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Figure 1:AutoCollage automatically creates a collage of representative elementsfrom a set of images. Novel and desirable properties in-
clude: boundaries between images are appropriately posdi there is little duplication of material; small and miegless image fragments
are avoided; faces are preserved whole; blends may eithatang natural boundaries or be transparent, decided atitcatiy.

Abstract

The paper defines an automatic procedure for constructingua v
ally appealing collage from a collection of input images.eTim
is that the resulting collage should be representative ettilec-
tion, summarising its main themes. It is also assembleckharg
seamlessly, using graph-cut, Poisson blending of alphskspao
hide the joins between input images. This paper makes sex@xa
contributions. Firstly, we show how energy terms can beuitet
that: encourage the selection of a representative set gfasyahat
are sensitive to particular object classes; that encounegymtially
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efficient and seamless layout. Secondly the resulting dpdition
poses a search problem that, on the face of it, is computdlyon-
feasible. Rather than attempt an expensive, integratéchiaption
procedure, we have developed a sequence of optimizatips,ste
from static ranking of images, through region of interediroga-
tion, optimal packing by constraint satisfaction, andlJagtaph-

cut alpha-expansion. To illustrate the power of AutoCddlagre
have used it to create collages of many home photo sets; we als
conducted a user study in which AutoCollage outperformed-co
petitive methods.

CR Categories: 1.3.3 [COMPUTER GRAPHICS]: Pic-
ture/lmage Generation—Display algorithms; 1.3.6 [COMRRT
GRAPHICS]: Methodology and Techniques—Interaction tech-
niques; 1.4.6 [IMAGE PROCESSING AND COMPUTER VI-
SION]: Segmentation—Pixel classification; partitioning
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1 Introduction

The aim of the paper is to define an automatic procedure for con
structing a seamless collage from a collection of input iesag
There have been various previous studies into related.tébis-



son blending [Perez et al. 2003] can be used to assembleetyari
of objects shot against compatible backgrounds onto orralsea
background. Digital Photomontage [Agarwala et al. 2004pas
bles patches from a batch of repeat shots of a scene, intooome c
posite scene. Graphcut texture [Kwatra et al. 2003], ameite of
[Efros and Freeman 2001], synthesises textures by sedjeiss
ing exemplar patches. In each of the three cases, the piedes t
assembled are broadly compatible, that is to say alreadsoxipp
mately matched along the seams, and only adjustment of #messe
is needed to render them invisible. Our problem is the onlk-tac
led by the Tapestry [Rother et al. 2005] system, in which aofet
quite different images has to be composited into a singlenkess
summarising image. However, Tapestry has certain linoiteti it
consists of a single optimization step that searches oyt iim-
ages and pixels at every output pixel, and hence is compaotdly
intensive; and it is prone to include small, isolated fragta®f the
input images. Here we address those limitations by usinglé-mu
stage optimization procedure to tackle complexity, togethith
explicit region of interest selection. These are the twoamaj-
provements of AutoCollage over Tapestry: scalability Boge im-
age setsx¥ 50) and robustness. We also include adaptively transpar-
ent blending for better hiding of seams, together with djjecog-
nition to deal appropriately with sky and faces.

It is also worth mentioning related work on authoring toals f
interactive collage systems [Diakopoulos and Essa 2008](ae
references therein), where the focus has not been on qeatin
graphics quality collage, but rather on user interactivity

Problem formulation (AutoCollage). Given a set of input im-
ages of arbitrary rectangular shape the aim is to generaiteae
of a given rectangular shape, with the following properties

