of sub-optimal plans (returned by PPQO) also had to be estimated. To estimate those costs, each sub-optimal plan was forcibly costed by SQL Server [8].

Unless stated otherwise, Bounded was run with M=1.1, A=0 and Ellipse was run with (=0.95.

1.14. Variation on HitRate and OptRate

The first experiment consisted of processing 10,000 queries using different random ValuePoints (i.e., 10,000 different random sets of SQL parameter values) for each query and observing how HitRate and OptRate varied for Bounded and Ellipse. This experiment was performed for five TPC-H queries and the results are shown in Figure 12. Several trends can be observed:

· Ellipse always has a higher HitRate than Bounded.
· Except for Query 8 (more on this below), Bounded always has a higher OptRate than Ellipse.
· HitRate converges quickly, but OptRate converges slightly faster.

· HitRate monotonically increases as a function of QP because more queries processed imply a monotonically increasing number of misses and each miss adds more information to the ParametricPlan, therefore increasing the likelihood of future hits.

· OptRate naturally varies up and down, as the initial random (cpt, plan, cost) triples are added to the ParametricPlan object, until it converges.
1.15. #Plans, #Points, Space, and Time

Figure 13 shows the #plans and #points for the experiments of the previous section. Bounded has higher #plans and #points because it has a lower HitRate; for every miss there will be a new point stored in the ParametricPlan object. Figure 14 reports the time and space taken by the Bounded and Ellipse. Time (in seconds) includes time elapsed during optimization (if there is a miss), during addPlan, and during getPlan, but not query execution time. For comparison purposes, the time taken for Optimize-Once and Optimize-Always is also included.
After 10,000 queries have been processed, Optimize-Always took between 5.2 and 13.6 times longer than Bounded and between 10.7 and 18.5 times longer than Ellipse. Ellipse was always faster than Bounded because it had fewer optimize and addPlan calls (due to higher HitRates) and faster getPlan calls (because it has less information stored in its parametric plans).

Storing the plans within the ParametricPlan objects took only between ~600Kbytes to ~1300Kbytes using the original uncompressed XML plan representations provided by SQL Server. Storing zip-compressed XML plans instead would decrease the size of the plan representation by a factor of 10.
 SHAPE  \* MERGEFORMAT 



Figure 12 – HitRate, OptRate (Y axis) as a function of the number of queries processed
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Figure 13 – #Plan and #points for 10,000 QP
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Figure 14 – Time and space for 10,000 QP

1.16. MaxHitSubOpt and AvgHitSubOpt
Figure 15 shows the MaxHitSubOpt and AvgHitSubOpt for Bounded, Ellipse, and Optimize-Once (OptOnce in the graphs) for the same experiments as in the previous two sections.
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Figure 15 – MaxHitSubOpt and AvgHitSubOpt
Bounded is a very safe strategy; its most sub-optimal plan was only 5 times worse than the optimal plan, while the most sub-optimal plan chosen by Ellipse was 412 times more costly than the optimal plan (MaxHitSubOpt graph of Figure 15). Ellipse is also generally safer than Optimize-Once, but, as shown in the bars for Q9 and Q18 on the left side of Figure 15, its most sub-optimal plan can be as costly as Optimize-Once’s most sub-optimal plan.

An interesting observation is that although Bounded (with M=1.1) is supposedly guaranteed to return plans no more than 110% the cost of the optimal plan, in some experiments that guarantee was violated. Indeed, for queries 7, 8, 9, and 21, the most sub-optimal plan returned by Bounded was, respectively, 155%, 499%, 172%, and 177% the cost of the corresponding optimal plan. Further analysis showed that the problem lied with the tool that forces plans and that obtains the estimated cost of those plans. In some very rare cases, for a specific CostPoint cpt, the tool returned a plan, say, p1 with cost c1 at cpt, as if it was optimal, but some other plan, say, p2, had an estimated cost c2 at cpt lower than c1. This lead to two problems: 1) Bounded stored plans and costs in its data structures that were not optimal; 2) the costs of the (presumed) optimal plan appeared non-monotonic. Other than those very rare occasions, Bounded guaranteed its sub-optimality specifications. Thus, Bounded is even safer than what the previous graphs suggested, with costs at most M times the cost of optimal (the default value for M was 1.1).
Another surprise was how well Optimize-Once did in the AvgHitSubOpt metric. On average, across all queries, Optimize-Once returned plans with costs ~140% the cost of optimal (the same average was ~101% for Bounded and ~106% for Ellipse). One possible explanation is the following. Optimize-Once obtains the optimal plan for the first of the 10,000 random parameter values and reuses that plan for all other values. If that first plan happens to be the plan with the minimal cost variation in the plan space, then there is a significant chance that that plan will do well in many other points in the space. Consider Figure 16, which shows a conceptual representation of the costs of four different plans, each optimal in different regions of the parametric space.


