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Abstract

Using coarse meshes with textures and/or normal maps tesept detailed meshes often results in poor visual
quality along silhouettes. To tackle this problem, we idtree silhouette texture, a new data structure for captur-
ing and reconstructing the silhouettes of detailed medhesddition to the recording of color and normal fields in
traditional methods, we sample information that represehe original silhouettes and pack it into a three dimen-
sional texture. In the rendering stage, our algorithm egtsarelevant information from the texture to rebuild the
silhouettes for any perspective view. Unlike previous wouk approach is based on GPU and could achieve high
rendering performance. Moreover, both exterior and irdesilhouettes are processed for better approximation
quality. In addition to rendering acceleration, our algthim also enables detailed silhouette visualization with
minimum geometric complexity.

Categories and Subject Descriptgiscording to ACM CCS) 1.3.1 [Computer Graphics]: Hardware Architecture:
Graphics Processors; 1.3.7 [Computer Graphics]: Threaebsional Graphics and Realism: Texture;

Keywords: silhouette, visibility, occlusion culling, graphics harare, real-time rendering, image-based rendering

1. Introduction

Silhouette is arguably one of the most important visual cues
for conveying object shapes. However, rendering silhesett
accurately can be expensive, especially for complex geomet
ric models such as scanned sculptures [L8@] or synthetic
gaming assets [UT04]. As a result, many interactive applica
tions today such as games still utilize crude polygonal rep-
resentation of objects (e.g. see screen shotafd of War-
craft or Grand Theft Auth resulting in jagged edges around
silhouettes. This phenomenon is quite prevalent, evemgive
the computation power of today’s commodity graphics hard-
ware, capable of rendering models with pixel-sized triaag|

in real time [LHO4].

We present a technique to render complex polygonal mod-
els with accurate silhouettes with a fraction of cost for-ren
dering the original models. Our core idea is a new data struc-
ture for capturing and later reconstructing the silhowette
of detailed meshes, callegllhouette textureln addition to
color and normal fields, our silhouette texture incorp@ate
information that represents the silhouettes of the origina
mesh as a specigisibility function defined over every point
on a coarse outer hull around the original mesh. In the ren-
dering stage, we extract this visibility information fromro
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silhouette textures to rebuild the original silhouettecade
ing to desired viewing parameters.

Our technique is inspired by silhouette clipping
[SGG00], but we utilize a completely different data
structure to allow a GPU-friendly implementation. In
particular, our visibility function representation is sian
to the one in horizon mapping [Max88, SC00], but instead
of self-shadowing, we re-create and apply the basic idea in
a novel way for storing visibility information. In addition
our technique handles interior silhouettes which is not
considered in [SGA0].

An immediate application of our algorithm is fast ren-
dering of complex polygonal models, while preserving vi-
sual faithfulness of both silhouettes and interior shadiing
speed improvement of our algorithm comes from the follow-
ing simple observation. Most commodity GPUs today have
higher pixel than vertex processing power (with a perfor-
mance ratio about 10). The major reason behind this ratio
is that commercial GPUs are targeted for games and bench-
marks, which usually have 10:1 ratios for rendered scene
pixels to vertices. Unfortunately, this ratio is sub-opirfor
high-resolution polygonal meshes which usually have more
rendered vertices than pixels. Our approach bridges tipis ga
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% \e |
outer hull + normal map
1000 vertices

original mesh
40002 vertices 308 fps

our result
1000 vertices 725 fps

Figure 1: Silhouette texture rendering. Our silhouette textureifigantly speeds up rendering speed while faithfully repiclboth interior
and exterior silouettes. All frame-rates reported in tlzipgr are measured on a NVIDIA Geforce-7800-GT chip with evpi@t size 51 512.

by reducing the number of rendered vertices at the expensef(p) - V(p) is a positive local minimum instead of being

of more complex pixel shading, resulting in a more balanced
work load between vertex and pixel processing units.

