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Figure 1:AutoCollage automatically creates a collage of representative elements from a set of images. Novel and desirable properties in-
clude: boundaries between images are appropriately positioned; there is little duplication of material; small and meaningless image fragments
are avoided; faces are preserved whole; blends may either cut along natural boundaries or be transparent, decided automatically.

Abstract

The paper defines an automatic procedure for constructing a visu-
ally appealing collage from a collection of input images. The aim
is that the resulting collage should be representative of the collec-
tion, summarising its main themes. It is also assembled largely
seamlessly, using graph-cut, Poisson blending of alpha-masks, to
hide the joins between input images. This paper makes several new
contributions. Firstly, we show how energy terms can be included
that: encourage the selection of a representative set of images; that
are sensitive to particular object classes; that encouragea spatially
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efficient and seamless layout. Secondly the resulting optimization
poses a search problem that, on the face of it, is computationally in-
feasible. Rather than attempt an expensive, integrated optimization
procedure, we have developed a sequence of optimization steps,
from static ranking of images, through region of interest optimiza-
tion, optimal packing by constraint satisfaction, and lastly graph-
cut alpha-expansion. To illustrate the power of AutoCollage, we
have used it to create collages of many home photo sets; we also
conducted a user study in which AutoCollage outperformed com-
petitive methods.

CR Categories: I.3.3 [COMPUTER GRAPHICS]: Pic-
ture/Image Generation—Display algorithms; I.3.6 [COMPUTER
GRAPHICS]: Methodology and Techniques—Interaction tech-
niques; I.4.6 [IMAGE PROCESSING AND COMPUTER VI-
SION]: Segmentation—Pixel classification; partitioning

Keywords: Image editing, photomontage, graph cut, energy min-
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1 Introduction

The aim of the paper is to define an automatic procedure for con-
structing a seamless collage from a collection of input images.
There have been various previous studies into related tasks. Pois-



son blending [Perez et al. 2003] can be used to assemble a variety
of objects shot against compatible backgrounds onto one seamless
background. Digital Photomontage [Agarwala et al. 2004] assem-
bles patches from a batch of repeat shots of a scene, into one com-
posite scene. Graphcut texture [Kwatra et al. 2003], an extension of
[Efros and Freeman 2001], synthesises textures by seamlessly join-
ing exemplar patches. In each of the three cases, the pieces to be
assembled are broadly compatible, that is to say already approxi-
mately matched along the seams, and only adjustment of the seams
is needed to render them invisible. Our problem is the one tack-
led by the Tapestry [Rother et al. 2005] system, in which a setof
quite different images has to be composited into a single seamless
summarising image. However, Tapestry has certain limitations: it
consists of a single optimization step that searches over input im-
ages and pixels at every output pixel, and hence is computationally
intensive; and it is prone to include small, isolated fragments of the
input images. Here we address those limitations by using a multi-
stage optimization procedure to tackle complexity, together with
explicit region of interest selection. These are the two major im-
provements of AutoCollage over Tapestry: scalability for large im-
age sets (> 50) and robustness. We also include adaptively transpar-
ent blending for better hiding of seams, together with object recog-
nition to deal appropriately with sky and faces.

It is also worth mentioning related work on authoring tools for
interactive collage systems [Diakopoulos and Essa 2005](and the
references therein), where the focus has not been on creating a
graphics quality collage, but rather on user interactivity.

Problem formulation (AutoCollage). Given a set of input im-
ages of arbitrary rectangular shape the aim is to generate a collage
of a given rectangular shape, with the following properties.

1. The selected images are representative of the set.

2. From each selected image, one substantial, coherent region of
interest (ROI) is extracted.

3. The ROIs should be efficiently packed. Certain objects should
be treated with particular respect. In particular, faces should
be regarded as preferred material, and should be preserved
whole. Sky should be constrained to appear at the top, to avoid
sky-like lacunae appearing in the interior of the collage.

