
Assertion Checking Unified (Full Version)

Sumit Gulwani1 and Ashish Tiwari2⋆

1 Microsoft Research, Redmond, WA 98052, sumitg@microsoft.com
2 SRI International, Menlo Park, CA 94025, tiwari@csl.sri.com

Abstract. We revisit the connection between equality assertion check-
ing in programs and unification that was recently described in [8]. Using
a general formalization of this connection, we establish interesting con-
nections between the complexity of assertion checking in programs and
unification theory of the underlying program expressions. In particular,
we show that assertion checking is: (a) PTIME for programs with nonde-
terministic conditionals that use expressions from a strict unitary theory,
(b) coNP-hard for programs with nondeterministic conditionals that use
expressions from a bitary theory, and (c) decidable for programs with
disequality guards that use expressions from a convex finitary theory.
These results generalize several recently published results and also es-
tablish several new results. In essence, they provide new techniques for
backward analysis of programs based on novel integration of theorem
proving technology in program analysis.

1 Introduction

We use the term equality assertion, or simply assertion, to refer to an equality
between two program expressions. The assertion checking problem is to decide
whether a given assertion always holds at a given program point. In general,
assertion checking is an undecidable problem. Hence, assertion checking is typi-
cally performed over some sound abstraction of the program. In this paper, we
give algorithms as well as hardness results for the assertion checking over classes
of useful program abstractions.

Consider, for example, the program shown in Figure 1. All assertions shown
in the program are valid (assuming that all variables are integer variables and
that there is no overflow). Observe that to prove the validity of the assertions
a = b and y = 2x, we need to reason about the multiplication operator. Since
full reasoning about the multiplication operator is in general undecidable, we
can use some sound abstraction of the multiplication operator. One option is to
model the multiplication operator as a binary uninterpreted function.3 Such a
model is sufficient to prove the validity of the assertion a = b. In Section 4, we
show how to use unification algorithm for uninterpreted functions to obtain a
polynomial time algorithm for verifying the validity of such assertions.

Modeling the multiplication operator as an uninterpreted function is not
sufficient to prove the validity of the assertion y = 2x, which requires reason-
ing about the commutative nature of the multiplication operator. Hence, if we

⋆ The second author was supported in part by the National Science Foundation under
grant ITR-CCR-0326540.

3 An uninterpreted function f of arity n satisfies only one axiom: If ei = e′i for 1 ≤
i ≤ n, then f(e1, . . . , en) = f(e′1, . . . , e

′

n).

abstract the multiplication operator as a commutative function, we can prove
validity of the second assertion (as well as the first assertion). However, this re-
quires us to work with program expressions that involve a combination of linear
arithmetic and a commutative operator. In Section 5, we show that in general,
assertion checking on programs with such program expressions is coNP-hard.
However, the good news is that this problem is still decidable, as we show in
Section 6. Also observe that the validity of the assertion y = 2x requires the
knowledge of the loop guard flag 6= w inside the loop. Our algorithm in Sec-
tion 6 can also reason about disequality guards and can hence prove the validity
of such assertions.

The assertion z = 2w involves dis-

True False*

x := 0; y := 0; flag := w;

a := 1; b := 1; z := flag + flag ;

a := a × c; b := b × c;

x := x+ (a × c);

y := y + (c × a) + (a × c);

flag := flag - 1; z := z - 2;

Assert (y = 2x);

flag w
False

True

Assert (a = b);

Assert (z = 2w);

Fig. 1. An example program.

covering the loop invariant z = 2 ×
flag and reasoning about the equality
guard flag = w. Reasoning about such
linear arithmetic expressions in pres-
ence of equality guards has been shown
to be undecidable in general [13]. This
indicates that the decidability results
in this paper are tight and that one
would need incomplete heuristics, such
as the one described in Section 7, to
reason about arbitrary conditionals. We
formalize the notion of reasoning about
disequality guards as opposed to rea-
soning about equality guards by mak-
ing all conditionals non-deterministic,
and introducing Assume nodes, as de-
scribed in Section 2.1.

The main appeal of this work is that
all technical results are derived using
the basic link between assertion check-
ing for programs whose expressions are
from some theory T and unification in

the theory T (Section 3). An assertion holds at a program point if it evaluates to
true in every run of the program. Every run of a program returns a valuation of
the program variables. This valuation can be seen as a substitution. If every such
substitution makes an assertion true, then each substitution would also validate
some maximally general T-unifier of the assertion. Using this basic principle, we
show that unification algorithms can be used to strengthen assertions during
assertion checking using backward analysis. Quite interestingly, the same basic
principle also helps us show hardness results in some cases. While this basic
principle was presented in an earlier paper [8], its fundamental role in uniformly
deriving PTIME , coNP-hardness, and decidability results for assertion checking
has been explicated in only this paper.

2

Unification type of theory Complexity of Examples Generalizes
of program expressions assertion checking

Strict Unitary PTIME ℓa, uf [7, 12, 13]

Bitary coNP-hard ℓa+uf, c [8]

Finitary-Convex Decidable ℓa+uf +c+ac [12, 8]

Fig. 2. Summary of results in this paper. If the program model consists of nodes (a)-
(d) from Figure 3 and the theory underlying the program expressions belongs to the
class given in Col 2, then its assertion checking problem has time complexity given in
Col 3. Row 1 requires some additional minor technical assumptions. Row 4 holds even
for disequality guards. Col 4 contains examples of theories for which the corresponding
result holds:- ℓa: Linear Arithmetic, uf : Uninterpreted Functions, c: Commutative
Functions, ac: Associative-Commutative Functions, The symbol + denotes combination
of theories. Last column gives references whose results are generalized by our result.

In particular, the main contributions of this paper are the following gen-
eral results that relate the complexity of assertion checking in programs with
the unification type of the theory of program expressions. These results are also
summarized in Figure 2.

(1) We describe a generic PTIME algorithm for assertion checking in programs
when the program expressions are from a strict unitary theory (Section 4).

(2) We introduce the notion of a bitary theory, and prove that several interesting
theories (e.g., commutative functions) are bitary. Intuitively, a bitary theory is
one that can encode disjunction. We prove that assertion checking in programs
whose program expressions are from a bitary theory is coNP-hard (Section 5).