In addition, our explicit knowledge of both interior and
exterior silhouettes enables additional applicationshsas
silhouette-based visualizations. The major advantageiof o
approach over previous visualization methods is that we are
able to draw high quality silhouettes from a coarse hull, in-
stead of requiring a detailed input mesh.

The contributions of this paper include:

Reconstructing high quality, smooth silhouettes from a
silhouette texture for any perspective view, incorpoigtin
both interior and exterior silhouettes.

Compression from original 4D silhouette information into
3D via a novel single-lobe observation, with the addi-
tional benefit of allowing native hardware filtering and
anti-aliasing.

The performance tuning ability of our silhouette texture
for load balancing between vertex and fragment units,
with high performance achieved via a GPU-based per-
pixel shading algorithm.

Additional silhouette-based applications enabled by our
technique, such as contour visualization.

2. Previous Work

Silhouettes for perception and visualizationSilhouettes
have long been recognized as one of the most important
visual cues for shape perception [Koe84]. Mathematically,
silhouettes are point§p | Ai(p) - V(p) = 0} on a 3D object
whereri(p) is the normal and/(p) the vector fromp to the
eye point. [DFRS03] recommended using suggestive con-
tours for shape illustration, incorporating poidts} where

zero. This concept is further accelerated for real-time ren
dering on graphics hardware [DFR04]. Our technique dif-
fers fundamentally from [DFRS03, DFR04] in that these
techniques, along with the majority of visualization work
[HZ00, Dur02], concentrate mainly on illustration quality
rather than rendering speed; in particular, they mostly rel
on detailed original geometry whereas our technique esliz

a much simplified geometric representation.

Rendering acceleration via model simplification Due

to the advance of authoring and scanning technology
[LPC*00], large and detailed geometric meshes have becom-
ing common, requiring proper LOD techniques for maintain-
ing performance and anti-aliasing [LWQ2]. In particular,
rendering large meshes on CPU require sophisticated mem-
ory management [RL0OO, CMRSO03], and the problem is more
challenging for GPU with even less storage. To make this
problem tractable, we have to concentrate on preserving the
most important visual cues; due to the importance of silhou-
ettes, a coarse visual hull approximating the original ctbje
plus the necessary silhouette/visibility informationi®eagh

to obtain faithful rendering reproduction, as demonsttate
[SGG 00, MPN'02]. [SHSGO01] further attests the feasibil-
ity of such approach via anti-aliasing silhouette edges.

[DDSDO03] utilizes billboards for extreme model simpli-
fication. The technique is able to preserve silhouettes only
for geometry well-aligned with billboard planes; in corstr,a
our technique preserves silhouettes uniformly over thigeent
model similar to [SGGO00].

Texture-based representation of geometry detailsVe are
certainly not the first to propose the idea of trading geomet-
ric complexity with extra texture storage + shader compu-
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tation on GPU, as this has been explored in various forms
including VDM [WWT*03], GDM [WTL*04], and relief
mapping [POCO05]. However, to render accurate silhouettes,
these techniques would require a complex on-line procedure
to combine multiple prisms or tiles covering the 3D object
surface. Since our technique is designed primarily for sil-
houettes, our per-pixel computation is simpler and more effi Original Mesh
cient, at the expense of less accurate interior self-shiadow
and occlusion. In addition, the explicit knowledge of sil-  Figure 2: correspondence between the outer hull and the original
houettes enables us to perform silhouette-based vistiahiza  eqh. pis a point on the outer hull argiis p's corresponding point
which is not possible via [WWT03, WTL"04, POCO5]. on the original mestDy, is the direction pointing fronp to q.

