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Abstract
Multi-perspective rendering has a variety of applications; examples include lens refraction, curved mirror re-
flection, caustics, as well depiction and visualization. However, multi-perspective rendering is not yet practical
on polygonal graphics hardware, which so far has utilized mostly single-perspective (pin-hole or orthographic)
projections.
In this paper, we present a methodology for real-time multi-perspective rendering on polygonal graphics hard-
ware. Our approach approximates a general multi-perspective projection surface (such as a curved mirror and
lens) via a piecewise-linear triangle mesh, upon which eachtriangle is a simple multi-perspective camera, pa-
rameterized by three rays at triangle vertices. We derive analytic formula showing that each triangle projection
can be implemented as a pair of vertex and fragment programs on programmable graphics hardware. We demon-
strate real-time performance of a variety of applications enabled by our technique, including reflection, refraction,
caustics, and visualization.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture:
Graphics Processors; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

Keywords: multi-perspective rendering, GPU techniques, graphics hardware, reflection, refraction, caustics, vi-
sualization

1. Introduction

A single-perspective image contains light rays passing
through a single viewpoint. A multi-perspective image, in
contrast, collects light rays across a multiple (and possibly
infinite) number of viewpoints. For example, in viewing re-
flections off a curved mirror, the set of rays converging at
a pin-hole camera is single-perspective, whereas the set of
rays reflected off the curved mirror usually do not intersect
at a single point and could only be modeled by a multi-
perspective projection. Even though the majority of real-
time rendering applications are based on single-perspective
projection (e.g. pin-hole cameras), multi-perspective pro-
jection describes a variety of common phenomena, such
as curved reflections [OR98, HSL01, YM05], refractions
[GS04, Wym05], non-pinhole cameras [KMH95, SGN01],
or caustics [WS03, PDC∗03, Wym06]. In addition, multi-
perspective images have important applications in depiction
and visualization [RB98, AZM00, SK03].

So far, the most natural and common rendering method
for multi-perspective projection is ray tracing. For exam-
ple, reflection can be simulated by bouncing rays off curved
mirror surfaces, and refraction can be achieved by bending
rays through curved lens. Unfortunately, mapping ray trac-
ing to graphics hardware is tricky, as it requires random ac-
cessibility with a database of scene triangles, which does
not fit well with a SIMD feed-forward graphics pipeline
[PBMH02, CHH02]. This problem is further exacerbated
with dynamic scenes [CHCH06], which, unfortunately, is
common for interactive applications such as gaming.

A variety of graphics hardware techniques have been pro-
posed to simulate multi-perspective rendering without ray
tracing. However, these techniques are often heuristics and
applicable to only individual phenomena; to our knowledge
there is no general framework for multi-perspective render-
ing on graphics hardware. For example, even though tech-
niques exist for supporting multiple center-of-projections in
VR applications [KKYK01, SSP04], they are limited to a
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Environment map Ray tracing Our technique (63 fps)

Figure 1: Curved reflection of nearby objects is a classic example of multi-perspective rendering. Our multi-perspective framework renders
more accurate reflection than a traditional environment map, which is single-perspective. In this example, we utilize 104 camera triangles to
approximate the mirror. Each camera triangle is 642/2 in size and the final rendering size is 800×600. All reported frame-rates are measured
on a NVIDIA Geforce-7800-GT chip.

few discrete single-perspective viewpoints and thereforeun-
suitable for continuously varying projections like general
curved reflections or refractions. These phenomena can be
simulated by representing scene objects as image sprites
[SKALP05, Wym05], but it remains unclear how to robustly
resolve the dis-occlusion problem, and how to perform vis-
ibility sorting of these multiple depth sprites efficientlyvia
hardware z-buffering.

So why is multi-perspective rendering difficult on polyg-
onal graphics hardware? For a general multi-perspective
model, each pixel can have a unique camera projection ma-
trix. This means that the proper vertex transformation is un-
known until the vertex is projected to a known pixel location;
a classic chicken-and-egg dilemma.