[image: image14]
Figure 16 – Typical costs of optimal plans

Executing either plan p3 or plan p4 for all points of the parameter space would yield costs, on average, not much higher than the cost of optimal. Coincidently, the likelihood that any given point lies in the space where either p3 or p4 are optimal is very high, and thus, by random chance, Optimize-Once is likely to use a plan that is not catastrophic. We will explore this issue further in Section 5.6.

1.17. Vary Bounded’s M and Vary Ellipse’s Δ

In this experiment the value M of Bounded was varied from 1.1 to 4, for query 21 (to avoid clutter, and because its line is similar to the line of M=3, M=4 is not shown). The values of OptRate and HitRate are shown in Figure 17 and Figure 18. As expected, a lower value for M (tighter optimality bound) results in a higher OptRate but a lower HitRate.
The same query 21 with the same random parameter values was run using Ellipse while varying Δ from 0.85 to 0.99 ((=0.85 not shown). As expected, a higher Δ results in a higher OptRate but a lower HitRate. These results appear in Figures 19 and 20.
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Figure 17 – OptRate for Bounded, Q21
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Figure 18 – HitRate for Bounded, Q21
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Figure 19 – OptRate for Ellipse, Q21
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Figure 20 – HitRate for Ellipse, Q21

1.18. Vary Query Order

This experiment assessed the impact of the order of the incoming queries on the performance of the algorithms. The same 10,000 random values used for Query 21 were used again, but the order in which those 10,000 queries were processed was chosen randomly. Six random orders were generated and processed with Bounded (M=1.1, A=0), Ellipse (Δ=0.9), and Optimize-Once. The results are shown in Figures 21–24 and summarized in Table 2.
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Figure 21 – Bounded’s OptRate, 6 random query orders, Query 21
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Figure 22 – Bounded’s HitRate, 6 random query orders, Query 21
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Figure 23 – Ellipse’s OptRate, 6 random query orders, Query 21

[image: image22.emf]50%

60%

70%

80%

90%

100%

0 2000 4000 6000 8000 10000

QP


Figure 24 – Ellipse’s HitRate, 6 random query orders, Query 21
Table 2 – Effects of Different Query Orders

	
	OptRate
	HitRate

	
	Max
	Min
	Avg
	Max
	Min
	Avg

	Bounded
	89.0%
	86.0%
	87.8%
	86.0%
	85.0%
	85.8%

	Ellipse
	71.0%
	59.0%
	65.7%
	99.0%
	99.0%
	99.0%

	OptOnce
	48.0%
	3.0%
	35.2%
	-
	-
	-


Query order had essentially no effect on the final values of Bounded’s OptRate, Bounded’s HitRate, and Ellipse’s HitRate but it had a medium impact on the final value of Ellipse’s OptRate.

On the other hand, for Optimize-Once, query order had a very significant impact on OptRate, with values between 3% and 48%. An interesting observation is that the performance of Optimize-Once was exactly the same for four out of those six random orders. Further analysis showed that, although the very first value of each of the six random orders were all different, for four of them, the corresponding optimal plan was the same. This follows the observation (Section 5.4, Figure 16, and [10]) that some plans have very large optimality areas.

1.19. Vary Number of Dimensions

In all the experiments so far, the parameter space was 2-dimensional. The next experiment varies the number of dimensions, from 1 to 4. Query 8 is used (with extra parametric selections as needed) because it was the one with the largest number of plans and thus, more likely to suffer from the “curse of dimensionality”: an exponential growth of complexity with a linear increase in the number of dimensions. The query was then run for 10,000 random values for Bounded (M=1.1, A=0) and Ellipse ((=0.95). Table 3 summarizes the results.