In particular, our basic data structure (as well storage and
computation requirement) is much more similar to horizon

mapping [Max88, SC00, HDKSO00], but we apply this basic
representation in an entirely novel way for rendering sitho d
ettes/visibility instead of self-shadowing. Original
esh
Occlusion/visibility information encoding There exists a
)

variety of previous work for encoding visibility or occlusi
information [AAMO3, ZHL*05, KL05]. A core part of our
silhouette texture is a visibility function, which is inspd by Figure 3: Visibility function (a) A 2D VF and (b) a 3D VF. Red
these previous methods. A common problem for such visi- region indicates the set of directions whose VF values aee tr
bility information is the huge storage requirement, reiqgir
compression. A major novelty of our approach is that, in-
stead of a generic data-driven compression technique like
PCA, wavelet [NRHO04], or spherical harmonics [SKS02],
our technique first reduces the visibility function from 4D
to 3D via a single-lobe observation, before applying anothe
step of PCA compression. Our single-lobe assumption is ob-
tained via empirical observations and works very well in
practice; to our knowledge, this has not yet been done be-
fore. In addition, this single-lobe assumption allows high
sampling precision of object silhouettes without consiugmin
excessive storage.

(a

(b)

In the rendering stage, we rasterize the outer hull, shaded
with the corresponding color and normal texture maps. We
employ a per-pixel algorithm to determine whether a screen-
space pixel would lie within the original object by query-
ing the visibility information recorded in the pre-prociess
stage. We implement our per-pixel algorithm as a fragment
program in commodity graphics processing units (GPU), as
detailed in Appendix A.

3.1. Color and Normal Information

We associate with the coarse outer hull two texture maps
for storing the color and normal information of the original
Our silhouette texture framework consists of two stages: th  mesh. This is standard practice for color/normal texturp ma
pre-processing stage and the rendering stage. polygonal objects; the only minor difference in our tech-
nigue is that we require the coarse hull to completely erclos
the original mesh, whereas traditional color/normal maps d
not have this restriction.

3. Silhouette Texture

In the preprocessing stage, we first construct a coarse
outer hull entirely enclosing the original mesh by applying
offset surface generation [PKZ04] to the original mesh and
then using mesh simplification [GH97] to simplify the offset For each poinp on the outer hull, we define the principal
mesh. (Although this process requires iterations to deéterm  projection directiorDp as the vector fronp to the pointg on
the optimal offset value for a given hull resolution, we fdun  the original surface where the color/normal informatiomp at

the resulting outer hull is typically better in approxinmefi is sampled (Figure 2). Specifically, the locationgpan be
quality compared with the result of the modified progressive derived during the color/normal maps construction process
mesh construction algorithm described in [S®G].) Next, (e.g. [SGG 00, COM98]). We will needp, for defining our

we parameterize the original mesh over this coarse outer hul visibility function below.
by sampling color, normal, as well the visibility informati

from the original mesh, storing these sampled informat®n a
texture maps. The outer hull and the sampled texture maps
serve as the only approximation of the original model, as we Basically, our algorithm can be thought of carving out “ex-
discard the original model after pre-processing. cessive” portions of the outer hull which lies outside the si

3.2. Visibility Function
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Original Mesh

Figure 4: lllustration of our algorithm. The hull is used to approxi-
mate the original mesh. Blue region is the portion of the &ctually
rendered. PoinA is rendered and poir is discarded according to
query results into their respective VFs.

houettes of the original mesh. A visibility function is em-
ployed to determine whether a point on the outer hull should
appear as if viewing the original mesh under the same view-
ing parameters.

Exterior Silhouettes Only

First, we focus on using visibility function to preserve
exterior silhouettes only. Owisibility Function (VF) is a
spherical boolean function defined over an arbitrary ppint
on the outer hull, with respect to an objédt

M is visible to p in direc-

true .
tionv

@)

VF(V) =

M is invisible to p in direc-

false .
tionVv

whereV indicates a viewing direction originated from
(see Figure 3 fov F examples).

Given the visibility functions of all points on the outer
hull, the original exterior silhouettes are reconstrudtgde-
lectively rendering the outer hull. We cast a ray from the eye
point towards each point on the outer hull and then use the
direction of the ray as variable to lookup the visibility fiin
tion. We continue to shade the point if its visibility furmti
evaluates true at this direction. Otherwise, the point $s di
carded for rendering (via fragment kill in shader program).
Figure 4 illustrates this process.