We resolve this difficulty by grouping and rendering co-
herent bundles of rays together, rather than by tracing in-
dividual rays. Our main idea is inspired by beam trac-
ing [HH84], in that a curved reflector/refractor is tessel-
lated into a coarse polygonal representation followed by
rendering rays bouncing off the same polygon together as
a coherent beam. However, beam tracing cannot be di-
rectly implemented on graphics hardware, as rays belong-
ing to the same beam might not intersect at the same
eye point, which is a necessary condition for a pin-hole
camera modeling. In our technique, we model each beam
of rays as a multi-perspective camera triangle, and render
these rays by passing down geometry as in a traditional
feed-forward graphics pipeline. Specifically, we render each
multi-perspective camera triangle in a separate rendering
pass, where the multi-perspective projection is achieved via
a pair of customized vertex and pixel programs. The final
multi-perspective rendering is then accomplished by stitch-
ing together result images rendered by individual camera tri-
angles.

A noteworthy feature of our technique is that the entire
rendering process is fully compatible with a feed-forward
pipeline, and no ray tracing scene database is used in par-

ticular. As a result, we can render dynamic scenes naturally
without the need for any pre-processing, such as building an
acceleration data structure or converting scene objects into
image sprites. The disadvantage of our technique is that it
is brute force, since we have to render each scene triangle
in each multi-perspective camera triangle in the worse case.
However, we will present acceleration techniques to amelio-
rate this performance problem. In addition, we believe our
technique would scale well with future generation graph-
ics chips due to its affinity with a feed-forward graphics
pipeline.

1.1. Overview of Our Methodology

Given a general curved projection surface of a multi-
perspective camera (such as a curved reflector), we first ap-
proximate it with a piecewise-linear triangle mesh. At each
mesh vertex we compute a ray direction, based on the orig-
inal camera model. Under this representation, each mesh
triangle can be considered a simple multi-perspective cam-
era, where the ray of each camera pixel is computed from
the three vertex ray. Due to the shared vertex directions, we
guarantee at leastC0 continuity of rays across adjacent tri-
angles.

We render individual multi-perspective cameras via the
ordinary feed-forward polygonal graphics pipeline, and then
map this piecewise-linear rendering result back onto the
original multi-perspective surface via standard texture map-
ping. Specifically, we collect texture maps corresponding to
individual camera triangles into a joint texture atlas. Even
though this approach is only approximate, it provides visu-
ally satisfactory results and eliminates the problem of per-
pixel projection matrix.

We demonstrate that correct multi-perspective projection
of each camera triangle can be computed via a pair of vertex
and fragment programs on programmable graphics hardware
[LKM01]. Since a straight line in space can be projected
into a curve in a multi-perspective camera, for correct ras-
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terization of a scene triangle, we customize both vertex and
fragment programs. In our vertex program, we compute the
vertices of the bounding triangle for the projected triangle,
defining the proper region for rasterization. In our fragment
program, we render the projected triangle out of the bound-
ing triangle by calculating the 3D intersection point between
the rasterized triangle and the ray emanating from the cur-
rent pixel, and from this intersection we interpolate the pixel
attributes (depth, color, and texture coordinates) for correct
multi-perspective effects.

1.2. Our Contribution

The key contribution of our approach is the idea of cast-
ing this difficult multi-perspective rendering problem into
an algorithm suitable for feed-forward graphics pipeline.To
our knowledge, this approach has not been published before.
We provide implementations for rendering multi-perspective
images via special shader programs on graphics hardware.
We demonstrate a variety of applications enabled by our
technology, including reflection, refraction, caustics, and vi-
sualization.

2. Our Approach

As described in [Gla00], any continuous multi-perspective
projection can be parameterized by two curved surfaces; one
for lens and the other for imaging. This parameterization
is general enough to model a variety of multi-perspective
phenomenon such as real camera lens and curved reflectors,
most of which have continuous variations in the projection
directions. This continuous requirement also avoids the dif-
ficulty of depth compositing multiple single-perspective im-
ages [AZM00]. Because of these advantages, we adopt this
continuous representation for multi-perspective projection.
Our goal now is to approximate this projection on graphics
hardware.

One naive method is to pre-compute the projection points
on the imaging surface for a dense sample of 3D locations,
and store the result within a texture map. This technique is
general enough to handle many situations (as long as each
3D point has a unique projection), but suffers from the usual
sampling and texture storage problems.

In our approach, we analytically compute the projec-
tion without sampling or extra texture storage. Given a
multi-perspective projection surface, we approximate it via
a piecewise-linear triangle mesh, as shown in Figure 2. At
each vertex of the piecewise-linear mesh, we specify a ray
based on the property of the original input. (Note that this
is equivalent to the representation in [Gla00].) For example,
in simulating a multi-perspective camera, the ray directions
are determined by bending the eye rays through the camera;
while in rendering reflection, we specify normals as the ray
directions and compute the true reflection directions by re-

flecting the eye position around the interpolated normals at
each pixel.