1. The selected images are representative of the set.

2. From each selected image, one substantial, coherenthrefyi
interest (ROI) is extracted.

. The ROIs should be efficiently packed. Certain objectsilsho
be treated with particular respect. In particular, facesukh

building on earlier studies [Rother et al. 2005; Agarwalaakt
2004], on which the proposed framework is based, AutoCellag
is viewed as a labelling problem, described using the faligw
notation. The collage is itself an imadgedefined over a domain
2, and each pixel-locatiomp € & of the collage is to be as-
signed dabel L(p), by the AutoCollage algorithm. The labelling
L ={L(p), p€ £} completely specifies the collage, as follows.
An individual label has the formy(p) = (n,s) in which I, € .7 is
the input image from which the collage pixels taken, and € .7

is the pixel-wise 2D shift of the input imagewith respect to the
collage, so thalt(p) = In(p—s). We will often write this compactly
asl(p) = S(p,L(p)), in which §...) is defined byS(p, (n,s)) =
In(p—s) and normalized a§(...) € [0,1] x [0,1] x [0,1].

The goal of AutoCollage is to find the best labellihge .&, in
the spaceZ of possible labellings. This is expressed as finding
the labellingL which minimises an energy or co&(L), to be de-
fined in detail later in this section. In the following sectj@n opti-
mization procedure is defined that searches efficientlyérsiface
of allowed labellings, to obtain a labelling with low enerbut,
since the algorithm is approximate, not necessarily thbajlmin-
imum. Note that, by comparison, in Digital Photomontage dAg
wala et al. 2004], all input images were pre-aligned, andetioee
each pixel-label consisted of an image index alone, withamyt
shift variables. In AutoCollage, the optimization problem is more
complex, because it is necessary to search not only overeiimag
dicesn=1,...,N, at each pixel, but also over allowed shsts

2.1 Collage energy

The energy of a labelling comprises four terms, as follows:

E(L) = Erep(L) +WimpEimp(L) +WtrandEtrans L) +-WobjEopj(L) (1)

The first termErep tends to select the images from the input image
set that are most representative, in two senses: first tbaeohm-
ages are texturally “interesting” and second that they ariaily
distinct so that near duplicates will not be selected. Ejg term
ensures that a substantial and interesting region of stt¢ROI)

is selected from each image ifi. Next, Eyansis a pairwise term

be regarded as preferred material, and should be preservedwhich penalises any transition between images that is 1soally

whole. Sky should be constrained to appear at the top, taavoi
sky-like lacunae appearing in the interior of the collage.

. The transition between images in the collage is subttj-vi

appealing. FinallyEqp; incorporates information on object recogni-
tion, and favours placement of objects in reasonable carafiguns
(faces preserved whole, sky at the top, in our implementatitn
the remainder of the section, each of these energy termdirede

ally smooth and uses transparency where appropriate. Thein detail, together with constraints that must be mainthine

effect we seek is that subjects from the images should be cap-
“Representative Image Set  The cost associated with the sétof

tured and displayed on a background that appears more or les
seamless with transitions of input images undetectable.

It may seem that these properties are chosen arbitrarilyeber,
user feedback (see section 5) suggests that they seem apfop
for this task.

In order to generate an AutoCollage we will express the bl
formally as an energy minimization problem, in which eachhaf
desiderata above is represented by an energy term.

The next section introduces the AutoCollage Framework as an

energy minimization problem. Section 3 describes our agttion
process and includes the main technical contributionstid®es ex-
plains a new Poisson blending technique that handles maespy.
Finally, section 5 displays results of AutoCollage consfilan, and
presents a user study.

2 The AutoCollage Framework

The input to AutoCollage is a set of input imagés= {l4,...,In}.
In order to standardise the input, a pre-processing stegsisnaed
to have been applied, so that each image scaled to have unit
area, while preserving the aspect ratios of individual iesad hen,

chosen images is of the forBep = 3, Erep(n) where

Erep(n) = —anDr(n) — min_anamVr(n, m) 2
milne.s

anda, is an auxiliary, indicator variable, taking the value 1 iéth

imagel,, is present in the collage and 0 otherwise:

an=1if Ipe L with L(p) = (n,s).

The unary ternD;(n) is a measure of the information in image
The information measure is defined by

®)

whered () = 1 if predicatert is true, andwi,ce Weights the influ-
ence of an image containing a face, relative to the generalra
information in the image. [The histogram used to computeopmt
for a given image is constructed in two-dimensioad space from
theL,a,b color system, and discretized into £@6 bins.]