4. The transition between images in the collage is subtle, visu-
ally smooth and uses transparency where appropriate. The
effect we seek is that subjects from the images should be cap-
tured and displayed on a background that appears more or less
seamless with transitions of input images undetectable.

It may seem that these properties are chosen arbitrarily, however,
user feedback (see section 5) suggests that they seem appropriate
for this task.

In order to generate an AutoCollage we will express the problem
formally as an energy minimization problem, in which each ofthe
desiderata above is represented by an energy term.

The next section introduces the AutoCollage Framework as an
energy minimization problem. Section 3 describes our optimization
process and includes the main technical contributions. Section 4 ex-
plains a new Poisson blending technique that handles transparency.
Finally, section 5 displays results of AutoCollage construction, and
presents a user study.

2 The AutoCollage Framework

The input to AutoCollage is a set of input imagesI = {I1, . . . , IN}.
In order to standardise the input, a pre-processing step is assumed
to have been applied, so that each imageIn is scaled to have unit
area, while preserving the aspect ratios of individual images. Then,

building on earlier studies [Rother et al. 2005; Agarwala etal.
2004], on which the proposed framework is based, AutoCollage
is viewed as a labelling problem, described using the following
notation. The collage is itself an imageI , defined over a domain
P , and each pixel-locationp ∈ P of the collage is to be as-
signed alabel L(p), by the AutoCollage algorithm. The labelling
L = {L(p), p ∈ P} completely specifies the collage, as follows.
An individual label has the formL(p) = (n,s) in which In ∈ I is
the input image from which the collage pixelp is taken, ands ∈ S

is the pixel-wise 2D shift of the input imagen with respect to the
collage, so thatI(p) = In(p−s). We will often write this compactly
as I(p) = S(p,L(p)), in which S(. . .) is defined byS(p,(n,s)) =
In(p− s) and normalized asS(. . .) ∈ [0,1]× [0,1]× [0,1].

The goal of AutoCollage is to find the best labellingL ∈ L , in
the spaceL of possible labellings. This is expressed as finding
the labellingL which minimises an energy or costE(L), to be de-
fined in detail later in this section. In the following section, an opti-
mization procedure is defined that searches efficiently in the space
of allowed labellings, to obtain a labelling with low energybut,
since the algorithm is approximate, not necessarily the global min-
imum. Note that, by comparison, in Digital Photomontage [Agar-
wala et al. 2004], all input images were pre-aligned, and therefore
each pixel-label consisted of an image index alone, withoutany
shift variables. In AutoCollage, the optimization problem is more
complex, because it is necessary to search not only over image in-
dicesn = 1, . . . ,N, at each pixel, but also over allowed shiftss.

2.1 Collage energy

The energy of a labellingL comprises four terms, as follows:

E(L) = Erep(L)+wimpEimp(L)+wtransEtrans(L)+wobjEobj(L) (1)

The first termErep tends to select the images from the input image
set that are most representative, in two senses: first that chosen im-
ages are texturally “interesting” and second that they are mutually
distinct so that near duplicates will not be selected. TheEimp term
ensures that a substantial and interesting region of interest (ROI)
is selected from each image inI . Next, Etrans is a pairwise term
which penalises any transition between images that is not visually
appealing. Finally,Eobj incorporates information on object recogni-
tion, and favours placement of objects in reasonable configurations
(faces preserved whole, sky at the top, in our implementation). In
the remainder of the section, each of these energy terms is defined
in detail, together with constraints that must be maintained.

Representative Image Set The cost associated with the setI of
chosen images is of the formErep= ∑n Erep(n) where

Erep(n) = −anDr(n)− min
m:Im∈I

anamVr(n,m) (2)

andan is an auxiliary, indicator variable, taking the value 1 if the
imageIn is present in the collage and 0 otherwise:

an = 1 if ∃p∈ P with L(p) = (n,s).

The unary termDr(n) is a measure of the information in imagen.
The information measure is defined by

Dr(n) = Entropy(In)+wfaceδ ({Imagen contains a face}) (3)

whereδ (π) = 1 if predicateπ is true, andwface weights the influ-
ence of an image containing a face, relative to the general textural
information in the image. [The histogram used to compute entropy
for a given image is constructed in two-dimensionala,b space from
theL,a,b color system, and discretized into 16×16 bins.]