Interior Silhouettes

Ouir visibility function defined above correctly renders ex-
terior silouettes; unfortunately, it is not sufficient farte-
rior silouettes, as illustrated below. As shown in Figure 5
(a), pointp; on the outer hull has color/normal associated
with pointg; on the smaller bump of the original mesh (de-
termined during color/normal map construction). However,

Original Mesh

Figure 5: Processing interior silhouettes. (a) The preliminary defi-
nition of VF does not preserve interior silhouettes. (b) Med VF
reconstructs correct interior silhouettes. Note the graenion in

(a) is now carved out. (c) A case where interior silhouet&snot

be processed by our framework.

under case (@), our definition in Equation 1 would render
the color ofp; incorrectly; specifically, the color/normal in-
formation should come from poirtf, on the bigger bump,
instead of the stored color/normal informationcat This
phenomenon is often termed incorrect self-occlusion in the
vision literature.

To resolve this problem, we need to modify our visibil-
ity function definition. Figure 5 (b) illustrates the basiea.
Note that forV Fp, (p2 — p1), it should really be classified
as invisible, since it missed the smaller bump. In particula
if we declareV Fp, (p2 — p1) as invisible, then we could ob-
tain correct color/normal information for this ray by query
ingV Fp, (p2 — p1). This improvement in our visibility func-
tion can be formalized as follows:

(© The Eurographics Association 2006.
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true

VFp(V) @)

false Otherwise

wheredy (V) denotes the distance fromto the nearest
outer hull polygon (not including the one containipgself)
along directiorv, anddy (V) represents the distance frgm
to M (If no hit occurs along the direction, we defide=
o0. ). Essentially, what this equation says is that we classify
VFp(V) as visible only if the ray (1) intersects the original
mesh (hence the terdy (V) < oo) and (2) does not intersect
any portion of the outer hull prior to intersecting the onigji
mesh (hence the terdy (V) < dy (V).

However, the correctness of our visibility function formu-

lation in Equation 2 depends on the closeness between outer

hull and the original mesh. As illustrated in Figure 5 (c),
when the outer hullis too coarse to follow the original geom-
etry, we will not be able to render the self-occusion effects
correctly as in case (b), where the outer hull has enough res-
olution. This is a tradeoff between quality and storage, and
is an inherent limitation of any similar silouette clippiat
gorithms based on color/normal texture maps [SG@.

Limitations As shown in Figure 5 (b), even though the dis-
occlusion effect is correct fay, it is color/normal informa-
tion should really come frongz, not gp. This information
cannot be obtained by our data structure since we only as-
sociate one pair of color/normal information per outer hull
point. However, this is not unique to our technique, as any
color/normal mapped polygonal models will have similar
problems. In fact, if a normal-mapped model is constructed
in exactly the same method as our outer hull, we would ob-
tain identical shading results for pixels lying within the-e
terior silhouettes; the only difference is that our apploac
would correctly carve out the silhouettes while the normal-
mapped model would not, as demonstrated in Figure 6.

Another limitation of our approach is that since our tech-
nique produces z values of the outer hull instead of the orig-
inal geometry, we will not be able to correctly render any
other object intersecting the outer hull but not the origina
geometry. But this is a relatively rare case.

3.3. Sampling

We have described the high level mathematical definition of
our visibility function as summarized in Equation 2. We now
present how to actually sample and repre&értfor practi-

cal implementation. A naive sampling method would require
a uniform dense sampling across the sphere around gach
on the outer hull, resulting in a 2D array for a singlE. We
propose a sampling method allowing us to represent each
VF as a 1D array. This not only significantly reduces stor-
age, but also allows us to store the enttE field as a 3D

(© The Eurographics Association 2006.

Normal map Our technique Difference

Figure 6: Comparison of normal-map with our technique. With an
identical normal-mapped mesh and our outer hull, these éeb-t
niques produce indentical results within object silhcegtthe only
difference is that our technique correctly renders theositites. The
right-most image indicates differences in gray; as shoWnliféer-

ences lie on the silhouettes.