2D 3D

Figure 2: Illustration for piecewise-linear approximation (shown
in black) of a curve projection surface (shown in gray). In 2D,
each triangle (line segment) is a pin-hole camera with center-of-
projection at the intersection of the two vertex directions. However,
in 3D, each triangle is a multi-perspective camera because the three
vertex rays might not intersect at the same point.

For GPU rendering, we treat each triangle on the simpli-
fied mesh as a simple multi-perspective camera. To render
the multi-perspective projection of the entire mesh, we first
render the sub-images at each camera triangle and store the
results into a joint texture map. From this joint texture map,
we render the original projection surface in a subsequent ren-
dering pass via standard texture mapping. The correspon-
dence between the original surface and the joint texture map
is computed in a pre-process and depends on the particular
application at hand.

The projection of each triangle camera is determined by
the projections directions at the three triangle vertices.In
general, this may not be a pinhole or orthographic camera
since the three rays might not intersect at the same point. Our
goal is to find a parameterization for the rays at each cam-
era pixel so that (1) the parameterization interpolates exactly
at the three camera vertex directions and (2) the parameteri-
zation isC0 continuous across the edges shared by adjacent
camera triangles. Even though alternative techniques exist
for parameterizing non-pinhole cameras [YM05, MPS05],
neither preserves projection continuity across adjacent cam-
eras in general situations. GLC guaranteesC0 continuity
only if the adjacent cameras are co-planar or if the cam-
eras are infinitely small [Yu05], while [MPS05] utilizes ra-
dial distortions for extending object silhouettes so thereis no
C0 continuity even if two adjacent cameras are co-planar.

To satisfy these continuity requirements, we propose the
use of barycentric interpolation, as illustrated in Figure3.
Given a camera triangle△v1v2v3 with normalized raysd̄1,
d̄2, and d̄3, we define the rayd̄ at an arbitrary pixel ¯p via
standard barycentric coordinates:

d̄ = w1d̄1 +w2d̄2 +w3d̄3

wi =
area(△pvj vk)

area(△v1v2v3) i, j,k=1,2,3,i 6= j 6=k
(1)

Obviously, barycentric interpolation would return exact val-
ues ofd̄1, d̄2, andd̄3 at the camera triangle vertices, and the
computation isC0 continuous across adjacent triangles, so
both requirements listed above are satisfied.
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Figure 3: Multi-perspective camera parameterization. The camera
triangle is parameterized by three rays at the triangle vertices. Given
an arbitrary pixel ¯p, its ray d̄ can be found via barycentric interpo-
lation from d̄1, d̄2, andd̄3.

Given this parameterization, we can compute the projec-
tion p̄ of a space point ¯q or vice versa (Figure 4). The com-
putation ofq̄ from p̄ can be efficiently performed by inter-
secting the rayd̄ from p̄ with scene triangles. The computa-
tion of p̄ from q̄ involves solving a quartic equation, as de-
tailed in Apppendix A. Even though quartic equations can be
solved algebraically, they are still too complex for efficient
GPU implementation; fortunately, we do not need to explic-
itly perform this operation, since we only need to compute ¯q
from p̄.
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Figure 4: Projection of a scene triangle△q1q2q3. Left: In general
situations, the projection△p1p2p3 of △q1q2q3 is curvilinear under
our multi-perspective camera. Right: Depending on the ray direc-
tions at the camera triangle (shown in white) vertices, the projected
triangle (shown in color) can have various shapes.

Figure 4 demonstrates the projection△p1p2p3 from a
scene triangle△q1q2q3, following Equation 1. In gen-
eral, △p1p2p3 can have curved edges due to our multi-
perspective projection (Figure 4 top right); two curved edges
may intersect each other (Figure 4 middle right); and a
space point might have multiple projections (Figure 4 bot-
tom right). Obviously, these effects cannot be achieved in
a fixed-function graphics pipeline because a fixed-function
rasterization can only produce straight projected lines from
straight space lines.