The second term in (2) is expressed in terms of pairwise dis-
tancesVy(m, n) between images, and sums the distances from each

D¢ (n) = Entropy(In) + Wiaced({Imagen contains a facg)



image to its nearest neighbour in the sét As a distance mea-
sureV; € [0,1] we are using normalized chi-squared distance be-
tween the color histograms of a pair of images. The histogram
constructed ira,b space, as above. As well as favouring the most
representative images, this energy encourages the usencdras
images as possible.

Importance Cost. The importance cost consists of a unary term
of the form:
Eimp(L) = — Z Eimp(P,L(P))- (4)
P

The function Emp(p,L(p)) = G(p.L(P)T(p,L(p)), where
T(p,L(p)) measures the local entropy, ab coordinates, of a
(32 x 32 pixel) region around the pixgd, and normalised so that
local entropy sums to 1 over a given input image. The Gaussian
weighting functionG(...) favours the centre of the input image
from which pis drawn. Alternatively, instead af a more complex
model of saliency can be used, as introduced by [ltti et #0819

Transition Cost. We use a transition cost similar to those used
in the Graphcut texture [Kwatra et al. 2003] and Photomantag
[Agarwala et al. 2004] systems. The transition cost is offtien
Etrans= 3 p,qeN VT (P, 0, L(p),L(q)) whereN is the set of all pairs
of neighboring (8-neighborhood) pixels. We define the t¥rias:

|[S(a,L(p)) — S(a,L(a)]|
e+|S(p,L(p) —S(a,L(p))]|’
IIS(p7L(p))—S<p7L(Q))II) (5)
€+|S(p,L(a)) — S(a,L(a))]|

where intensity functiors(. . .) is as defined above,= 0.001 pre-
vents underflow, ang - || defines the Euclidean norm.

In total, Eyans measures mismatch across the boundary be-
tween two input images. To see this, first observe that
Vr(p,q,L(p),L(q)) = O unlessL(p) # L(g). Then note that
Vr(p,q,L(p),L(q)) is small if there is a strong gradient in one of
the input images, since the relevant denominator will thetabge.
This energy is as in Graph Cut Texture [Kwatra et al. 2003eex
that the min operation replaces summation in the originais s
done because, distinctively, adjacent images in this prolare typ-
ically taken from rather different scenes, which often domatch.
Our choice of energy then acts appropriately in encourafantsi-
tion on a high contrast boundary in either scene, in additiothe
usual effect of encouraging a good match across the boundary

Vr(p,a,L(p),L(q)) = min(

Object Sensitivity We use state of the art techniques for face de-
tection [Viola and Jones 2001] and general object dete¢Sbiot-
ton et al. 2006] for labelling sky. We would like to exploitigh
knowledge in such a way that if a face is included, it is in€ldichs
awhole, and that sky is likely to appear only at the top boodéhe
collage. For faces, as in [Rother et al. 2005], we have theggne
term EObj = Zp,qu f(p7q7 L(p)7 L(q))7 wheref (p7 q, L(p)7 L(q)) =

o whenevelL(p) # L(g) andp, g are pixels from the same face in
either the images df(p) or L(q), O otherwise. For sky rather than
defining an explicit energy, we simply label [Shotton et &0&]
images containing sky and pass this information to the caimst
satisfaction engine (see next section) which attempts 8itipn
such images only at the top of the collage.

Parameters The parametersvimp, Wirans Wobj; Wrace have been
adjusted by informal testing over 50 sets of home-photdwsap
where each set contains between-2000 pictures, to achieve
reasonably intuitive rankings of the image sets. We tajg, =
100, Wtrans: 10,W0b] = 1.0,Wface: 001

Constraints The optimization o (L) is done under certain con-
straints, as listed below.