(3) We describe a generic algorithm for assertion checking in programs when
the program expressions are from a finitary convex theory, thereby proving de-
cidability. We prove that the (rich) theory of combination of linear arithmetic
with functions that are uninterpreted, commutative, or associative-commutative
(AC) is finitary and convex (Section 6). The significance of such functions lie in
the fact that they can be used to model important properties of otherwise hard
to reason about program operators. For example, commutative functions can be
used to model floating-point operators (which do not obey associativity), and
AC functions can be used to model bit-wise operators.

The above results uniformly generalize several known results [7, 8, 13, 12], and
also provide several new results. All prior results on the complexity of assertion
checking have been for specific abstractions. For example, in an earlier paper [8]
we showed that intraprocedural assertion checking in the combination of linear
arithmetic and uninterpreted functions was coNP-hard, but decidable, using a
unification based approach. The results in this paper go much beyond one or two
specific program abstractions and apply to intra- and inter-procedural analysis
of wide classes of program abstractions. They can be used to quickly classify the
hardness of these analyses for new abstractions.

3

(a) Assignment

Node

x := e

0

(d) Join Node

21

(c) Non-deterministic

Conditional Node

*True False

1 2

(b) Non-deterministic

Assignment Node

x := ?

0

(e) Assume Node

Assume (e1 e2)

0

Fig. 3. Flowchart nodes in our abstracted program model.

The results in this paper establish closer connections between program analy-
sis and theorem proving. The traditional way of using theorem proving in pro-
gram analysis has been via decision procedures. In this usage scenario, decision
procedures are used to discharge verification conditions generated from programs
annotated with loop invariants. In this paper, theorem proving technology is
more tightly integrated in program analysis to make it more precise and effi-
cient, even in the absence of loop-invariant annotations.

The results in this paper should also be viewed in the context of developing
new algorithmic techniques for performing backward analysis of programs. This
paper shows that standard unification algorithms can be used during backward
analyses of programs. Finally, although this paper focuses solely on backward
analysis, we believe that our observations enable new ways of combining both
forward and backward analyses using theorem proving technology to improve
overall efficiency and precision [6].

2 Preliminaries

2.1 Program Model

We assume that each procedure in a program is abstracted using the flowchart
nodes shown in Figure 3. In the assignment node, x refers to a program variable
while e denotes some expression in the underlying abstraction. We refer to the
language of such expressions as the expression language of the program. Following
are examples of the expression languages for some abstractions that we refer to
in this paper:

– Linear arithmetic: e ::= y | c | e1 ± e2 | c× e
Here y denotes some variable while c denotes some arithmetic constant.

– Uninterpreted functions: e ::= y | f(e1, . . . , en)
Here f denotes some uninterpreted function of arity n.

– Commutative Functions e ::= y | f(e1, e2)
Here f denotes a commutative function.

– Combination of linear arithmetic and uninterpreted functions:
e ::= y | c | e1 ± e2 | c× e | f(e1, . . . , en)

4

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that our abstraction
cannot handle precisely.

A join node has two incoming edges. Note that a join node with more than
two incoming edges can be reduced to join nodes each with two incoming edges.

Non-deterministic conditionals, represented by ∗, denote that the control
can flow to either branch irrespective of the program state before the condi-
tional. They are used as a safe abstraction of guarded conditionals, which our
abstraction cannot handle precisely. We abstract away the guards in conditionals
because otherwise the problem of assertion checking can be easily shown to be
undecidable even when the program expressions involves operators from simple
theories like linear arithmetic [13] or uninterpreted functions [12] (in which case
our result in Section 4 would not be possible, and the result in Section 5 would
become trivial). This is a very common restriction for a program model while
proving preciseness of a program analysis for that model.

However, (for our result in Section 6) we do allow for assume statements of
the form Assume(e1 6= e2), which we also refer to as disequality guards. Note that
a program conditional of the form e1 = e2 can be reduced to a non-deterministic
conditional and assume statements Assume(e1 = e2) (on the true side of the
conditional) and Assume(e1 6= e2) on the false side of the conditional. Hence, the
presence of disequality guards in our program model allows for partial reasoning
of program conditionals.

2.2 Unification Terminology

A substitution σ is a mapping that maps variables to expressions such that
for every variable x, the expression σ(x) contains variables only from the set
{y | σ(y) = y}. A substitution mapping σ can be (homomorphically) lifted to
expressions such that for every expression e, we define σ(e) to be the expres-
sion obtained from e by replacing every variable x by its mapping σ(x). Often,
we denote the application of a substitution σ to an expression e using postfix
notation as eσ. We sometimes treat a substitution mapping σ as the following
formula, which is a conjunction of non-trivial equalities between variables and
their mappings, i.e.,

∧
x

x = xσ.

A substitution σ is a unifier for an equality e1 = e2 (in theory T) if e1σ = e2σ
(in theory T). A substitution σ is a unifier for a set of equalities E if σ is a unifier
for each equality in E. A substitution σ1 is more-general than a substitution σ2

if there exists a substitution σ such that xσ2 = (xσ1)σ for all variables x. 4 A
set C of unifiers for E is complete when for any unifier σ for E, there exists a
unifier σ′ ∈ C that is more-general than σ. The reader is referred to [1] for an
introduction to unification theory.

4 The more-general relation is reflexive, i.e., a substitution is more-general than itself.
All equalities are interpreted modulo theory T.

5

We use the notation Unif(E), where E is some conjunction of equalities E,
to denote the formula that is a disjunction of all unifiers in some complete set
of unifiers for E. (If E is unsatisfiable, then E does not have any unifier and
Unif(E) is simply false.)

Example 1. Consider the equality f(x)+f(y) = f(a)+f(b) over theory of combi-
nation of linear arithmetic and unary uninterpreted function f . The substitution
{x 7→ a, y 7→ b} is a unifier for it. A complete set of unifiers, however, contains
two unifiers, viz. {x 7→ a, y 7→ b} and {x 7→ b, y 7→ a}. Hence,

Unif(f(x) + f(y) = f(a) + f(b)) = (x = a ∧ y = b) ∨ (x = b ∧ y = a)

Theories can be classified based on the cardinality of complete set of unifiers
for its equalities as follows.