Figure 7: Sampling a VF by recording the shape of titsie re-
gion. Angular distances fromqp to the boundary ofrue region are
recorded at different azimuth angles (eight angles in thisré) in
counter-clockwise order. The first azimuth angle is the sdiree-
tion asTp.

texture and utilize native hardware filtering/anti-aliasiln
addition, our sampling representation incurs negligikialg
ity degradation in reconstructed silhouettes.

Our VF sampling representation is based on one crucial
experimental observation: the majority\6F contains a sin-
gle connected region dfue, as illustrated in Figure 3(b).
This peculiar property allows us to describe eddh as a
1D array by the circumference of theie region, as follows
(see Figure 7 for an illustration). First, we select a dicect
Cp which roughly sits in the middle of the entiteue re-
gion by taking the arithmetic mean ¢V | V Fp(V) = true}.

We then record in counter-clockwise order the angular dis-
tance fronﬁp to the boundary of therue region at discrete
azimuth angles, the first of which lies in the same direction
with fp, a vector tangent ﬁp, and store these distances into
a 1D array.

For allV Fs over the entire outer hull, we sample them us-
ing the above method and pack the result into a 3D texture,
which is denoted as 8ilhouette Textur¢Figure 8). First,
we parameterize the hull into a 2D texture atlas via standard
techniques (e.g. UVAtlas in the D3DX library [ZSGSO04]).
We then store the 1D array of angular distances correspond-
ing to eachV F in the angular dimension of the 3D texture.
One nice property of this organization is that &iF sam-
ples can be linearly interpolated in all three dimensions us
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(p,.p,-0) Silhouette Texture

Figure 8: Silhouette texture encoding and decoding. Our silhou-
ette texture is encoded as a 3D texture on GPU, with spatialree
atlas in the #/2" dimensions and angular resolution in tHé 8i-
mension. For illustration purpose, we use a small angutaiuéon

of 4. To encode a singl¥'F,, we store angular distance samples
along various azimuth angles, with th& angular sample aligned
with Tp. For decoding, we use the combination of spatial coordi-
nates(py, pv) and azimuth anglé of viewing direction aip to index
the silhouette texture. In this example, we deternvitig(V) = true
andV Fp(\7’ ) = falseby comparing their fetched texture values with
their angular distances fro@y, respectively.

ing native hardware, producing smooth silhouettes with hig
rendering performance.

In addition to angular distance sampl€, and Tp over
the hull also need to be stored explicitly in order to aid de-
coding of silhouette texture during rendering. In our imple
mentation, we store them as per-vertex attributes of therout
hull and perform interpolation during rendering. (Thisds-c
rect for decoding when every interpolat@ﬂ lies in thetrue
region of its corresponding F, as are most cases in our ex-
periments. However, if this condition cannot be met due to
the low density of vertices of the outer hull which is not suffi
cient to capture the drastically changMs across the sur-
face, one may choose to st@@eand T as separate high res-
olution texture maps.) Sind§p is solely determined by the
hull and the original mesh, we only need to compute corre-
spondingfp, using some standard method; in our implemen-
tation, we utilize D3DXComputeTangentFrameEx function
call in D3DX library.

The major limitation of our sampling method is that it can

ceé

Figure 9: Examples of VFs which cannot be properly sampled by
our method.

In our experiments with many different real-world
meshes, our single-lobe assumption has hold pretty well and
so far we have encountered very few such pathological cases
as illustrated in Figure 9; we have observed the appearances
of such failures only when the outer hull is very coarse, such
as the 22 vertex case in Figure 13. To quantify the error in-
curred by our single-lobe assumption, we utilize the follow
ing equation as error metric:

e(a,b) = b

b 3)
E(VF,VR) = [ eVR(V),VR(V)dv
VER?,||V]|=1
whereV F, andVF, indicate the original and our approxi-
matedV F at the same poinp. We have measured the aver-
age errors across all hull points of the meshes we utilized in

this paper, as detailed in Table 1.