Table 3 – Variation of Number of Dimensions

	
	OptRate
	HitRate

	
	1-D
	2-D
	3-D
	4-D
	1-D
	2-D
	3-D
	4-D

	Bounded
	77%
	65%
	65%
	56%
	100%
	94%
	88%
	49%

	Ellipse
	99%
	74%
	62%
	58%
	100%
	98%
	96%
	88%


The results clearly indicate that as the number of dimensions in the parameter space increases, the lower the OptRate and HitRate. Some of the reasons that contribute to this effect are:

· Given a point cpt centered in the middle of the parameter space, the percentage of space ( cpt (or ( cpt) decreases exponentially with the number of dimensions (affects Bounded).
· The number of unique optimal plans increases exponentially (affects Ellipse).
Even though the number of plans and number of points increase exponentially for both Bounded and Ellipse, they increase slower for Ellipse; see Figures 25 and 26.
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Figure 25 – #Plans and #Points, Bounded, Q8
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Figure 26 – #Plans and #Points, Ellipse, Q8

2. Related Work
Parametric query optimization was first mentioned by Graefe [3] and Lohman [7]. This pioneering early work also proposed dynamic query plans and a new meta-operator, the choose-plan [3]. Dynamic query plans include more than one physical plan choice. The plan to use is determined at run-time by the choose-plan operator after it costs the multiple alternatives given the now known parameter values. How to enumerate dynamic query plans was proposed only later [1] with the concept of incomparability of costs: in the presence of unbound parameters at optimization-time, plan costs are represented as intervals; if intervals of alternative plans overlap, none is pruned. At run-time, when parameters are bound to values, the choose-plan selects the right plan to use. This approach may enumerate a very large number of plans, as shown by [11], and all those plans may have to be re-cost at run-time by the choose-plan operator.

Ioannidis et al [6] coined the term Parametric Query Optimization and proposed using randomized algorithms to optimize in parallel the parametric query for all possible values of unknown variables. This approach is unfeasible for continuous parameters, gives no guarantees on finding the optimal plan for a query, and places no bounds on the optimality of the plans produced.

Ganguly [2] uses a geometric approach to solve the PQO problem for one and two parameters under the assumption that cost functions are linear and that regions of optimality of plans are convex. Ganguly also solved PQO for restricted forms of non-linear, one-parameter, cost functions. Prasad [9] extended the geometric approach to solve PQO for ternary linear cost functions and binary non-linear functions. Hulgeri and Sudarshan [4] propose a solution to PQO that handles piecewise linear cost functions for an arbitrarily number of parameters but requires substantial changes to the query optimizer. AniPQO [5] is a recent technique that approximates the solution to PQO for non-linear functions and for an arbitrary number of parameters. AniPQO approximates optimality regions to n-dimensional convex polytopes and finds its solution to PQO by calling the optimizer multiple times and evaluating plan costs up to thousands of times. Unlike AniPQO, PPQO never calls the optimizer or costs plans more often than what a traditional non-PQO approach would.

Conclusions
Progressive Parametric Query Optimization (PPQO) improves the performance of processing parameterized queries by combining the benefits of competing strategies. Like Optimize-Always and PQO, most of the times, PPQO selects plans that are estimated to be optimal or near-optimal. Like Optimize-Once, PPQO is able to avoid optimization calls in up to 99% of the queries. Like other PQO proposals, PPQO discovers most optimal plans and approximated optimality areas. In addition, unlike PQO, PPQO does not perform extra optimizer calls or extra plan-cost evaluation calls. At execution time, PPQO can select which plan to execute by using only the input cost parameters; there is no need to re-cost any plan. Finally, recent work [10] shows that assumptions commonly held by PQO (plan convexity, plan uniqueness, and plan homogeneity) do not hold. These discoveries do not affect PPQO. The only assumption taken by PPQO is the monotonicity of plan costs.
PPQO is also amenable to be implemented in a complex commercial database system as it requires minimal changes to the optimization or execution processes.

PPQO was evaluated in a variety of settings, with queries joining up to eight tables, with multiple sub-queries, up to four parameters, and in plan spaces with close to 400 different optimal plans. PPQO yielded good results in all scenarios except for the Bounded algorithm in complex queries using a 4-D parameter space. However, even in this challenging scenario, Ellipse was on average executing plans just 3% more costly than the optimal, while avoiding 87% of all optimization calls.
3. Proofs of Theorem 1 and Theorem 2
This section uses the three Lemmas below to prove Theorem 1 and Theorem 2. Lemma 1 states that if the Monotonic Assumption holds for every plan considered, than the cost of the optimal plan at any point (regardless of what the optimal plan is at any single point) also increases monotonically with the parameters. This result is used later to bound the cost of some plan p in points where plan p was never executed.

Lemma 1: If cpt1( cpt2, cost1=p1(cpt1)=Opt(cpt1), and cost2=p2(cpt2)=Opt (cpt2) then cost1 ( cost2.
(1)

Proof:
There are only two cases: either p2 is optimal at cpt1 or p2 is not optimal at cpt1.