Unitary Theory A theory T is said to be unitary if for all equalities e = e′ in
theory T, there exists a complete set of unifiers of cardinality at most 1, that is,
there is a unique most-general unifier. We define a unitary theory to be strict if
for any sequence of equations e1 = e′1, e2 = e′2, . . ., the sequence of most-general
unifiers Unif(e1 = e′1), Unif(e1 = e′1 ∧ e2 = e′2), . . . contains at most n distinct
unifiers where n is the number of variables in the given equations. 5 The theory
of linear arithmetic and the theory of uninterpreted functions are both strict
unitary.

Bitary Theory We define a theory T to be bitary if there exists an equality e = e′

in theory T such that y 7→ z1 and y 7→ z2 form a complete set of unifiers for
e = e′, where y, z1 and z2 are some variables. In other words, Unif(e = e′)
is y = z1 ∨ y = z2. In addition, we require a technical side condition that
for new variables y′ and z′1, it is the case that Unif(e = e[y′/y, z′1/z1]) and
Unif(e′ = e′[y′/y, z′1/z1]) are both y = y′ ∧ z1 = z′1.

The theories of a commutative function, combination of linear arithmetic and
a unary uninterpreted function, and combination of two associative-commutative
functions are all bitary (as proved in Section 5.2). Intuitively, bitary theories are
theories that can encode disjunction.

Finitary Theory A theory T is said to be finitary if for all equalities e = e′

in theory T, there exists a complete set of unifiers of finite cardinality. Note
that every unitary theory is, by definition, finitary. Hence, the theories of linear
arithmetic and uninterpreted functions are both finitary. The theory of com-
bination of linear arithmetic and uninterpreted functions is also finitary (as
proved in [8]). In this paper, we show that the more general theory of com-
bination of linear arithmetic, uninterpreted functions, commutative functions,
and associative-commutative functions is also finitary (Section 6.2).

A theory is said to be convex if whenever e1 = e′1 ∨ e2 = e′2 is valid in the
theory, then either e1 = e′1 is valid in the theory or e2 = e′2 is valid in the theory.
The above-mentioned finitary theories are also convex.

5 This is an ascending (unifier) chain condition.

6

1 if (*) { x := a; y := b; }
2 else { x := b; y := a; }
3 endif

4 while (*) {
5 x := fx; y := fy;
6 a := fa; b := fb;
7 }
8 assert(x + y = a+ b);

(a) Program

pc Assertion at pc

w/o unification w/ unification

7 x+ y = a+ b x = a+ b− y

4 x+ y = a+ b ∧ (x = a ∧ y = b)∨
fx+ fy = fa+ fb ∧ · · · (x = b ∧ y = a)

1 non-termination true

(b) Backward Analysis
1 true

3 (x = a ∧ y = b) ⊔ (x = b ∧ y = a)
= (x+ y = a+ b)

7 true

(c) Forward Analysis
Fig. 4. This figure illustrates the advantage of using unification in backward analysis.
The assertion on line 7 of program in Figure (a) is true. Standard backward analy-
sis based procedure, illustrated in Figure (b) Column 1, fails to prove the assertion
because it fails to terminate across the loop. Forward analysis in Figure (c) requires
join computation. Unless we unreasonably assume that the join operator returns the
infinite set of facts [9],

V
i f

ix + f iy = f ia + f ib, it also fails. When using unification
to strengthen assertions in backward analysis, as in Figure (b) Column 2, the fixpoint
terminates and we can prove the assertion.

3 Connection between Unification & Assertion Checking

A backward analysis based on weakest precondition computation involves com-
puting assertions at intermediate and initial program points that guarantee that
a given assertion holds at a given program point. A unification procedure can be
used to strengthen and simplify such assertions. The formula Unif(E) logically
implies E, but it is, in general, not equivalent to E. Since it is often “simpler”
than E, we may wish to replace assert(E) by assert(Unif(E)) at intermediate
points during backward analysis. This process is sound, that is, if Unif(E) is an
invariant, then clearly E will also be an invariant. (See Figure 4 for an exam-
ple.) But this process is not complete in general, that is, if we fail to prove that
Unif(E) is an invariant, then we can not conclude anything about E. The basic
result formally stated in Lemma 1 and Lemma 2 is that, in many useful abstrac-
tions, we do not lose completeness by this replacement. For instance, unification
preserves completeness and helps prove the assertion in the example of Figure 4.

Lemma 1 ([8]). Let π be any location in a program that is specified using nodes
(a)-(d) of Figure 3 and expressions from a theory T. An equality e = e′ holds at
π iff UnifT(e = e′) holds at π (assuming UnifT(e = e′) is a finite disjunction).

The proof of this lemma is fairly simple and is given in Appendix A.
The key insight is that runs of a program are just substitutions and if every

run validates an assertion, then every run should also validate some maximally
general unifier of that assertion.

We use this soundness and completeness preserving strengthening of asser-
tions in Section 4 as part of a generic PTIME backward analysis procedure for

7

assertion checking in a certain class of programs. Surprisingly, we use this same
result to also show hardness of assertion checking for another class of programs in
Section 5. This simplifies, and simultaneously generalizes, the proof of hardness
of assertion checking for a specific theory [8].

We can generalize Lemma 1 as follows to also work in the presence of dise-
quality guards. 6

Lemma 2. Let π be a location in a program specified using nodes (a)-(e) of
Figure 3 with expressions from a convex finitary theory T. Let φi be some con-
junction of equalities. Then,

∨
i

φi holds at π iff
∨
i

Unif(φi) holds at π.

The proof of Lemma 2 is given in Appendix B. In Section 6, we argue that
the standard backward analysis procedure for assertion checking, if enhanced by
unification based assertion strengthening, yields a decision procedure for a large
class of programs.

4 PTIME Decidability for Strict Unitary Theories

In this section, we prove PTIME complexity (by describing a polynomial-time
algorithm) for the problem of assertion checking when the expression language of
the program comes from a strict unitary theory, and the flowchart representation
of the program is abstracted using nodes (a)-(d) shown in Figure 3.