1. Information bound Any imagel, that is present in the la-
belling, i.e. for which L(p) = (n,s) for somes and somep € &
must satisfy

(6)

whereEimp(L,n) € [0,1] is the proportion of local image informa-
tiony , Eimp(p;L(p)), as defined above, that is captured in the ROI.
In practice we seT = 0.9 —i.e. so that at least 90% of the image
information is captured. The purpose of this constrainbiguard
against the possibility that only a small and unrecognisdiag-
ment of an image may be selected — a problem that plagues the
Tapestry system [Rother et al. 2005] — see figure 2. Levyingsa ¢

Eimp(l—v n) > T7

Figure 2: Problems with Tapestry. A collage produced using
Tapestry [Rother et al. 2005] includes sky portions in théage
center and other small image fragments. Running AutoCeltzy
the same image set gives a superior result, see figure 5.

for fragments is quite simply infeasible in the Tapestryrfeavork
since it leads to a Markov Random Field with very large clgue
where standard methods such as graph cuts or Belief Propagat
are no longer applicable. Here however this is possiblekham
the explicit constraint satisfaction step, which is oneta tmain
innovations of this work — see figure 5.

2. Uniform shift A given input imagd,, may appear in the col-
lage with only one unique shif. i.e. given two distinct pixels
p,g € £ : p+#q, with labelsL(p) = (n,s),L(q) = (n,s), it is re-
quired thats = §. This constraint [Rother et al. 2005] is useful
partly for computational efficiency, and partly to ensurattthe
structure of input images is preserved, without introdgeirarps.

3.Connectivity Eachsef, e {pe Z:L(p)=(n,s), for somes}
of collage pixels drawn from image should form a 4-connected
region. This cannot in practice be imposed as a hard consthait
can be encouraged during optimization.

3 Energy Minimization

The search space for optimization of the endegly) defined in the
previous section, is the entire space of labellihgs .. At each
pixel, the input image and its shift must be selected, riguin
a large state-space for graph-cut optimization [Rothet. &095].
Here a heuristic but effective approach to optimizing ep&(-) is
adopted in which the various aspects of the labelling aremped
independently and in sequence. Firstimages are rankedaditgt
then rectangular ROIs are chosen optimally for each iméaege &
packing problem is solved to assemble and position as many im
ages with highest rank, into the area allowed for the collagth-
out allowing ROls to overlap; finally graph-cut optimizatifixes
pixel identity in areas of overlap of two or more images. Tthes



number of labels for graph-cut is restricted typically t@twhree
or four, in the overlap areas, exactly as in the Photomonpagie-
lem [Agarwala et al. 2004], and thus complexity is dramalijca
reduced compared with Tapestry [Rother et al. 2005]. Thésns
ply because graph-cut no longer has to optimize over imaifest®
s; those offsets are now determined by optimal packing.

Each of the four optimization steps is described next.

Image ranking The ranking step, in the sequence of optimiza-
tions, addresses tligep term in the collage energy (1). Firstimages
In are relabelled, so that the indexanks them according to how
representative the subdet... |, is. This is straightforward since
Erep(n) is simply a static rank computed independently in terms of

thenth image and its predecessors of higher rank. Thusithen-
age is selected greedily as the one that minimizes

—anDr(n) *mlﬂanamvr(nym)y

adapting the ternirep(n) (2). The resulting ranking is then passed
to the constraint satisfaction step below.

ROI optimization The ROI for each input imaghk, is fixed by
minimising, independently for each image, the area of theRO-
ject to meeting the information-bound constraint (6), amel ¢con-
straint that all detected faces are included. This is a€lidy con-
structing a summed area table [Crow 1984] for rapid lookuthef
total informationy ,cr Eimp(p, L(P)) in any rectangular ROR. All
rectangles are then enumerated, and checked for satisfaxftthe
constraint, in order to select the one with minimum areas oipier-
ation is quadratic in the number of pixelslif and this is mitigated
by subsampling. This is done under the constraint that &diaded
faces are included. Figure 3 illustrates the effectiveriesshis
procedure in selecting a ROI.