The second term in (2) is expressed in terms of pairwise dis-
tancesVr(m,n) between images, and sums the distances from each



image to its nearest neighbour in the setI . As a distance mea-
sureVr ∈ [0,1] we are using normalized chi-squared distance be-
tween the color histograms of a pair of images. The histograms are
constructed ina,b space, as above. As well as favouring the most
representative images, this energy encourages the use of asmany
images as possible.

Importance Cost. The importance cost consists of a unary term
of the form:

Eimp(L) = −∑
p

Eimp(p,L(p)). (4)

The function Eimp(p,L(p)) = G(p,L(p))T(p,L(p)), where
T(p,L(p)) measures the local entropy, inab coordinates, of a
(32× 32 pixel) region around the pixelp, and normalised so that
local entropy sums to 1 over a given input image. The Gaussian
weighting functionG(. . .) favours the centre of the input image
from which p is drawn. Alternatively, instead ofT a more complex
model of saliency can be used, as introduced by [Itti et al. 1998].

Transition Cost. We use a transition cost similar to those used
in the Graphcut texture [Kwatra et al. 2003] and Photomontage
[Agarwala et al. 2004] systems. The transition cost is of theform
Etrans= ∑p,q∈NVT(p,q,L(p),L(q)) whereN is the set of all pairs
of neighboring (8-neighborhood) pixels. We define the termV as:

VT(p,q,L(p),L(q)) = min
( ||S(q,L(p))−S(q,L(q))||

ε + ||S(p,L(p))−S(q,L(p))||
,

||S(p,L(p))−S(p,L(q))||

ε + ||S(p,L(q))−S(q,L(q))||

)

(5)

where intensity functionS(. . .) is as defined above,ε = 0.001 pre-
vents underflow, and|| · || defines the Euclidean norm.

In total, Etrans measures mismatch across the boundary be-
tween two input images. To see this, first observe that
VT(p,q,L(p),L(q)) = 0 unlessL(p) 6= L(q). Then note that
VT(p,q,L(p),L(q)) is small if there is a strong gradient in one of
the input images, since the relevant denominator will then be large.
This energy is as in Graph Cut Texture [Kwatra et al. 2003], except
that the min operation replaces summation in the original. This is
done because, distinctively, adjacent images in this problem are typ-
ically taken from rather different scenes, which often do not match.
Our choice of energy then acts appropriately in encouragingtransi-
tion on a high contrast boundary in either scene, in additionto the
usual effect of encouraging a good match across the boundary.

Object Sensitivity We use state of the art techniques for face de-
tection [Viola and Jones 2001] and general object detection[Shot-
ton et al. 2006] for labelling sky. We would like to exploit this
knowledge in such a way that if a face is included, it is included as
a whole, and that sky is likely to appear only at the top borderof the
collage. For faces, as in [Rother et al. 2005], we have the energy
termEobj = ∑p,q∈N f (p,q,L(p),L(q)), where f (p,q,L(p),L(q)) =
∞ wheneverL(p) 6= L(q) and p,q are pixels from the same face in
either the images ofL(p) or L(q), 0 otherwise. For sky rather than
defining an explicit energy, we simply label [Shotton et al. 2006]
images containing sky and pass this information to the constraint
satisfaction engine (see next section) which attempts to position
such images only at the top of the collage.

Parameters The parameterswimp,wtrans,wobj,wface have been
adjusted by informal testing over 50 sets of home-photographs,
where each set contains between 20− 100 pictures, to achieve
reasonably intuitive rankings of the image sets. We takewimp =
10.0,wtrans= 1.0,wobj = 1.0,wface= 0.01.

Constraints The optimization ofE(L) is done under certain con-
straints, as listed below.