This PTIME complexity result generalizes two earlier known results for the-
ories of linear arithmetic and uninterpreted functions (both of which are unitary
theories). Gulwani and Necula gave a polynomial-time algorithm for discovering
all assertions of bounded size when the program model consists of nodes (a)-(d)
and the expression language consists of uninterpreted functions, thereby prov-
ing PTIME complexity of assertion-checking for such programs [7]. Müller-Olm,
Rüthing, and Seidl [12] have also pointed out that assertion checking on pro-
gram with nodes (a)-(d) using the uninterpreted symbols’ abstraction (Herbrand
equalities) is in PTIME. Muller-Olm and Seidl [13] proved PTIME complexity
for assertion checking of programs with nodes (a)-(d) and expression language
of linear arithmetic by simplifying Karr’s algorithm [11].

4.1 Algorithm

Our algorithm for assertion checking is based on weakest precondition compu-
tation. It represents invariants (that need to be satisfied for the assertion to
be true) at each program point by a formula that is either false, true, or a
conjunction of equalities of the form e = e′.

Suppose the goal is to check whether an assertion e1 = e2 is an invariant at
program point π. The algorithm performs a backward analysis of the program

6 We remark here that the program nodes for which unification does not preserve com-
pleteness, viz. positive guards, are exactly responsible for undecidability of assertion
checking for many abstractions.

8

computing a formula ψ at each program point such that ψ must hold at that
program point for the assertion e1 = e2 to be true at program point π. This
formula is computed at each program point from the formulas at the successor
program points in an iterative manner. The algorithm uses the transfer functions
described below to compute these formulas across the flowchart nodes shown in
Figure 3. The algorithm declares e1 = e2 to be an invariant at π iff the formula
computed at the beginning of the program after fixed-point computation is valid.

Initialization: The formula at all program points except π is initialized to true.
The formula at program point π is initialized to be e1 = e2.

Assignment Node: See Figure 3 (a). The formula ψ′ before an assignment node
x := e is obtained from the formula ψ after the assignment node by substituting
x by e in ψ, i.e. ψ′ = ψ[e/x].

Non-deterministic Assignment Node: See Figure 3 (b). The formula ψ′ before a
non-deterministic assignment node x :=? is obtained from the formula ψ after
the non-deterministic assignment node by substituting program variable x by
some fresh variable (which does not occur in the program and substitution ψ),
i.e. ψ′ = ψ[y/x].

Join Node: See Figure 3 (c). The formulas ψ1 and ψ2 on the two predecessors of a
join node are same as the formula ψ after the join node, i.e. ψ1 = ψ and ψ2 = ψ.

Non-deterministic Conditional Node: See Figure 3 (d). The formula ψ before a
non-deterministic conditional node is obtained by taking the conjunction of the
formulas ψ1 and ψ2 on the two branches of the conditional, and then pruning
away the redundant equations using the Unif procedure.

ψ = UPrune(ψ1 ∧ ψ2)

We say an equation e = e′ is redundant with respect to a formula ψ if Unif(ψ) is
a unifier for e = e′. The function UPrune(ψ) sequentially checks if each equation
e = e′ in ψ is redundant with respect to ψ−{e = e′} and removes the redundant
ones. Thus, Unif(ψ) and Unif(UPrune(ψ)) are equivalent.

Fixed-point Computation: In the presence of loops in procedures, the algorithm
goes around each loop until the formulas computed at each program point in two
successive iterations of a loop have equivalent unifiers, or if any formula becomes
unsatisfiable.

Correctness The correctness of the algorithm follows from the interesting con-
nection between program analysis and unification theory stated in Lemma 1.
Specifically, Lemma 1 implies the correctness of pruning and the fixpoint de-
tection steps. It shows that the formula computed by our algorithm before a
flowchart node is the weakest precondition of the formula after that node. The

9

correctness of the algorithm now follows from the fact that the algorithm starts
with the correct assertion at π and iteratively computes the correct weakest
precondition at each program point in a backward analysis.

Complexity Termination of the fixed-point computation in polynomial time
relies on the unitary theory being strict. The following theorem states the com-
plexity of the algorithm.

Theorem 1. Let T be a strict unitary theory. Suppose that TUnif(n) is the time
complexity for computing the most-general T-unifier of equations given in a
shared representation. 7 Then the assertion checking problem for programs of
size n that are specified using nodes (a)-(d) and whose expressions are from
theory T, can be solved in time O(n4TUnif(n

2)).

Proof. Since the program is of size n, the number of variables is bounded by n.
Due to the strictness condition, each node in the flowchart changes at most n
times. Since there are at most n nodes, there are at most n2 changes. For each
change, we may have to visit all n nodes once. Hence, there are n3 node visits.
In any such visit, UPrune is the most complex operation we could perform. In
this operation, there are at most 2n equations to check for redundancy. The
size of each equation, in shared representation, is bounded by n. This is because
some path in the program itself contains a representation for the expression in
an equation. Thus, pruning takes at most 2n(TUnif(n

2)) time. Hence the overall
time complexity is O(n4(TUnif(n

2) + TValid(n
2))). �

The above complexity result is conservative because it is based on a generic
argument. It can be improved for specific theories, but that is not the focus of
this paper.

4.2 Examples of Strict Unitary Theories

If the most-general T-unifiers do not contain any new variables, then clearly
any chain of increasingly less general substitutions, σ1, σ1σ2, σ1σ2σ3, . . ., will
have at most n distinct elements since each new distinct element will necessarily
instantiate one uninstantiated variable. This is the case for the theory of linear
arithmetic and uninterpreted symbols. The theory of Abelian Groups is unitary,
but the most-general unifiers contain new variables. However, using a different
argument it can be checked that this theory also satisfies the strictness condition.

5 coNP-Hardness for Bitary Theories

In this section, we first show that the problem of assertion checking, when the
expression language of the program comes from a bitary theory, is coNP-hard,

7 We assume that the T-unification procedure returns true when presented with an
equation that is valid (true) in T.

10

CheckT(α1, . . . , αm, x)
% Let e = e′ be an equality in theory T s.t. Unif(e = e′) is y = z1 ∨ y = z2.
e1 := e[x�y,

α1�z1 ,
α2�z2]; e′1 := e′[x�y,

α1�z1 ,
α2�z2];

for j = 1 to m− 2 do

ej+1 := e[ej�y,
e′j�z1 ,

ej [αj+2/x]�z2]; e′j+1 := e′[ej�y,
e′j�z1 ,

ej [αj+2/x]�z2];
Assert(em−1 = e′m−1);

Fig. 5. A procedure that checks whether (x = α1) ∨ . . . ∨ (x = αm).

even when the program is loop-free and the flowchart representation of the pro-
gram only involves nodes (a)-(d). In the second part of this section, we show that
several interesting theories are bitary, thereby establishing that the problem of
assertion checking when program expressions are from any of those theories is
coNP-hard.