3.4. Rendering

We now describe how we render each pixel covered by a
silhouette-textured object, as implemented in a pixel shad
program (see Appendix A). For every screen space poxel
we use its world space positi@y, the sampling centeZp

(not surface normal), and tangent vecify' to establish a
local tangent space. We calculate the viewing vettat p

as the normalized vector pointing from eye positiorCig
expressed imp’'s local tangent frame. We then lookwpin

the silhouette texture to determine whethefp(V) equals
true (Figure 8). Specifically, we compute the azimuth angle
0 of V with respect tofp, and used along with the spatial
texture coordinateépy, pv) of p to index into the silhouette
texture, returning a valugrepresenting the angular distance
to Cp. Note that we allowp to be linearly filtered by the
texturing hardware, as discussed above. Finally, we coenpar
(pagainst the angular distance betw@amd(fp to determine
the visibility of p, as formalized in Equation 4. Ip is not

only handle one lobe, as described above. Several typical Visible, we simply discard it via fragment kill.

cases where our one-lobe assumption would fail are shown

in Figure 9. Nevertheless, this limitation can be allevdate
by constructing an outer hull which reflects major features
of the original mesh. Actually, the definition ®fF roughly

VFp(V) = acogv-Cp) < ¢ o)

records the shape of the nearest "bump" which is generally  Note that Equation 4 renders only hard silhouettes without

far less complicated than the entire original mesh.

any alpha-antialiasing. This feature could be easily added

(© The Eurographics Association 2006.
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our algorithm, but it would involve the tricky issue of trans
parency ordering. In our experience, hard silhouettes ren-
dered by Equation 4 is perceptually smooth, especially af-
ter full-screen anti-aliasing enabled by commodity graphi
chips.

3.5. Compression

Throughout this paper, unless explicitly specified, allexp
imental models are rendered using silhouette textures with
a spatial resolution of 522512 and an angular resolution
of 64. As we use 8-hit to store each angular distance sam-
ple, the total size for one such silhouette texture is 16MB.
Although this is not a huge amount considering the average
video memory size of today’s graphics cards, the high cor-
relation of distance samples in silhouette texture opens up
possibility for further compression without sacrificingoto
much rendering quality.

To perform such a compression, we employ singu-
lar value decomposition (SVD) to process the silhouette
texture. First, we reorganize the silhouette texture as a
262144(=51%512)x64 matrix A, one row of which rep-
resenting all 64 angular distance samples for a particular
VF. SVD decomposition is then applied foto getA =
UAVT =WVT, whereV contains the eigen functions &f
andW = UA contains weights of the eigen functions. Ex-
ploiting the correlation among samples\oF, we can keep
only a few eigen-functions of the greatest eigenvalues and

omit the rest. In our experiments, 16 eigen functions are !

enough to maintain a rendering quality close to that usiag th
original data (Figure 10(b)). Thus, the size of the silhtaiet
texture is reduced from 16MB to 5%¥512x16 + 16x64 ~
4MB.

However, rendering from compresséé texture is about
5 to 8 times slower than rendering from uncompresgéd
due to the need to perform custom bilinear/trilinear fitigri
via fragment program; in contrast, as discussed earlier, fo
uncompressel F our algorithm exploits the graphics hard-
ware for native filtering. All timing reported in this papeea
measured from rendering with uncompressdgtexture.

4. Results and Applications

Quality, speed, and anti-aliasing

Figure 1 and Figure 16 demonstrate the rendering results
of our algorithm; note that even though our technique uti-
lizes a very coarse mesh, we are still able to reproduce
detailed silhouettes of the original object. This qualisy i
achieved with a higher frame rate than rendering the detaile
original model, due to proper load balancing between vertex

[ ]
f

(a)
9

|

© (d)

Figure 10: Compression quality. (a) uncompressed data (b) 16
term, PSNR = 45.99db (c) 8 term, PSNR = 39.52db (d) 4 term,
PSNR =30.91db

Figure 16 so that no geometry aliasing occurs, i.e. the pro-
jected vertex density roughly equals to the pixel grid spac-

ng.)