1. Information bound Any image In that is present in the la-
belling, i.e. for which L(p) = (n,s) for somes and somep ∈ P

must satisfy
Eimp(L,n) > T, (6)

whereEimp(L,n) ∈ [0,1] is the proportion of local image informa-
tion ∑p Eimp(p,L(p)), as defined above, that is captured in the ROI.
In practice we setT = 0.9 — i.e. so that at least 90% of the image
information is captured. The purpose of this constraint is to guard
against the possibility that only a small and unrecognisable frag-
ment of an image may be selected — a problem that plagues the
Tapestry system [Rother et al. 2005] — see figure 2. Levying a cost

Figure 2: Problems with Tapestry. A collage produced using
Tapestry [Rother et al. 2005] includes sky portions in the collage
center and other small image fragments. Running AutoCollage on
the same image set gives a superior result, see figure 5.

for fragments is quite simply infeasible in the Tapestry framework
since it leads to a Markov Random Field with very large cliques,
where standard methods such as graph cuts or Belief Propagation
are no longer applicable. Here however this is possible thanks to
the explicit constraint satisfaction step, which is one of the main
innovations of this work — see figure 5.

2. Uniform shift A given input imageIn may appear in the col-
lage with only one unique shifts. i.e. given two distinct pixels
p,q∈ P : p 6= q, with labelsL(p) = (n,s),L(q) = (n,s′), it is re-
quired thats = s′. This constraint [Rother et al. 2005] is useful
partly for computational efficiency, and partly to ensure that the
structure of input images is preserved, without introducing warps.

3.Connectivity Each setSn ∈ {p∈P : L(p)= (n,s), for somes}
of collage pixels drawn from imagen, should form a 4-connected
region. This cannot in practice be imposed as a hard constraint, but
can be encouraged during optimization.

3 Energy Minimization

The search space for optimization of the energyE(L) defined in the
previous section, is the entire space of labellingsL ∈ L . At each
pixel, the input image and its shift must be selected, resulting in
a large state-space for graph-cut optimization [Rother et al. 2005].
Here a heuristic but effective approach to optimizing energy E(L) is
adopted in which the various aspects of the labelling are optimized
independently and in sequence. First images are ranked statically;
then rectangular ROIs are chosen optimally for each image; then a
packing problem is solved to assemble and position as many im-
ages with highest rank, into the area allowed for the collage, with-
out allowing ROIs to overlap; finally graph-cut optimization fixes
pixel identity in areas of overlap of two or more images. Thusthe



number of labels for graph-cut is restricted typically to two, three
or four, in the overlap areas, exactly as in the Photomontageprob-
lem [Agarwala et al. 2004], and thus complexity is dramatically
reduced compared with Tapestry [Rother et al. 2005]. This issim-
ply because graph-cut no longer has to optimize over images offsets
s; those offsets are now determined by optimal packing.

Each of the four optimization steps is described next.

Image ranking The ranking step, in the sequence of optimiza-
tions, addresses theErep term in the collage energy (1). First images
In are relabelled, so that the indexn ranks them according to how
representative the subsetI1, . . . , In is. This is straightforward since
Erep(n) is simply a static rank computed independently in terms of
thenth image and its predecessors of higher rank. Thus thenth im-
age is selected greedily as the one that minimizes

−anDr(n)−min
m<n

anamVr(n,m),

adapting the termErep(n) (2). The resulting ranking is then passed
to the constraint satisfaction step below.

ROI optimization The ROI for each input imageIn is fixed by
minimising, independently for each image, the area of the ROI sub-
ject to meeting the information-bound constraint (6), and the con-
straint that all detected faces are included. This is achieved by con-
structing a summed area table [Crow 1984] for rapid lookup ofthe
total information∑p∈REimp(p,L(p)) in any rectangular ROIR. All
rectangles are then enumerated, and checked for satisfaction of the
constraint, in order to select the one with minimum area. This oper-
ation is quadratic in the number of pixels inIn, and this is mitigated
by subsampling. This is done under the constraint that all detected
faces are included. Figure 3 illustrates the effectivenessfor this
procedure in selecting a ROI.