To resolve this issue, we utilize programmable features

of current GPUs, and customize both vertex and fragment
programs to render the curvilinear multi-perspective projec-
tion effects. Due to the independent processing of triangles
in a feed-forward graphics pipeline, we only discuss how to
properly render a scene triangle△q1q2q3; the same opera-
tion would be applied for every other triangles. In our vertex
program, we estimate the bounding triangle△b1b2b3 for the
(unknown) projected triangle△p1p2p3, defining the proper
region for rasterization. In our fragment program, we render
△p1p2p3 out of△b1b2b3 by calculating the 3D intersection
point q̄ between scene triangle△q1q2q3 and the rayd̄ ema-
nating from the current pixel ¯p, and from this intersection we
interpolate the pixel attributes (depth, color, and texture co-
ordinates) for correct multi-perspective effects. The details
are described below.

2.1. Vertex Program: Compute Bounding Triangle
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Figure 5: The bounding triangle△b1b2b3 for a projected triangle
△p1p2p3. Line Li is orthogonal to camera vertex direction̄di , and
pi j indicates the projection of scene triangle vertex ¯qi with respect
to d̄j .

In our vertex program, we compute, for each space vertex
of the rasterized scene triangle△q1q2q3, the corresponding
vertex on the bounding triangle△b1b2b3 so that it wholly
contains the projection△p1p2p3 (Figure 5). Even though
a variety of techniques exist for calculating bounding trian-
gles, we have to choose an algorithm that is suitable for effi-
cient vertex program implementation; a complex algorithm
that yields tight bounding region might be less favorable due
to its complexity. In addition, the bounding algorithm must
be robust enough to handle a variety of situations as depicted
in Figure 4. To satisfy these goals, we propose the following
bounding triangle computation.

For each scene triangle vertex{qi}i=1,2,3, we compute
corresponding projections{pi j }i, j=1,2,3 wherepi j is the pro-
jection ofqi in the direction ofd j (see Figure 5 for illustra-
tion). Obviously,△p1p2p3 is wholly contained within the
convex hull formed by{pi j } since the projection̄d of eachp̄
inside△p1p2p3 is computed from barycentric interpolation
of {di}i=1,2,3 (Equation 1). So now if we could find a bound-
ing triangle△b1b2b3 that contains all the nine points{pi j },
then we can guarantee that△b1b2b3 contains△p1p2p3.
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Since we do not know the exact shape of△p1p2p3 (it can
have odd shapes as shown in Figure 4 and even the compu-
tation of {pi}i=1,2,3 involves solving quartic equation), we
simply enforce the edges of△b1b2b3 to be parallel to the
lines {Li}i=1,2,3 where eachLi is orthogonal tod̄i and lies
on the camera plane. (In singularity situations of{d̄i} such
as one of them being orthogonal to the camera plane or two
of them as parallel, we simply pick{Li} to be the edges of
the camera triangle.) To compute edgebib j , all we need to do
is to find the point among{pi j }i, j=1,2,3 that is outmost from
Lk,k6=i 6= j (in terms of the signed edge equation). For example,
in Figure 5,p13 determinesb1b2 becausep13 is closet toL3
among{pi j }i, j=1,2,3. Even though this algorithm does not
provide the most tight bounding, it works reasonably well;
when{di} is coherent and△q1q2q3 is not far away from the
camera plane, the bounding region is usually pretty tight.

The above computation for△b1b2b3 can be efficiently
implemented in our vertex program. As a pre-process, we
compute the line equation for each{Lk}k=1,2,3 and store
the results as program constants. Inside our vertex program,
we computebi from q̄i as the intersection of the two lines
{bib j} j=1,2,3, j 6=i . Eachbib j can be determined by figuring
out which {pik}i=1,2,3 evaluates maximum value with the
line equationLk,k6=i 6= j . In total, this requires only six line
equation evaluations and a single line-line intersection com-
putation inside our vertex program.

We pass down this bounding triangle△b1b2b3 to the rest
of the graphics pipeline for rasterization and fragment com-
putation. For each computed vertices[b̄i ]i=1,2,3, we attach
information of all three of the original vertex[q̄i ]i=1,2,3 (via
unused texture coordinate slots) so that the fragment pro-
gram can perform correct interpolation and projection.