Figure 3:ROI selection. ROIs are determined by selecting the rec-
tangle that optimises jfp, and this favours highly textured areas,
including all faces, with central positioning.

Note that alternative speed up tricks for the same ROI detect
problem have been discussed in [Suh et al. 2005]. Furthesmor
they have shown that cropped images, based on the ROI, ag mor
effective for image retrieval compared to using the origimages.

The only difference to our ROI detection approach is therimfn-
tion measurement where theirs is based on [Itti et al. 1998].

Constraint satisfaction Related packing problems have been ad-
dressed elsewhere, for example for automatic tiling [Kird el-
lacini 2002]. Here, the packing sub-problem can be statedlas
lows. We are given a set of selected images and their ROlstiteg
with the ranking computed above. The goal is to incorporate a
many highly ranked images as possible within the width anglte
of the collage, while respecting the additional constrtiat every
pixel be covered by some image (though not necessarily edusr
some ROI).

The packing problem is a purely combinatorial problem which
is reminiscent of applications found in other areas likeesiti-
ing [Aggoun and Beldiceanu 1993]. What makes it quite un-
usual, though, is the simultaneous presence of constifaintsn-
overlapping— no two ROIs should intersect — armbvering—

every pixel is covered by an images, though not necessayilg b

ROI. Being a generalization of well-studied packing protdeit is

clear that the problem is NP-hard and that heuristic searclec-

essary. The general approach is to state the problem as & set o

constraints (inequalities, Boolean and linear expres3ibetween

a set of variables. In this problem, the set of variables is
fy/:{(Xn7Yn7bn)7 n:].7...7N}7 (7)

the positions(xn, yn) for each images and a boolean flagindi-

cating whether the image is to be included or not. Conssain

applied pairwise to images; a typical constraint would be:

if by andby, thenrg or 1o, ... ., (8)
where a typical proposition igg = (Xn — Xm > Wm+ Wn), in which
wm andwy,, are respectively the half-widths of the ROIls. Because
the relative positions of a ROI pair may be switched, these co
straints appear in disjunctive sets — a significant diffeeefrom
[Kim and Pellacini 2002]. This also puts the problem outdtiue
scope of standard techniques such as Linear Programming- Ho
ever such problems are amenable to approaches based orattnst
programming (CP) [Dechter 2003]. Another hard issue isdbat
straints are mixed boolean and real, as above, so that iefflyct
constraints must switch between activity and inactivityioly op-
timization. Further object-sensitive constraints canrimduided —
for instance we insist that images with sky appear only atdghef
the collage.

To obtain good solutions efficiently, a two-step approach ha
been used.

1. Branch and bound The framework for the first optimization
step is a depth-first search which aims at maximising the reummb
selected images and their quality (Eq. (2)). Constrainpagation
[Waltz 1975] is applied to subtrees, from which the subtresy m
either be pruned, or have its search space reduced. Realbhesi
(Xn,Yn) are dealt with by coarse discretization with conservative
truncation of constraints. The issue of switching the sedative
constraints from propagation is dealt with mjfication [Marriott
and Stuckey 1998]. In the branch and bound step, no account is
taken of the covering requirement. At this stage we simplyeso
the problem of packing as many rectangles as possible, miitte
disjunctive constraints on overlap of ROIs. Even with cealis-
cretization, the branching factor at a node is large. Thieat with

by randomly selecting a limited number of branches to expland

by allowing, for each of them, a bounded number of backtragki
steps.

2. Local search Once branch and bound has terminated, the re-
sulting packing satisfies the non-overlap constraints eetwROIs,

but in general will not satisfy the covering constraint. Aistpoint,

a deterministic local search is applied in order to repadr gblu-
tion. Perturbations are applied only (h,yn), not toby, so the set

of selected images is fixed during this step.