Figure 3:ROI selection. ROIs are determined by selecting the rec-
tangle that optimises Eimp, and this favours highly textured areas,
including all faces, with central positioning.

Note that alternative speed up tricks for the same ROI detection
problem have been discussed in [Suh et al. 2005]. Furthermore,
they have shown that cropped images, based on the ROI, are more
effective for image retrieval compared to using the original images.
The only difference to our ROI detection approach is the informa-
tion measurement where theirs is based on [Itti et al. 1998].

Constraint satisfaction Related packing problems have been ad-
dressed elsewhere, for example for automatic tiling [Kim and Pel-
lacini 2002]. Here, the packing sub-problem can be stated asfol-
lows. We are given a set of selected images and their ROIs, together
with the ranking computed above. The goal is to incorporate as
many highly ranked images as possible within the width and height
of the collage, while respecting the additional constraintthat every
pixel be covered by some image (though not necessarily covered by
some ROI).

The packing problem is a purely combinatorial problem which
is reminiscent of applications found in other areas like schedul-
ing [Aggoun and Beldiceanu 1993]. What makes it quite un-
usual, though, is the simultaneous presence of constraintsfor non-
overlapping— no two ROIs should intersect — andcovering—

every pixel is covered by an images, though not necessarily by a
ROI. Being a generalization of well-studied packing problems, it is
clear that the problem is NP-hard and that heuristic search is nec-
essary. The general approach is to state the problem as a set of
constraints (inequalities, Boolean and linear expressions) between
a set of variables. In this problem, the set of variables is

V = {(xn,yn,bn), n = 1, . . . ,N}, (7)

the positions(xn,yn) for each images and a boolean flagbn indi-
cating whether the image is to be included or not. Constraints are
applied pairwise to images; a typical constraint would be:

if bn andbm thenπ1 or π2, . . . , (8)

where a typical proposition isπ1 = (xn−xm > wm+wn), in which
wm andwn are respectively the half-widths of the ROIs. Because
the relative positions of a ROI pair may be switched, these con-
straints appear in disjunctive sets — a significant difference from
[Kim and Pellacini 2002]. This also puts the problem outsidethe
scope of standard techniques such as Linear Programming. How-
ever such problems are amenable to approaches based on constraint
programming (CP) [Dechter 2003]. Another hard issue is thatcon-
straints are mixed boolean and real, as above, so that effectively
constraints must switch between activity and inactivity during op-
timization. Further object-sensitive constraints can be included —
for instance we insist that images with sky appear only at thetop of
the collage.

To obtain good solutions efficiently, a two-step approach has
been used.

1. Branch and bound The framework for the first optimization
step is a depth-first search which aims at maximising the number of
selected images and their quality (Eq. (2)). Constraint propagation
[Waltz 1975] is applied to subtrees, from which the subtree may
either be pruned, or have its search space reduced. Real variables
(xn,yn) are dealt with by coarse discretization with conservative
truncation of constraints. The issue of switching the set ofactive
constraints from propagation is dealt with byreification [Marriott
and Stuckey 1998]. In the branch and bound step, no account is
taken of the covering requirement. At this stage we simply solve
the problem of packing as many rectangles as possible, within the
disjunctive constraints on overlap of ROIs. Even with coarse dis-
cretization, the branching factor at a node is large. This isdealt with
by randomly selecting a limited number of branches to explore, and
by allowing, for each of them, a bounded number of backtracking
steps.

2. Local search Once branch and bound has terminated, the re-
sulting packing satisfies the non-overlap constraints between ROIs,
but in general will not satisfy the covering constraint. At this point,
a deterministic local search is applied in order to repair the solu-
tion. Perturbations are applied only to(xn,yn), not tobn, so the set
of selected images is fixed during this step.