2.2. Fragment Program: Space Point for Pixel

In our fragment program, we determine, for each pixel ¯p,
the corresponding 3D point ¯q on△q1q2q3 so that ¯q projects
onto p̄. This q̄ can be efficiently computed via ray-triangle
intersection between the raȳd at p̄ and the plane containing
△q1q2q3 [CHH02]. From the barycentric coordinates of ¯q
on △q1q2q3, we interpolate depth, color, and texture coor-
dinates from the corresponding values stored on[q̄i ]i=1,2,3. If
the intersection point ¯q is outside△q1q2q3, we simply throw
away the pixel (via fragment kill) without further computa-
tion since it is not part of the projected triangle△p1p2p3. In
some sense, we use our fragment program to carve out the
curved boundary of△p1p2p3. Note that this effect cannot
be achieved via [LB05] because it operates in texture space
and therefore cannot handle triangle boundaries.

2.3. Scene Construction

Here, we describe further details on how we construct
the camera triangles and the joint texture maps. From a

curved reflector/refractor surface, we perform mesh sim-
plification via progressive meshes [Hop96], and select a
simplified mesh with proper number of triangles as our
multi-perspective camera mesh to meet the target qual-
ity/performance goals. We then establish the correspondence
between the original surface and the coarse camera mesh via
normal shooting as described in [SGG∗00]; this essentially
determines the texture coordinates parameterizing the orig-
inal surface over the coarse camera mesh. For each camera
mesh triangle, we allocate a uniform-size right angle trian-
gle in the joint texture atlas (similar to [SGG∗00]). Because
of this, the texture packing is trivial without wasted texture
space as in a general atlas.

Our current tessellation and packing process is static; we
leave dynamic parameterization as a potential future work.

2.4. Limitations and Discussion

The major disadvantages of our approach are (1) the ren-
dering every triangle in each camera, and (2) the over-
estimation of bounding triangle size. Further disadvantages
include our inability of taking advantage of early z-cull
since our fragment program computes per-pixel depth val-
ues based on ray-triangle intersection. Below, we discuss our
strategies to address these performance issues.

Object Culling One possible acceleration to reduce our ver-
tex workload is to pre-compute bounding boxes for scene
objects, and for each camera, only to render those objects
which fall within the camera viewing frustum. This can be
achieved either in object space on CPU, or via the occlusion
query feature on NVIDIA graphics cards. (However, care
must be taken with occlusion query because it may incur
pipeline flush depending on the particular graphics card.)

Bounding Triangle Culling Even though in theory every
triangle needs to be rasterized by every camera, in reality,
it often happens that each camera only sees a subset of the
triangles, even for objects surviving the culling. In our ap-
proach, we can further cull away triangles whose bounding
region is outside the camera as follows. We associate a clip-
ping region with each camera triangle and use the hardware
viewport clipping to clip away bounding triangles that are to-
tally outside the clipping region. Note that even though our
multi-perspective camera could in theory have non-planar
side-polygons on the clipping frustum, our clipping can be
simply performed by considering the bounding triangle on
the camera plane, since our vertex program always trans-
forms vertices onto the camera plane and we compute the
true 3D position by ray-triangle intersection in the fragment
program. If we were to perform culling in the 3D viewing
frustum, the problem would be much more complicated; for-
tunately, we do not have to.
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Camera Tessellation LevelTo achieve optimal perfor-
mance, we have to balance the workload between vertex and
fragment stages. This can be achieved by proper tessellation
of our multi-perspective projection surface to yield the opti-
mal camera triangle sizes; the more and smaller the camera
triangles, the more vertex work (because every scene ver-
tex needs to be transformed in every camera triangle with-
out other acceleration) but less fragment work (because the
overdraw ratio between bounding triangles and projected tri-
angles are smaller due to increased coherence between the
rays at camera triangle vertices). The ideal level of subdivi-
sion depends on the specific scene and graphics hardware,
and can be determined empirically. (See Table 1 and Fig-
ure 6 for an example.) Note that since we do not perform any
context switch (i.e. pipeline flush) between camera triangles,
there is no stall penalty associated with using multiple cam-
era triangles.

We have performed a performance profiling of our algo-
rithm with a particular scene as demonstrated in Figure 7.

We discuss further disadvantages of our method when
compared with other techniques in specific application do-
mains (Section 3).

3. Applications

Our core algorithm described above enables a variety of real-
time applications on graphics hardware. Below, we present
a subset of the potential applications and describe their im-
plementation details. Even though techniques exist for mod-
eling each of the following individual applications, these
techniques are often heuristics and there is a lack of gen-
eral framework for multi-perspective rendering on graphics
hardware. For each application, we compare our technique
with previous work, discussing relative pros and cons.