Gulwani and Tiwari [8] showed that the assertion checking problem is coNP-
hard when the expression language involves combination of linear arithmetic and
uninterpreted functions and when the program model consists of nodes (a)-(d).
This section nontrivially generalizes the core idea of the proof of [8], by combining
it with the unification connection (Lemma 1), to give a simple characterization
of programs for which assertion checking is coNP-hard. This is used to obtain
hardness results for several new and unrelated theories.

5.1 Reduction from 3-SAT

Let e = e′ be the equality in theory T that has y 7→ z1 and y 7→ z2 as its com-
plete set of unifiers. The key observation in proving the coNP-hardness result
is that a disjunctive assertion of the form x = α1 ∨ x = α2 can be encoded
as the non-disjunctive assertion e1 = e′1, where e1 = e[x�y,

α1�z1 ,
α2�z2] and

e′1 = e[x�y,
α1�z1 ,

α2�z2]. The procedure CheckT(α1, . . . , αm, x) in Figure 5 gen-
eralizes this encoding to the disjunctive assertion x = α1 ∨ . . . ∨ x = αn. The
unsatisfiability problem can be easily reduced to the problem of checking a dis-
junctive assertion of the form x = y1 ∨ . . . ∨ x = yn (where x, y1, . . . , yn are
variables). This implies the following theorem (detailed proof in Appendix C).

Theorem 2. Assertion checking is coNP-hard for (even loop-free) programs
specified using nodes (a)-(d) with expressions from the language of a bitary the-
ory.

5.2 Examples of Bitary Theories

We present a few examples of bitary theories, by presenting a witness equation
e = e′ for each theory. It is easily verified that y 7→ z1 and y 7→ z2 form a
complete set of unifiers for e = e′ in each theory. Moreover, e and e′ can also be
verified to satisfy the technical side condition in each case.

The theory of a commutative function f can be shown to be bitary using the
following equality:

f(f(y, y), f(z1, z2)) = f(f(y, z1), f(y, z2)) (1)

11

The theory of combination of linear arithmetic and a unary uninterpreted
function f is also bitary. The following equality is a witness:

f(f(y) + f(y)) + f(f(z1) + f(z2)) = f(f(y) + f(z1)) + f(f(y) + f(z2)) (2)

The theory of combination of an AC function g and a unary uninterpreted
function f is also bitary. The following equality shows this.

g(f(g(y, y)), f(g(z1, z2))) = g(f(g(y, z1)), f(g(y, z2))) (3)

The theory of combination of two AC functions f and g is also bitary as
shown by the following equality, where c is some constant or a fresh variable
distinct from y, z1 and z2.

g(f(g(y, y), c), f(g(z1, z2), c)) = g(f(g(y, z1), c), f(g(y, z2), c)) (4)

6 Decidability for Finitary Convex Theories

In this section, we first describe a generic algorithm (thereby proving decidabil-
ity) for assertion checking when the expression language of the program comes
from a finitary theory that is convex, and the flowchart representation of the
program consists of nodes (a)–(e) shown in Figure 3. In the second part of this
section, we show that the (rich) theory of combination of linear arithmetic, unin-
terpreted functions, commutative functions, associative-commutative functions
is finitary and convex. This establishes the decidability of assertion checking over
this theory.

Our result here generalizes, using a uniform framework, the result of Müller-
Olm, Rüthing, and Seidl [12] about decidability of checking validity of Herbrand
equalities in the presence of disequality guards. It also subsumes our earlier
result [8] of decidability of assertion checking for programs whose nodes are re-
stricted to Nodes (a)–(d) and whose expression language involves combination
of linear arithmetic and uninterpreted functions. Our new general decidability
result is nontrivial since the abstract lattice (underlying the abstractions based
on convex finitary theories) often has infinite height, which implies that a stan-
dard forward propagation algorithm without widening [3] cannot terminate in a
finite number of steps.

6.1 Algorithm

The algorithm is based on weakest precondition computation and is similar to
the one described in Section 4. It computes (in a backward analysis) a formula
ψ at each program point π such that the formula ψ must hold at π for the given
assertion to be true. The formula ψ computed at each program point is either
false or a disjunction of conjunction of equalities of the form x = e such that
each disjunct represents a valid substitution. Müller-Olm, Rüthing, and Seidl [12]
have used a similar representation.

12

The initialization and the transfer functions for assignment and join nodes
are exactly same as the one for the algorithm described in Section 4. We describe
the transfer functions for the remaining nodes below.

Non-deterministic Conditional Node: See Figure 3 (d).
The formula ψ before a non-deterministic conditional node is obtained by taking
the conjunction of the formulas ψ1 and ψ2 on the two branches of the conditional,
and invoking Unif on each resulting disjunct.

ψ =
∨

i,j

Unif(ψi
1 ∧ ψ

j
2), where ψ1 =

∨

i

ψi
1 and ψ2 =

∨

j

ψj
2

Assume Node: See Figure 3 (e).
The formula ψ′ before an assume node e1 6= e2 is obtained from the formula ψ
after the assume node as: ψ′ = ψ ∨ Unif(e1 = e2)

Correctness and Termination The correctness of the algorithm is an easy
consequence of Lemma 2, which shows that unification can be used to strengthen
assertions without any loss in soundness or precision. The proof of termination
of the algorithm is similar to the proof of termination for the special case of
the combined theory of linear arithmetic and uninterpreted functions [8], and is
described in Appendix D. Hence, the following theorem holds.

Theorem 3. Let T be a convex finitary theory. Then, assertion checking is de-
cidable for programs specified using nodes (a)-(e) with expressions from the lan-
guage of T.