To make sure that a solution which satisfies both the non-
overlapping and covering constraints is systematically found, we
repeat steps 1) and 2) several times if necessary, and each time re-
lax slightly the constraints (propositionsπi in Eq. 8). In principle,
the constraint satisfaction step could generate multiple solutions.
After refinement in step 2, these multiple solutions could beevalu-
ated using a bound on the energy function (Eq. 1) or given directly
to graph cut optimization. (A bound is needed because strictly the
energy function itself is only defined for single coverings of pixels,
not multiple coverings as delivered by constraint satisfaction.)

An illustration of the output of the whole constraint satisfaction
procedure is given in figure 4, for the collage problem of fig 1.



Figure 4:Output from constraint propagation. ROIs are shown
(left), packed without overlap. Images (right) do overlap,and all
pixels are covered.

Graph cut with alpha expansion As explained above, graph cut
optimization need be applied only to the image variablen in each
pixel-labelL(p) since the shifts for each image is now fixed. In
practice, up to four values ofn need to be considered at eachp so
alpha-expansion [Boykov et al. 2001] is used, exactly as in Digital
Photomontage [Agarwala et al. 2004]. Here the objective function
to be minimized is that part of the energyE in (1) that is still “in
play”, namelywimpEimp(L) + wtransEtrans(L) + wobjEobj(L). The
first of these terms is unary and the second and third are binary.
Since this energy can be shown to benon-metric, the truncated
schema of alpha-expansion is used [Rother et al. 2005]. At each
iteration of alpha-expansion, the 4-connectedness property is en-
couraged by dilating the optimally expanded set by one pixel.

4 α-Poisson Image Blending

The blending task in AutoCollage is to create a seamless transition
between input images that are adjacent in the collage. The chal-
lenge is to find a general procedure that creates appropriatetransi-
tions under differing conditions. Often adjacent images are quite
different in colour and texture, so it is not appropriate simply to
search for the least obtrusive join [Kwatra et al. 2003], since this
will still form a highly visible seam. The choice is either toexploit
a natural edge in one of the images, where an edge exists, or else
to aim for a soft, transparent blend. One possibility is the extension
of Poisson blending [Perez et al. 2003] to include edge-sensitivity
[Agarwala et al. 2004]. However this tends to mix colours, rather
than achieving the clean transparent effect that we seek here. The
solution proposed here is to perform edge-sensitive blending but in
theα-channel rather than in image colour channels.

This is done by computing an alpha mask for each individual
input image. In a first step, for a particular imageIk an overlap area
is computed which comprises of all pixelsp where the set of labels
L(p), which is the same as for the preceding graph-cut optimization,
includes labelIk and at least one other label. Then the following
functional minimizes over the overlap area

F(α) =
∫

‖u(r)−α(r)‖2 +w(r)‖∇α‖2 dr, (9)

wherew(r) = λ + β exp− 1
2g2 maxn ||∇In‖ and maxn is taken over

the imagesIn present in the overlap. Normalising constantg2 is a
mean-square gradient as in [Rother et al. 2004], and we setλ = 20,
β = 10. The functionu(r) takes the value 1 at a pixelp if the im-
age label, given by graph-cut, isIk and 0 otherwise. This selection
then biasesα towards the graph-cut solution. Maximization of the
functionalF is subject to boundary conditions thatα = 0,1 over
the overlap area, and is computed, as usual, by solving a Poisson
equation [Perez et al. 2003]. In a final step each image alpha mask
is normalized so that at each pixelp in the output domain the sum
of all defined alpha masks is one. The results, clearly visible in fig.
1, is that both sharp abutments and transparent blends are achieved
automatically in a collage.

5 Results, User Study and Discussion

Results of AutoCollage are shown in figure 1 and 51. Note
the features of AutoCollage present in these examples. Bound-
aries between images are appropriately positioned, avoiding cutting
through interesting material. There is little duplicationof mater-
ial and small, visually meaningless image fragments are avoided.
Seams between input images switch automatically between cutting
along natural boundaries or blending transparently, according to the
presence or absence of underlying sharp edges.