We summarize our application scene statistics in Table 1
for easy reference.

3.1. Curved Reflection of Nearby Geometry

Reflection off curved mirrors is a classic example of multi-
perspective projection [YM05]. However, it remains a daunt-
ing task to render curved reflection of nearby geometry
for dynamic scenes in real-time. Previous work either as-
sumes distant objects as in the classical environment maps
[BN76], planar reflectors [DB97], static scenes [YYM05],
or relies on heavy pre-computation [HSL01]. [SKALP05]
renders near reflection by approximating scene objects as
depth imposters; because these imposters are rendered from
a single perspective, disocclusion artifacts may appear ifthe
imposters are reused from a different viewpoint [MPS05].
[OR98] is one of the few methods that satisfy the above re-
quirements, but since its image quality depends on fine tes-
sellation of scene geometry, this computation requirement
may prevent real-time performance.

Ray tracing 26

26×4 26×4×4

Figure 6: Quality comparison with different amount of camera tes-
sellation. The reference ray tracing image is shown on top left, with
the rest of the images show our results with different numberof
tessellation camera triangles. As shown, the quality improves with
increasing number of tessellations, but beyond a certain limit the
payoff levels off.

Our technique supports curved local reflection by tessel-
lating the reflector surface into piecewise-linear camera tri-
angles, as illustrated in Figure 2. We pre-compute the corre-
spondence between the original reflector and its piece-wise
linear approximation. During rendering, the individual cam-
era triangles are first rendered as described in Section 2 with
following minor difference; instead of assigning projection
rays at vertices and perform barycentric interpolation for
pixels, we instead assign surface normals at vertices, per-
form interpolation in rasterizer, and from interpolated nor-
mals and eye point we compute the reflection rays per frag-
ment. This would yield a more accurate reflection compu-
tation than direct interpolation as pointed out by [YM05].
We then texture map the original reflector by the rendered
camera triangles via the pre-computed correspondence.

Figure 1 compares our technique with environment map-
ping and ray tracing. As shown, our technique provides more
accurate rendering of near-object reflections than environ-
ment maps while operating in real-time.

Compared to [OR98], the disadvantage of our approach
is that we require a separate rendering pass for each cam-
era while [OR98] needs only one pass. The advantage of our
approach is that we do not need to subdivide the scene ge-
ometry. In addition, since we do not need to build virtual ver-
tices as in [OR98], our technique naturally handles convex,
concave, and mixed-convexity reflectors (as demonstrated in
Figure 1).

Figure 7 illustrates a more complex scene with a shiny
teapot reflecting many dynamic objects. Due to the mas-
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# bounding△ # rendered overdraw camera texture frame rate
Scene # scene△ # camera△

fragments fragments ratio resolution (fps)

reflection 108 26 2002513 62860 32 1282/2 51
108 26×4 920156 62734 15 642/2 63
108 26×42 783566 62823 12 322/2 5

refraction 252 12 2475722 106349 23 1282/2 46
caustics 2 400 945962 475852 2 642/2 35

visualization 6841 400 213248 213248 1 642/2 46

Table 1: Demo scene statistics. In the reflection demo, we demonstrate the performance effect of three different camera tessellation levels,

with quality comparison shown in Figure 6. See our discussion in Section 2.4. Overdraw ratio =# bounding△ fragments
# rendered fragments.

# scene△ # camera△
no acc
(fps)

acc
(fps)

800 100 4.5 20.1
1200 100 3.6 14.6
1600 100 2.1 9.2
400 256 1.5 6
800 256 0.5 2.1
1200 256 0.35 1.8
400 512 0.8 2.5
800 512 0.3 1.0

Figure 7: Performance profiling of our algorithm. In this scene, we
reflect multiple independent and dynamic objects off a shinyteapot.
By controlling the number of camera and scene triangles we can eas-
ily profile the performance of our algorithm (reported in fps), with
and without our acceleration discussed in Section 2.4. Notice in gen-
eral the performance does not scale linearly with respect tothe # of
camera△ due to load balance between vertex and fragment stages;
see our discussion on “Camera Tessellation Level” in Section 2.4.

sive number of independent objects, this scene is difficult to
render efficiently and robustly via sample-based techniques
[SKALP05, Wym05]. Our technique can easily handle this
due to its feed-forward geometry natural.