Figure 11 provides a more detailed performance anal-
ysis, comparing frame rates of the original model versus
our algorithm under different number of projected pixels.
For complex models such as Lucy, the curve for the origi-
nal model remains flat (indicating a geometry-bound work-
load), whereas our technique runs significant faster, espe-
cially when the projection area is small. This indicates an
important advantage of our technique, as it automatically
performs geometry LOD as the model distances away from
the camera. However, for simple models such as Bunny,
our technique might run slower than rendering the original
model when the projection area is big enough.

To emphasize the quality of reconstructed silhouettes, we
have utilized a simple shading model via normal maps; since
the shading model is orthogonal to silhouette/visibiligfet-
mination, a more complex shader can be easily swapped in
for higher rendering quality.

In addition, our technique creates smoothly interpolated
silhouettes by taking advantage of native 3D hardware filter
ing duringV F look up (discussed in Section 3.3). As demon-
strated in Figure 12, we do not need a very high resolution
sampling to reconstruct smooth silhouettes; when the seree

and fragment processors enabled by our technique. See Ta-projected silhouette-texture sample spacing is large (€9

ble 1 for detailed timing and mesh statistics. (For fair com-
parison, we have performed all renderings in Figure 1 and

(© The Eurographics Association 2006.

pixels), our method can still produce faithful and smooth si
houettes via proper interpolation of existi¥d samples.
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# original | # outer hull | viewport fps fps average VF
mesh name . . . . . .
vertices vertices size (original mesh)| (siltex) | sampling error

Armadillo 40002 1000 512x512 308 725 0.426%
Bunny 34834 500 512x512 411 638 0.402%
Gargoyle 30002 500 512x512 460 762 0.309%
Dragon 40525 970 512x512 523 674 0.409%
Lucy 1000000 10000 1024x 1024 1.5 273 0.805%

Table 1: Performance timing and mesh statistics. Please refer toréiand Figure 16 for quality comparison. All reported fearates are
measured on a NVIDIA Geforce-7800-GT chip.

[+ 0ur method -®-Original Mesh| - Our_method ‘8- Original Mesh

2,500 1,400

1,200
2,000
\ 1, 000
1,500 800 \
= -
1,000 600 \\
e m.m \ . . s 100 \\“’\‘

500 ——,
200

FPS

0 100, 000 200, 000 300, 000 400, 000 500, 000 600, 000 0 200, 000 400, 000 600, 000 800, 000 1, 000, 000

# pixels drawn # pixels drawn
Bunny Lucy

Figure 11: Performance comparison of rendering original model andtechnique with different number of projected pixels (byyiag
the distance between the camera and the object). The fratmder rendering the original Lucy model is about 1.5 fpse Tkewport size is
1024x 1024 for all cases.

ject is viewed from far away, our single resolution ap-
proach might suffer from incoherence cache access due to
the spreading-out of texture footprints at adjacent pixels
Fortunately, experimentally we have not found this to be a
major issue.

entire mesh VF texture our rendering

Figure 12: Smooth interpolation during silhouette reconstruction. Parameters
Left: a mesh with a local region marked by a red rectangle.d\éid

VF texture in that region with texels visualized in greerdgRight: The quality, performance, and storage of our algorithm
Our rendering result. Note that our technique performs shimo depend on a number of parameters, including the size of the
terpolation even within a coarse silhouette texture. outer hull as well the 3D silhouette texture resolution.

Figure 13 illustrates the impact of outer hull on our ren-
dering quality. As expected, if the outer hull is too coarse,
In our current implementation we utilize only one mipmap  Wwill fail to follow the silhouettes properly, resulting irbwi-

level; even though in theory a full mipmap texture ought to ous visibility errors (such as holes) at our rendering. As th
be adapted for storing our silhouette texture, we have not outer hull becomes finer, so improves our rendering result.
found it necessary. In our experiments, we have found that This figure also demonstrates the major limitation of our ap-
our single mipmap approach produces smooth and continu- proach: we rely on the closeness of the outer hull with re-
ous silhouettes even when the object is viewed far away. We spect to the original mesh in order to faithfully reproduce i
conjecture that this is caused by the fact that under perspec terior silhouettes (as explained in Figure 5). This makes ou
tive projection, the set of viewing rays are more coherent algorithm unsuitable for highly self-occluded objectsetsu
when the object is zoomed out, making mipmap unneces- as trees or bushes.

sary. Figure 14 demonstrates the effect of angular + spatial res-

Another related issue is cache coherence; when the ob- olution of our 3D silhouette texture on rendering quality.