Failure modes include the occasional inclusion of sky fragments
in the interior, given that sky detection is not infallible (around 83%
accuracy in our system). Sometimes texture edges trigger inappro-
priately sharp transitions inα. Occasionally face detection fails,
allowing an inappropriate cut. A further limitation of the current
system is the lack of user interaction. To achieve this we cantake
further advantage of the constraint satisfaction by including user-
specific constraints such as “include one image of this subset”. Ob-
viously, the user should also be able to move, re-size and swap im-
ages, and potentially a brush interface, as in [Agarwala et al. 2004],
can be used to include explicit image parts in the collage.

In order to answer the questions whether AutoCollage is useful,
visually appealing and an improvement over competitive methods,
we have conducted a user study1. We asked 17 users who were not
involved in this work, for a personal dataset (20-50 photos)of an
event e.g. a holiday trip. We have created four different summaries
for each set: Tapestry [Rother et al. 2005]; AutoCollage with a
maximum of 12 images to make it more compatible with Tapestry;
PhotoPile which is the collage result after constraint satisfaction
only; and a simple grid of 12 most representative pictures. Users
were shown a random set of 7 collections, including theirs, and
asked to answer the following questions with 1 (definitely no) to 5
(definitely yes). The averaged results are:

• Would you send this summary to a friend?
AutoCollage (4.6), Tapestry (3.2), PhotoPile (2.2), Grid (1.7)

• Would you like this summary as a screensaver?
AutoCollage (3.8), Tapestry (2.5), PhotoPile (1.9), Grid (1.25)

• Would you use this summary as front page of the collection?
AutoCollage (4.5), Tapestry (2.9), PhotoPile (2.6), Grid (2.1)

• Do you find the summary visually appealing?
AutoCollage (4.5), Tapestry (3.2), PhotoPile (2.3), Grid (1.7)

• Is it a good visual summary of the set of photos?
AutoCollage (4.6), Tapestry (3.1), Grid (2.8), PhotoPile (2.6)

This shows that AutoCollage is a useful collage tool, superior
to the others, for two tasks: Sharing the collage with friends (4.6),
and using the collage as a summary of a collection (4.5). Auto-
Collage was also voted as the visually most appealing. On average
users preferred soft blends, similar to the findings in [Diakopoulos
and Essa 2005]: “AutoCollage is much more visually appealing, in
contrast to PhotoPile which is obviously a stack of photos with hard
boundaries” (user quote). The user study gave also insightsinto the
desired properties specified in sec. 1. Firstly, selecting asubstan-
tial ROI from each image is important: “I dislike bad detailsin
Tapestry, in particular things like the piece of tree in the middle of
a collage”. Secondly, selecting representative image parts is essen-
tial: “AutoCollage is definitely better than Tapestry by having a mix
of people and landscape; Tapestry shows sometimes only faces.” Fi-
nally, object (sky) recognition is essential: “Having a piece of sky

1Further results, and details of the user study, are available on
http://research.microsoft.com/vision/cambridge/i3l/AutoCollage/default.htm



Figure 5:Further example of AutoCollage. Note again, the desirable and novel properties: hidden boundaries, little duplication, freedom
from fragments, selective transparency.

in the center of a collage looks funny, I thought it’s snow”. Fur-
ther user quotes: “Seeing an AutoCollage of your own photos is a
surprisingly emotive experience.”; “AutoCollage is a clear win on
average; it is better proportioned than the others”; “AutoCollage
is sometimes much better than Tapestry, however, AutoCollage is
never worse than Tapestry. I’d also like to include a specificimage”.

The improvement of AutoCollage compared to Tapestry is also
prominent in terms of runtime. To create collages in fig. 5 and2,
from a set of 14 input images, AutoCollage is 16 times faster in the
core packing stage: 0.13sec (AutoCollage) vs. 2.07sec (Tapestry,
with only 0.001% of all possible expansion moves).

In future work it is planned to elaborate the object sensitivity.
We will also address the issue of user interactivity which depends,
however, heavily on the user task at hand. Another interesting pos-
sibility is to allow multiple solutions from constraint satisfaction,
and then evaluate each using a suitable bound on the energy.
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