3.2. Curved Refraction of Nearby Geometry

eye point

lens approximation camera triangle

eye point

lens approximation camera triangle

(b) double refraction

lens lens

(a) single refraction

Figure 8: Curved refraction by multi-perspective projection. (a)
Our technique can be applied directly for single refraction. (b) In
multiple refraction, the multiple-bending of vertex ray directions is
beyond the basic parameterization of our multi-perspective camera.

Refraction through a single curved interface is another
classic example of multi-perspective projection. There exists
a variety of techniques for simulating refraction on GPUs.
[GS04, DB97] simulates multiple refractions of planar inter-
faces. [Sou05] renders refractions through mostly planar sur-
faces with small bumps such as water waves by perturbing
texture coordinates. These techniques all achieve real-time
performance, but could not be applied for curved refractors.
[Wym05] renders curved refractors by storing as depth im-
ages the backface of the refractor as well nearby scene ob-
jects. The technique can handle two-sided refractions, butis
approximate in nature and suffers from sampling and alias-
ing artifacts since it is image-based.

Our technique can be naturally applied for rendering sin-
gle curved refraction by approximating the refraction inter-
face via a piece-wise linear camera surface, as shown in Fig-
ure 8 (a). In fact, our algorithm for rendering single refrac-
tions is quite similar to our reflection algorithm; the major
difference lies in the computation of rays at camera triangle
vertices. Figure 9 demonstrates curved refractions rendered
by our technique.

A disadvantage of our approach is that our multi-
perspective camera cannot directly handle multiple refrac-
tions. As illustrated in Figure 8 (b), multiple refractions

c© The Eurographics Association 2006.



Xianyou Hou, Li-Yi Wei, Heung-Yeung Shum, and Baining Guo / Real-time Multi-perspective Rendering on Graphics Hardware

Ray tracing Our technique (46 fps)

Figure 9: Near-object refraction through curved interface. We uti-
lize 12 camera triangles to approximate the refractor. Eachcamera
triangle is 1282/2 in size and the final rendering size is 800×600.

would bend the rays so that the camera vertex projections
are no longer straight lines, and this is beyond the basic pa-
rameterization of multi-perspective cameras. We leave it as a
future work to extend our technique for multiple refractions.
Compared to [Wym05], the advantage of our approach is that
we allow hardware depth sorting of all refracted geometry
without conversion to any image-based representation. As
a consequence we project the scene geometry with greater
accuracy and we do not suffer from geometry sampling or
aliasing artifacts.

3.3. Caustics

caustic receiver

light source

reflector photon location map

a

A

Figure 10: Rendering caustics via our technique. In the first pass,
we render a multi-perspective image from the light source’spoint
of view, and store the result in the photon-location map. In the sec-
ond pass, we render a normal image from the eye’s point of view,
splatting pixels from the photon-location map for adding caustics.

Caustics occur when light is focused by curved reflec-
tion or refraction. Our technique can be directly extended
for rendering caustics via a standard two-pass process as
demonstrated in previous work [Wym06, PDC∗03, WS03].
As illustrated in Figure 10, in the first pass, we render multi-
perspective reflection or refraction of scene geometry into
the light source’s point of view, via our techniques as de-
scribed earlier. The result is stored in a photon location map,
recording the information about the surface point reached
by the light, such as position and depth. In the second pass,
we approximate caustics intensity as the relative solid an-
gle (seen from light source’s point of view) of the photon-

location map triangle and caustic triangle (i.e.angle(△a)
angle(△A)

in

Ray tracing Our technique (35 fps)

Figure 11: Rendering caustics by our technique. We utilize 400
camera triangles to approximate the reflector. Each camera triangle
is 642/2 in size. The photon-location map size is 512×512 and the
final rendering size is 640×480. The frame-rate is lower than other
applications because more than 50% of the frame time is spenton
photon splatting.

Figure 10) as described in [Wym06]. We render the final im-
age from the eye’s point of view and add caustics by splat-
ting pixels from the photon-location map. Figure 11 demon-
strates caustics effects rendered by our technique.

3.4. Multi-perspective Visualization

In addition to physical phenomenon such as reflection, re-
fraction, or caustics, multi-perspective rendering couldalso
be applied for visualization. As demonstrated in previous
work [AZM00, SK03, YM04], multi-perspective rendering
could unveil more information on a single image than tradi-
tional single-perspective rendering. However, most previous
methods rely on image capturing or offline ray tracing for
multi-perspective rendering, and this greatly diminishesits
applicability in real-time applications.