6.2 Examples of Finitary Convex Theory

In this section, we prove that the (rich) theory of combination of linear arith-
metic, uninterpreted functions, commutative functions, associative-commutative
functions is finitary and convex. Let TLA,TUF ,TC ,TAC denote respectively
the theories of linear arithmetic, uninterpreted functions, commutative func-
tions, and associative-commutative functions over disjoint signatures. Let TAll =
TLA ∪ TUF ∪ TC ∪ TAC . The theory TAll is convex because it is equational. We
now use the following well-known result [1] to show that TAll is finitary.

Proposition 1 ([1]). Let T1, . . . ,Tn be non-trivial equational theories over dis-
joint signatures that are finitary for Ti-unification with linear constant restric-
tions. Then T1 ∪ · · · ∪ Tn is finitary for elementary unification.

For a theory T, if unification with constants is finitary, then unification with
linear constant restriction, which is more restrictive, is also finitary. Unification
with constants is unitary for TUF and TLA, whereas it is finitary for TC and
TAC . Therefore, it follows from Proposition 1 that TAll is finitary for elementary
unification. Since TUF is included in TAll, it follows that TAll is finitary for
general unification as well. In fact, an algorithm to generate the complete set
of unifiers in TAll can be obtained using the generic methodology for combining
unification algorithms [1].

13

7 Discussion

Handling Positive Guards. The results in this paper have uniformly assumed
that there are no assume nodes with positive equalities. In the presence of pos-
itive assume nodes, we lose precision if we use unification to replace a weaker
assertion by a stronger assertion. This loss in precision is not surprising since the
presence of positive guards can cause assertion checking to become undecidable
for several abstractions [13, 12].

In practice, heuristics can be used to deal with positive guards. For instance,
the precondition ψ′ before a program node Assume(x=y) can be obtained from
the formula ψ after the assume node as follows: ψ′ ≡ ψ ∨ ψ[x/y] ∨ ψ[y/x]. This
simple heuristic allows us to prove the assertion z = 2w in the example given in
Figure 1. This suggests that the unification based backward analysis procedure
proposed in this paper can be effective in practice.

Backward vs. Forward Analysis. Our algorithms for assertion checking are
based on backward analysis of programs. Cousot [4] formalized the semantics
of sound backward analyses as computing an over-approximation of the set of
program states obtained by pushing the negation of the goal backwards, which
is equivalent to under-approximation of the set of program states obtained by
pushing the goal backwards assuming that the abstract domain is closed under
negation. However, abstract domains are, in general, not closed under negation,
as is the case for all the equality based abstract domains that we consider in this
paper. Also, most of these domains do not have precise transfer functions for
forward analysis. Hence, there is no automatic recipe to construct algorithms for
performing forward or backward analysis of arbitrary abstract domains. This pa-
per shows how to perform precise backward analysis over a large class of abstract
domains by using unification algorithms from corresponding logical theories.

For problems considered in this paper, it may be argued that backward analy-
ses are better than forward analyses over corresponding program abstractions in
terms of efficiency. This is because performing precise assertion checking requires
forward analysis to discover all facts at each program point, since it is a-priori
not clear which facts would be useful to prove the assertion that occurs later
in the code. For some of the program abstractions described in this paper (in
Section 6), the underlying abstract lattices have infinite height. Hence, forward
analyses over those abstractions would not terminate unless widening techniques
are used, which would lead to imprecision. However (as surprising as it may be)
the backward analyses that we describe in Section 6 terminate over the same
abstractions since they only attempts to decide the validity of given assertions
(which are finite in number). Figure 4 presents one such example.

Connections between Program Analysis and Theorem Proving. This
paper contributes to the broader goal of transferring results from the theorem
proving community to the world of program analysis. We had earlier shown that
forward program analysis can be made more precise and efficient by a tighter
coupling with theorem proving technology [9]. In particular, we showed how to
use results from Nelson-Oppen combination of decision procedures to generate

14

a more powerful forward analysis by combination of different forward analyses.
This paper demonstrates that unification procedures are useful in improving the
efficiency of backward analysis. Unification algorithms have earlier been used in
type inferencing [10]. Type inferencing itself can be seen as an abstract inter-
preter [2]. The results of this paper can be seen as generalizing this basic use of
unification in type checking to program analysis over richer abstract domains.
Using backward analysis enhanced with unification, we showed here that the uni-
fication type of a theory determines the complexity of the assertion checking
problem for the corresponding abstraction.

8 Conclusion

Unification theory plays a significant role in assertion checking. The unifica-
tion type of a theory–unitary, bitary, or finitary–is critical in determining the
complexity of the assertion checking problem–PTIME, coNP-hard, or decidable–
modulo some minor assumptions on the theories and certain restrictions on the
program models. These results uniformly generalize several known results and
also yield several new ones (see Figure 2). We believe the connections between
theorem proving and program analysis developed in this paper can lead to sig-
nificant new research in both the communities and increase cross-fertilization.

References

1. F. Baader and W. Snyder. Unification theory. In Handbook of Automated Reason-

ing, volume I, chapter 8, pages 445–532. Elsevier Science, 2001.
2. P. Cousot. Types as abstract interpretations. In POPL, pages 316–331, 1997.
3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In 4th

Annual ACM Symposium on POPL, pages 234–252, 1977.
4. P. Cousot and R. Cousot. Refining model checking by abstract interpretation.

Automated Software Engineering, 6(1):69–95, 1999.
5. N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Com-

munications of the ACM, 22(8):465–476, 1979.
6. S. Gulwani and N. Jojic. Program verification as inference in belief networks.

Technical Report MSR-TR-2006-98, Microsoft Research, July 2006.
7. S. Gulwani and G. C. Necula. A polynomial-time algorithm for global value num-

bering. In Static Analysis Symposium, volume 3148 of LNCS, pages 212–227, 2004.
8. S. Gulwani and A. Tiwari. Assertion checking over combined abstraction of linear

arithmetic & uninterpreted functions. In ESOP, volume 3924 of LNCS, Mar. 2006.
9. S. Gulwani and A. Tiwari. Combining abstract interpreters. In PLDI, June 2006.

10. R. Hindley. The principal type-scheme of an object in combinatory logic. Trans.

Amer. Math. Soc., 146:29–60, 1969.
11. M. Karr. Affine relationships among variables of a program. In Acta Informatica,

pages 133–151. Springer, 1976.
12. M. Müller-Olm, O. Rüthing, and H. Seidl. Checking Herbrand equalities and

beyond. In VMCAI, volume 3385 of LNCS, pages 79–96. Springer, Jan. 2005.
13. M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In 31st International

Colloquium on Automata, Languages and Programming, pages 1016–1028, 2004.