· If p2 is optimal at cpt1, then cost1=p2(cpt1).
(2)
· If p2 is not optimal at cpt1, then cost1< p2(cpt1).
(3)
· By (2) and (3), cost1( p2(cpt1).
(4)
· Because cpt1 ( cpt2 then, by the Monotonic Assumption, p2(cpt1)( p2(cpt2)=cost2.
(5)
· By (4), (5), cost1(cost2.
QED
Lemma 2 and Lemma 3 together state that if M≥1, costz([costx, costx*M+A] and costx(costy(costz, then both costz([costy, costy*M+A] and costy([costx, costx*M+A].
Lemma 2: If costz([costx, costx*M+A] and costx(costy(costz, then costy([costx, costx*M+A].
(6)

Proof:

· costz([costx, costx*M+A]  ( costx(costy(costz (
( costx(costz(costx*M+A ( costx(costy(costz
( costx(costy(costx*M+A 

( costy([costx, costx*M+A]
QED
Lemma 3: If M≥1, costz([costx, costx*M+A], and costx(costy(costz, then costz([costy, costy*M+A].
(7)
Proof:

· Since M≥1, it follows that costx(costy(costx*M+A(costy*M+A
(8)
· By costz([costx, costx*M+A] and (8) it follows that costz(costx*M+A (costy*M+A
 (9)
· By costx(costy(costz and (9) it follows that costy(costz( costy*M+A
(10)
· (10) is equivalent to costz([costy, costy*M+A]. 
QED
Theorem 1: If ((ti=(cpti, plani, costi), (tj=(cptj, planj, costj), such that plan plani (planj) is an optimal plan at cpti (cptj) with cost costi (costj), cpti ( cpt ( cptj and costj([costi, costi*M+A], then planj(cpt)([Opt(cpt), Opt(cpt)*M+A].

Proof:

· By Lemma 1 and cpti ( cpt ( cptj it follows that costi(Opt(cpt)(costj.
(11)
· By (11), Lemma 3, and costj([costi, costi*M+A] ( costj([Opt(cpt), Opt(cpt)*M+A].
QED
Definition of ( (below) operator and ( (above) operator [Reprint from page 9]: Given a list, T, of k triples (cpti, pi, costi) ordered by costi, with i=0...k-1, where cpti is a CostPoint and costi represents the cost of executing the optimal plan pi at cpti and given cpt, another CostPoint we define the following two operations:

· T(cpt is the list of triples (cpti, pi, costi) from T, ordered by costi, such that cpti ( cpt.
· T (cpt is the list of triples (cpti, pi, costi) from T ordered by costi, such that cpti ( cpt.
Note that, by definition, cptb ( cpt ( cpta, (cptb:tb=(cptb, pb, costb) ( T(cpt, (cpta:ta=(cpta, pa, costba)(T(cpt.
Theorem 2: If (cptb:tb=(cptb, pb, costb), tb(T( cpt, (cpta:ta=(cpta, pa, costa), ta(T(cpt, such that costa([costb, costb*M+A], then costfirst([costlast, costlast*M+A], where costfirst is the cost of the first triple in T(cpt and costlast is the cost of the last triple in T( cpt.

Proof:

· By the definitions of T( cpt and T(cpt, and Lemma 1: costb(costlast(Opt(cpt)(costfirst(costa.
(12)
· By costa([costb, costb*M+A], (12) and Lemma 3, it follows that costa([costlast, costlast*M+A]
(13)
· Finally, by (12), (13), and Lemma 2, it follows that costfirst([costlast, costlast*M+A].
QED
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Queries 
This section contains the 5 queries used in the experiments of Section 5. The queries, originally from the TPC‑H benchmark, were altered with additional selection predicates to allow the exploration of a 2-D parameter space. The queries in this format were first used by Reddy and Haritsa [10] and were shared to us by Haritsa. Query 8 was subsequently altered with additional selection predicates to allow the exploration of 3-D and 4-D parameter spaces as well.
The additional selection predicates are of the form “column ( $Vx$”, with x taking a value between 0 and 3. In the experiments, the values for the $Vx$ parameters were randomly generated within the domain of column. For each column subject to these additional selection predicates, the values in the relations were changed to force a uniform distribution.
3.1. Query 7
select


supp_nation,


cust_nation,


l_year,


sum(volume) as revenue

from


(



select




n1.n_name as supp_nation,




n2.n_name as cust_nation,




YEAR (l_shipdate) as l_year,




l_extendedprice * (1 - l_discount) as volume



from




supplier,




lineitem,




orders,




customer,




nation n1,




nation n2



where




s_suppkey = l_suppkey




and o_orderkey = l_orderkey




and c_custkey = o_custkey




and s_nationkey = n1.n_nationkey




and c_nationkey = n2.n_nationkey




and (





(n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY')





or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE')