Our technique can be directly applied for real-time multi-
perspective visualization by constructing a (potentiallydy-
namically varying) multi-perspective camera, approximated
by our piecewise-linear surface. An example rendering ef-
fect achieved by our technique is demonstrated in Figure 12.

4. Concluding Remarks

Since its inception, programmable graphics hardware has
been applied to a variety of applications beyond what was
originally intended for real-time polygon rendering. So far,
the majority of these extensions focus on the pixel-shading
effects; the geometry transformation remains relatively un-
explored except for a few applications such as vertex skin-
ning or displacement.

In this paper, we have demonstrated that the vertex and
fragment programs can be customized for multi-perspective
rendering, allowing real-time applications to break from
the barrier of the traditional pin-hole camera model. Even
though the speed of our implementation might not be as
fast as say, OpenRT [DWBS03] on CPUs, we believe our
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Figure 12: Multi-perspective visualization by our technique. In
this example, we utilize 400 camera triangles surrounding awalker.

approach will favor better with the performance improve-
ment in future feed-forward graphics hardware. Further-
more, OpenRT and other ray tracing techniques are often
limited to static scenes (or with limited animation) whereas
our technique naturally handles dynamic scenes with unre-
stricted motions. We hope the publication of our work can
inspire future research for real-time applications of multi-
perspective rendering, as well a deeper exploration of the
potential of programmable graphics hardware.

One major limitation of our current implementation is the
over-estimation of bounding triangle region; as shown in Ta-
ble 1, the ratio of rasterized bounding triangle fragments to
the rendered fragments can be high, depending on the partic-
ular scene characteristics. Even though we perform fragment
kill for all fragments that do not lie inside the triangles, there
is still significant computation wasted. This problem can be
addressed by either finding a better bounding triangle esti-
mation algorithm on our current barycentric parameteriza-
tion, or by devising a fundamentally new multi-perspective
camera parameterization that allows for tighter bounding
triangle estimation than our current barycentric technique.
Specifically, even though [YM05] does not provide the nec-
essaryC0 continuity we require, we have found their GLC
parameterization much more elegant for mathematical anal-
ysis, and in particular for computing a tighter bounding tri-
angle. We envision extending GLC forC0 or higher con-
tinuity across non-planar tiling would be both theoretically
interesting and practically important.

Another potential future work is to extend our tech-
nique for multi-bounce reflections and refractions via proper

multi-pass rendering. Finally, since most current multi-
perspective visualizations are based on single static images
[RB98, SK03], an interesting future direction is to ask what
kind of new experience could be achieved if the user could
freely navigate within a virtual environment in real-time un-
der a multi-perspective camera?
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Appendix A: Projection Computation

Figure 3 illustrates a triangle under general linear projection.
For triangle vertices ¯v1, v̄2, and ¯v3, projection directions are
specified as unit vectors in̄d1, d̄2, and d̄3. Now given an
arbitrary point ¯q in space, our goal is to find its projection
p̄ on the△v1v2v3 plane, so that ¯q− p̄ is interpolated from
d1d2d3 via the same barycentric coordinates ofp.

Specifically, we need to solve the following system of
equations

p̄ = w1v̄1 +w2v̄2 +w3v̄3

q̄− p̄ = c
(

w1d̄1 +w2d̄2 +w3d̄3
)

1 = w1 +w2 +w3 (2)

where the unknowns include ¯p, the barycentric coordinates
w1,w2,w3 and the scaling constantc.

Adding the first two lines of the above equation, we obtain

q̄ = w1
(

v̄1 +cd̄1
)

+w2
(

v̄2 +cd̄2
)

+ (1−w1−w2)
(

v̄3 +cd̄3
)

(3)

Since we have three unknownsw1,w2,c and three equa-
tions (q̄ is a three-vector), Equation 3 can be solved under
general conditions. Specifically, the equation can be reduced
to a quartic polynomial ofw1 and solved exactly [HE95].

4

∑
i=0

ciw
i
1 = 1 (4)

Since Equation 4 has four roots, we find the true solu-
tion by eliminating non-real roots and those solutions that
are outside the camera triangle. But in general, it is possi-
ble for a space point ¯q to project onto multiple positions; an
example is shown in Figure 4.
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