15

A Proof of Lemma 1

First we prove an important property of substitutions and the complete set of
unifiers.

Lemma 3. Assuming Unif(
∧

i ei = e′i) is a finite disjunction, if T |=
∧

i eiσ =
e′iσ, then T |= Unif(

∧
i ei = e′i)σ.

Proof. Suppose T |=
∧

i eiσ = e′iσ. Let Unif(
∧

i ei = e′i) = σ1 ∨ · · · ∨ σk. Since
{σ1, . . . , σk} is a complete set of unifiers of

∧
i ei = e′i, it follows that there is

some j s.t. σj is more general than σ, that is, σ =T σjσ
′ for some σ′. We will

show that the formula represented by σj becomes T-valid when σ is applied to
it. For arbitrary x, consider x = xσj . We need to show that T |= xσ = xσjσ. In
the theory T, we have

xσ =T xσjσ
′ since σ =T σjσ

′

=T x(σjσj)σ
′ since substitutions are idempotent

=T xσj(σjσ
′) since function composition is associative

=T xσjσ since σ =T σjσ
′

This completes the proof of the lemma. �

We now prove Lemma 1.

Proof. We need to prove that Unif(e = e′) holds at π iff e = e′ holds at π. We
will show that in every run of the program, Unif(e = e′) holds at π iff e = e′

holds at π. Therefore, consider an arbitrary run of the program. This will be
given by some straight-line programs. Let σ be the substitution that maps each
program variable x to the symbolic value of x (in terms of the input variables of
the program) at program point π obtained by symbolic execution of the given
straight-line program.

We need to show that T |= e1σ = e2σ iff T |= Unif(e1 = e2)σ. The ⇐
direction is trivial since Unif(e1 = e2) implies e1 = e2 (in T). The ⇒ direction
is a consequence of Lemma 3. �

B Proof of Lemma 2

We first prove a useful lemma.

Lemma 4. Let φi be a conjunction of equalities for all i. If the formula φ1 ∨φ2

is valid in a convex theory T then either φ1 or φ2 is valid in T. In general, if the
formula

∨
i φi is valid in T then some φi is valid in T.

Proof. Suppose the claim is false. Let φ1 be
∧

i∈I1
φ1i and φ2 be

∧
i∈I2

φ2i, where
φ1i, φ2i are equalities. Since φ1 is not valid in T, there is a i ∈ I1 such that φ1i

is not valid in T. Similarly, there is a j ∈ I2 such that φ2j is not valid in T.
Therefore, by convexity, the formula φ1i ∨φ2j is not valid in T. This means that
the formula φ1 ∨ φ2 is not valid in T, which contradicts the assumption. The
second claim can be proved by generalizing the same argument. �

16

We are now ready to prove Lemma 2.

Proof. (Lemma 2) ⇒: We need to prove that
∨

i Unif(
∧

j eij = e′ij) holds at π.
In other words, we need to show the formula evaluates to true in every run of
the program. Therefore, consider an arbitrary run of the program. This will be
given by some straight-line code fragment. Let σ be the substitution that maps
each program variable x to the symbolic value of x (in terms of the program
inputs or the initial values of program variables) at program point π obtained
by symbolic execution of the given straight-line program. Let ek 6= e′k, k ∈ K, be
the symbolic evaluations of all the assume nodes in the straight-line code. Since∨

i

∧
j eij = e′ij holds at π, it follows that

T |=
∧

k∈K ek 6= e′k ⇒ (
∨

i

∧
j eijσ = e′ijσ)

IFF T |=
∨

k∈K ek = e′k ∨ (
∨

i

∧
j eijσ = e′ijσ)

IFF T |= ek = e′k for some k ∈ K, OR
T |=

∧
j eijσ = e′ijσ for some i ∈ I

The last step is a consequence of Lemma 4. If T |= ek = e′k, then
∨

i Unif(
∧

j eij =
e′ij) holds in this run, and we are done. In the other case, we have T |=

∧
j eijσ =

e′ijσ, from which it follows using Lemma 3 that T |= Unif(
∧

j eij = e′ij)σ.
⇐: This follows from the fact that T |= Unif(

∧
j eij = e′ij) ⇒

∧
j eij = e′ij ,

which is a consequence of the definition of unifiers. �

C Proof of Theorem 2

Consider the program shown in Figure 6. We will show that the assert statement
in the program is true iff the input boolean formula ψ is unsatisfiable. Note that,
for a given ψ, the procedures IsUnSatisfiable and Check can be reduced to
one procedure whose flowchart representation consists of only the nodes shown
in Figure 3. (These procedures use procedure calls and loops with guarded con-
ditionals only for expository purposes.) This can be done by unrolling the loops
and inlining procedure CheckT inside procedure IsUnSatisfiableT. The size of
the resulting procedure is polynomial in the size of the input boolean formula
ψ.

The procedure IsUnSatisfiable contains k non-deterministic conditionals,
which together choose a truth value assignment for the k boolean variables in
the input boolean formula ψ, and accordingly set its clauses to true (x1) or
false (x0). The boolean formula ψ is unsatisfiable iff at least one of its clauses re-
mains unsatisfied in every truth value assignment to its variables, or equivalently,
m∨

i=1

gi = x0 in all executions of the procedure IsUnSatisfiable.

The procedure Check(g1, . . . , gm, x0) performs the desired check as stated in
the following lemma. The key idea in the proof of Lemma 5 is to show that
the Check procedure constructs an equation whose complete set of unifiers is
m∨

i=1

x = αi. Lemma 5 is then an easy consequence of Lemma 1.

17

% Suppose formula ψ has k variables x1, . . . , xk and m clauses numbered 1 to m.
% Let variable xi occur in positive form in clauses # Ai[0], . . . , Ai[ci]; and in negative
form in clauses # Bi[0], . . . , Bi[di].

IsUnSatisfiableT(ψ)
% gi = x0 represents clause i is unsatisfied

% gi = x1 represents clause i is satisfied.

for i = 1 to m do

gi := x0;

for i = 1 to k do

if (*) then % set xi to true

for j = 0 to ci do

gAi[j] := x1;

else % set xi to false

for j = 0 to di do

gBi[j] := x1;

% Check if at least one of gi is unsatisfied.