)




and l_shipdate between '1995-01-01' and '1996-12-31'




and orders.o_totalprice <= $V0$




and customer.c_acctbal <= $V1$


) as shipping

group by


supp_nation,


cust_nation,


l_year

order by


supp_nation,


cust_nation,


l_year;
3.2. Query 8

select


o_year,


sum(case



when nation = 'BRAZIL' then volume



else 0


end) / sum(volume) as mkt_share

from


(



select




YEAR(o_orderdate) as o_year,




l_extendedprice * (1 - l_discount) as volume,




n2.n_name as nation



from




part,




supplier,




lineitem2,




orders,




customer,




nation n1,




nation n2,




region



where




p_partkey = l_partkey




and s_suppkey = l_suppkey




and l_orderkey = o_orderkey




and o_custkey = c_custkey




and c_nationkey = n1.n_nationkey




and n1.n_regionkey = r_regionkey




and r_name = 'AMERICA'




and s_nationkey = n2.n_nationkey




and o_orderdate between '1995-01-01' and '1996-12-31'




and p_type = 'ECONOMY ANODIZED STEEL'




and lineitem2.l_extendedprice <= $V0$




and supplier.s_acctbal <= $V1$




and orders.o_totalprice <= $V2$




// Used only in 3-D and 4-D spaces



and customer.c_acctbal <= $V3$




// Used only in 4-D spaces

) as all_nations

group by


o_year

order by


o_year
3.3. Query 9
select


n_name,


o_year,


sum(amount) as sum_profit

from


(



select




n_name,




YEAR(o_orderdate) as o_year,




l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount



from




part,




supplier,




lineitem,




partsupp,




orders,




nation



where




s_suppkey = l_suppkey




and ps_suppkey = l_suppkey




and ps_partkey = l_partkey




and p_partkey = l_partkey




and o_orderkey = l_orderkey




and s_nationkey = n_nationkey




and p_name like '%green%'




and supplier.s_acctbal <= $V0$




and partsupp.ps_supplycost <= $V1$


) as profit

group by


n_name,


o_year

order by


n_name,


o_year desc;
3.4. Query 18
select


c_name,


c_custkey,


o_orderkey,


o_orderdate,


o_totalprice,


sum(l_quantity)

from


customer,


orders,


lineitem2

where


o_orderkey in (



select




l_orderkey



from




lineitem2



where




lineitem2.l_extendedprice <= $V0$



group by




l_orderkey



having




sum(l_quantity) > 300


)


and c_custkey = o_custkey


and o_orderkey = l_orderkey


and customer.c_acctbal <= $V1$

group by


c_name,


c_custkey,


o_orderkey,


o_orderdate,


o_totalprice

order by


o_totalprice desc,


o_orderdate
3.5. Query 21
select


s_name,


count(*) as numwait

from


supplier,


lineitem2,


orders,


nation

where


s_suppkey = lineitem2.l_suppkey


and o_orderkey = lineitem2.l_orderkey


and o_orderstatus = 'F'



and exists (



select




*



from




lineitem2 l2



where




l2.l_orderkey = lineitem2.l_orderkey




and l2.l_suppkey <> lineitem2.l_suppkey


)


and not exists (



select




*



from




lineitem2 l3



where




l3.l_orderkey = lineitem2.l_orderkey




and l3.l_suppkey <> lineitem2.l_suppkey




and l3.l_receiptdate > l3.l_commitdate


)


and s_nationkey = n_nationkey


and supplier.s_acctbal <= $V0$


and lineitem2.l_extendedprice <= $V1$


and n_name = 'SAUDI ARABIA'

group by


s_name

order by


numwait desc,


s_name;
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�	All cost parameters we use are selectivities. Since higher selectivities imply more tuples to process, the monotonic assumption follows the intuition that plans that process more tuples likely cost more than plans that process less tuples. Although not true for all queries–e.g., queries using SQL clause NOT EXISTS may have non-monotonic costs–plans with non-monotonic costs are less common than plans with costs monotonic with the number of processed tuples.


�	M is the multiplicative factor and A is the additive factor specified by the user.