To make sure that a solution which satisfies both the non-
overlapping and covering constraints is systematicallynth we
repeat steps 1) and 2) several times if necessary, and eaehei
lax slightly the constraints (propositioms in Eq. 8). In principle,
the constraint satisfaction step could generate multiplations.
After refinement in step 2, these multiple solutions coulabau-
ated using a bound on the energy function (Eq. 1) or giverctijre
to graph cut optimization. (A bound is needed because Igttine
energy function itself is only defined for single coveringpixels,
not multiple coverings as delivered by constraint satisfac)

An illustration of the output of the whole constraint saision
procedure is given in figure 4, for the collage problem of fig 1.



Figure 4:Output from constraint propagation. ROIs are shown
(left), packed without overlap. Images (right) do overlapd all
pixels are covered.

Graph cut with alpha expansion  As explained above, graph cut
optimization need be applied only to the image variabla each
pixel-label L(p) since the shifts for each image is now fixed. In
practice, up to four values af need to be considered at egalso
alpha-expansion [Boykov et al. 2001] is used, exactly asi@it&l
Photomontage [Agarwala et al. 2004]. Here the objectivetion

to be minimized is that part of the ener@yin (1) that is still “in
play”, namely WimpEimp(L) + WiranEtrans(L) + WobjEobj(L). The
first of these terms is unary and the second and third areybinar
Since this energy can be shown to hen-metri¢ the truncated
schema of alpha-expansion is used [Rother et al. 2005]. ¢t ea
iteration of alpha-expansion, the 4-connectedness propeen-
couraged by dilating the optimally expanded set by one pixel

4 o-Poisson Image Blending

The blending task in AutoCollage is to create a seamlessitiam
between input images that are adjacent in the collage. Tak ch
lenge is to find a general procedure that creates appropraatsi-
tions under differing conditions. Often adjacent images quite
different in colour and texture, so it is not appropriate @iynto
search for the least obtrusive join [Kwatra et al. 2003]¢sithis
will still form a highly visible seam. The choice is eitherggploit

a natural edge in one of the images, where an edge existsser el
to aim for a soft, transparent blend. One possibility is tktersion

of Poisson blending [Perez et al. 2003] to include edgeiséhs
[Agarwala et al. 2004]. However this tends to mix colourshea
than achieving the clean transparent effect that we seek fére
solution proposed here is to perform edge-sensitive bhgnidirt in
the a-channel rather than in image colour channels.

This is done by computing an alpha mask for each individual
input image. In a first step, for a particular imdgen overlap area
is computed which comprises of all pixglsvhere the set of labels
L(p), which is the same as for the preceding graph-cut optinuaati
includes labely and at least one other label. Then the following
functional minimizes over the overlap area

F(G)=/Ilu(f)*G(r)|\2+W(f)HDGH2dL ©)

wherew(r) = A +Bexp—%g max, ||Oln|| and max is taken over

the imaged,, present in the overlap. Normalising constghtis a
mean-square gradient as in [Rother et al. 2004], and wk s€20,

B =10. The functioru(r) takes the value 1 at a pixelif the im-
age label, given by graph-cut, ligand 0 otherwise. This selection
then biasesr towards the graph-cut solution. Maximization of the
functional F is subject to boundary conditions that= 0,1 over
the overlap area, and is computed, as usual, by solving &dtois
equation [Perez et al. 2003]. In a final step each image al@skm
is normalized so that at each pixgin the output domain the sum
of all defined alpha masks is one. The results, clearly \asibfig.

1, is that both sharp abutments and transparent blends lsirved
automatically in a collage.

5 Results, User Study and Discussion

Results of AutoCollage are shown in figure 1 anH 5Note
the features of AutoCollage present in these examples. dBoun
aries between images are appropriately positioned, axglitting
through interesting material. There is little duplicatiohmater-
ial and small, visually meaningless image fragments arédado
Seams between input images switch automatically betwettingu
along natural boundaries or blending transparently, aicgrto the
presence or absence of underlying sharp edges.