CheckT(g1, . . . , gm, x0);

Fig. 6. A program that illustrates the coNP-hardness of assertion checking when the
expression language is from a bitary theory.

Lemma 5. The assert statement in Check(α1, . . . , αm, x) is true iff
m∨

i=1

x = αi

holds at the beginning of Check(α1, . . . , αm, x).

Proof. (Lemma 5) We prove by induction on j that Assert(ej = e′j) holds iff

Assert(
∨j+1

i=1
x = αi) holds. Using Lemma 1, it suffices to prove that, if tj and t′j

are the symbolic terms represented by ej and e′j, then Unif(tj = t′j) is
∨j+2

i=1
x =

αi. For j = 1, since Unif(e = e′) is y = z1 ∨ y = z2 by assumption, it follows
that Unif(e[x�y,

α1�z1 ,
α2�z2] = e′[x�y,

α1�z1 ,
α2�z2]) is x = α1 ∨ x = α2 (by

variable renaming).
For the induction step, using the same argument, we observe that

Unif(e[ej�y,
e′j�z1 ,

ej [αj+2/x]�z2] = e′[ej�y,
e′j�z1 ,

ej[αj+2/x]�z2])
⇔ Unif(ej = e′j) ∨ Unif(ej = ej [

αj+2�x]) (follows from def of bitary theory)
⇔ Unif(ej = e′j) ∨ x = αj+1 (follows from Lemma 6 stated below)

⇔ (
∨j+2

i=1
x = αi) (follows from Induction hypothesis) �

Lemma 6. Let T be a bitary theory and Let e = e′ be the corresponding equation.
If e1, . . . , em−1 denote the symbolic expressions constructed by program CheckT,
then Unif(ej = ej[α/x]) and Unif(e′j = e′j [α/x]) are both x = α.

18

Proof. We prove by induction on j. For the base case j = 1,

Unif(e1 = e1[α/x])
⇔ Unif(e[x/y, α1/z1, α2/z2] = e[x/y, α1/z1, α2/z2][α/x])

By definition
⇔ x = α ∧ α1 = α1

Using the technical side condition in definition of Bitary
⇔ x = α

The other case can be obtained by replacing e by e′ in the above proof. For the
induction step,

Unif(ej+1 = ej+1[α/x])
⇔ Unif(e[ej/y, e

′

j/z1, ej [αj+2/x]/z2] = e[ej/y, e
′

j/z1, ej [αj+2/x]/z2][α/x])
⇔ Unif(e[y′/y, z′1/z1, z

′

2/z2] = e[y′′/y, z′′1/z1, z
′

2/z2]∧
y′ = ej ∧ z

′

1 = e′j ∧ z
′

2 = ej[αj+2/x]∧
y′′ = ej[α/x] ∧ z

′′

1 = e′j[α/x])
By introducing new equational definitions

⇔ Unif(y′ = y′′ ∧ z′1 = z′′1 ∧ y′ = ej ∧ z
′

1 = e′j∧
z′2 = ej[αj+2/x] ∧ y

′′ = ej [α/x] ∧ z
′′

1 = e′j [α/x])
Using the technical side condition in definition of Bitary

⇔ Unif(ej = ej [α/x] ∧ e
′

j = e′j[α/x])
Removing the dummy variables introduced above

⇔ x = α
By induction hypothesis

The other case can be obtained by replacing e by e′ in the above proof. �

D Proof of Theorem 3

The correctness of the algorithm in Section 6 is an easy consequence of Lemma 2,
which shows that unification can be used to strengthen assertions without any
loss in soundness or precision. We now prove that the algorithm terminates in
a finite number of steps. It suffices to show that the weakest precondition com-
putation across a loop terminates in a finite number of iterations. This follows
from the following lemma.

Lemma 7. Let C be a chain ψ1, ψ2, . . . of formulas that are disjunctions of

substitutions. Let ψi =
mi∨
ℓ=1

ψℓ
i for some integer mi and substitutions ψℓ

i . Suppose

(a) ψi+1 =
mi∨
ℓ=1

ni∨
j=1

Unif(ψℓ
i ∧ α

j
i), for some substitutions αj

i .

(b) ψi 6⇒ ψi+1.

Then, C is finite.

19

Proof. The key idea behind the proof is to establish a well founded ordering

on ψi’s. We define measure of
mi∨
ℓ=1

ψℓ
i to be the multiset {k − |ψℓ

i | : 1 ≤ ℓ ≤

mi, ψ
ℓ
i 6≡ false}, where k is the total number of variables, and |ψℓ

i | denotes the
number of conjuncts in ψℓ

i . Since each ψℓ
i is a substitution mapping, this measure

is a multiset on natural numbers. We compare two measures using a multiset
extension of the ordering > on natural numbers [5].

We now show that the measure of ψi+1 is smaller than that of ψi. Since
ψi 6⇒ ψi+1, there exists 1 ≤ ℓ ≤ mi such that ψℓ

i 6⇒ αj
i for all 1 ≤ j ≤ ni. This

implies that for all 1 ≤ j ≤ ni, if ψℓ
i ∧α

j
i is not false, then |Unif(ψℓ

i ∧α
j
i)| > |ψℓ

i |.

Also, note that for all 1 ≤ ℓ′ ≤ mi such that ℓ′ 6= ℓ, if ψℓ′

i ∧ αj
i is not false, then

|Unif(ψℓ′

i ∧αj
i)| ≥ |ψℓ′

i | for all 1 ≤ j ≤ ni. Hence, the measure of ψi+1 is smaller
than that of ψi.

Since the multiset extension of a well-founded ordering is well-founded [5],
the measure cannot infinitely decrease. Hence, the chain C is finite. �

Lemma 7 implies termination of the assertion checking algorithm because of
the following. Note that the weakest preconditions ψ1, ψ2, . . . generated by our
algorithm at any given program point inside a loop in successive iterations satisfy
condition (a), and hence ψi+1 ⇒ ψi for all i. Lemma 7 implies that there exists
j such that ψj ⇒ ψj+1 and hence ψj ≡ ψj+1, at which point the fixed-point
computation across that loop terminates.

20