Failure modes include the occasional inclusion of sky fragis
in the interior, given that sky detection is not infallibeEr¢und 83%
accuracy in our system). Sometimes texture edges triggepio-
priately sharp transitions ir. Occasionally face detection fails,
allowing an inappropriate cut. A further limitation of thercent
system is the lack of user interaction. To achieve this wetake
further advantage of the constraint satisfaction by inclgdiser-
specific constraints such as “include one image of this subSé-
viously, the user should also be able to move, re-size angd swa
ages, and potentially a brush interface, as in [Agarwala 2084],
can be used to include explicit image parts in the collage.

In order to answer the questions whether AutoCollage isulisef
visually appealing and an improvement over competitivehmes,
we have conducted a user stlidyVe asked 17 users who were not
involved in this work, for a personal dataset (20-50 photdfsan
event e.g. a holiday trip. We have created four differentrsames
for each set: Tapestry [Rother et al. 2005]; AutoCollagehveit
maximum of 12 images to make it more compatible with Tapestry
PhotoPile which is the collage result after constraintséattion
only; and a simple grid of 12 most representative picturesert
were shown a random set of 7 collections, including theirgl a
asked to answer the following questions with 1 (definitely tao5
(definitely yes). The averaged results are:

e Would you send this summary to a friend?
AutoCollage (4.6), Tapestry (3.2), PhotoPile (2.2), GAidr}

e Would you like this summary as a screensaver?
AutoCollage (3.8), Tapestry (2.5), PhotoPile (1.9), Gli®6)

e Would you use this summary as front page of the collection?
AutoCollage (4.5), Tapestry (2.9), PhotoPile (2.6), GAdL]

e Do you find the summary visually appealing?
AutoCollage (4.5), Tapestry (3.2), PhotoPile (2.3), GAidr}

e |sita good visual summary of the set of photos?
AutoCollage (4.6), Tapestry (3.1), Grid (2.8), PhotoPHe]

This shows that AutoCollage is a useful collage tool, superi
to the others, for two tasks: Sharing the collage with free(4l6),
and using the collage as a summary of a collection (4.5). Auto
Collage was also voted as the visually most appealing. Oragee
users preferred soft blends, similar to the findings in [Ddulos
and Essa 2005]: “AutoCollage is much more visually appealim
contrast to PhotoPile which is obviously a stack of photds ward
boundaries” (user quote). The user study gave also insigfatshe
desired properties specified in sec. 1. Firstly, selectisglestan-
tial ROI from each image is important: “I dislike bad detaifs
Tapestry, in particular things like the piece of tree in thiddfe of
a collage”. Secondly, selecting representative images pgessen-
tial: “AutoCollage is definitely better than Tapestry by haya mix
of people and landscape; Tapestry shows sometimes only f&ie
nally, object (sky) recognition is essential: “Having aqaeof sky

IFurther results, and details of the user study, are availain
http://research.microsoft.com/vision/cambridgeAsitoCollage/default.htm



Figure 5:Further example of AutoCollage. Note again, the desirable and novel properties: hidden ldawies, little duplication, freedom

from fragments, selective transparency.

in the center of a collage looks funny, | thought it's snow"urf
ther user quotes: “Seeing an AutoCollage of your own phaas i
surprisingly emotive experience.”; “AutoCollage is a cl@an on
average; it is better proportioned than the others”; “Aubiéde
is sometimes much better than Tapestry, however, Auto@elia
never worse than Tapestry. I'd also like to include a spetifagye”.

The improvement of AutoCollage compared to Tapestry is also

prominent in terms of runtime. To create collages in fig. 5 and
from a set of 14 input images, AutoCollage is 16 times fastéhe
core packing stage:.D3sec (AutoCollage) vs. .@7sec (Tapestry,
with only 0.001% of all possible expansion moves).

In future work it is planned to elaborate the object senigjtiv
We will also address the issue of user interactivity whichetels,
however, heavily on the user task at hand. Another interggtds-
sibility is to allow multiple solutions from constraint ssfaction,
and then evaluate each using a suitable bound on the energy.
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