(© The Eurographics Association 2006.
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102 vertices 500 vertices

Figure 13: The effect of outer hull quality on rendering. Top row:
outer hull + normal map. Bottom row: our rendering.

22 vertices

s, W W s, W W

s, W W

Figure 14: The effect of VF texture resolution on rendering. From
top to bottom: spatial resolutions in #2128, and 32. From left
to right: angular resolutions in 64, 16, and 4.

As expected, the higher the resolution, the better quality;
at extremely low spatial or angular resolutions, our render
ing would exhibit holes around silhouettes due to grossly
inaccurate visibility sampling. Since current graphicsdha
ware imposes a maximum resolution (?)mn 3D textures,
this might not be sufficient to captux&r for more complex
models such as the Lucy model in Figure 16. (Notice the
holes around her ear and hair similar to the artifacts in Fig-
ure 14.) We believe this restriction can be alleviated bypgisi
multiple 3D textures, but we have not explored this yet.

In addition to sampling/ F, sufficient resolution for the
normal and texture maps is also important for maintaining
rendering quality. Insufficient sampling of normal maps can

NEVF S
\k(/’y‘ (/ Y ~
] \ =
PR >
(,_,,J Ty

L0 o fts
BRI
L 5 - -\ N { \
787 fps 802 fps 753 fps

Figure 15: Silhouette visualization by our technique. Each column
shows the same model in three different views.

Silhouette Visualization

Due to its ability to recover silhouette information, our
algorithm has additional applications beyond just rendgri
speed-up.

One such possible applications is silhouette visualinatio
as shown in Figure 15. Unlike previous methods which reply
on additional processing to render silhouettes, our algori
can sketch out the silhouettes directly by a simple modifi-
cation of our fragment program. Instead of knocking out all
pixels withV R (V) == falseas evaluated in Equation 4, we
determine the intensitjp(V) at each pixelp with viewing
directionV by the closeness @‘cos{v-@p) andq (see Equa-
tion 4 for the meaning of these symbols):

true | acogv-Cp)—@|< 0%Zp

Ip(V) = ©)

false otherwise

wherego is a user threshold parameter deciding the thick-
ness of the lines andp denotes the depth value at pojmt
(We need to scale by Z,, to take perspective projection into
account, in order to generate roughly uniform thick lines.)

Despite the simplicity of our visualization algorithm, we
are able to effectively visualize both interior and exterio
silhouettes in real-time, as demonstrated in Figure 15. Our
current algorithm does not take into account suggestive con

cause artifacts as shown in the Lucy model (around her nose tours [DFRS03, DFR04]. We believe this is can be achieved

and mouth) in Figure 16.

(© The Eurographics Association 2006.

by slight perturbation of view points via a multi-pass a-
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buffer like algorithm; we intend to explore this possilyilit """ ” 3 1415926536
text il Tex;

asa fUtUre Work- sg:‘plurere flexsgﬁ‘pl er = sanpler_state
{

texture = <sil Tex>;
AddressU = WRAP; AddressV = WRAP; AddressW = WRAP;
M PFILTER = NONE; M NFI LTER = LI NEAR; MAGFI LTER = LI NEAR;

5. Conclusions and Future Work )i

We presentsilhouette texturea new data representation % HOURSI T o

that allows real-time rendering of high quality interior 'l & floats N fleat3 T, floatz tex)
and exterior silhouettes on graphics hardware. Our algo-  float3 B

X X . ) float fx, fy, fangle;
rithm achieves faster rendering speed for detailed polgon v
/1 Calculate binormal fromnormal and tangent

meshes due to its load balancing ability between vertex and B = cross(T, N;

oy . /11T f E to | | f
fragment processors. We also utilize native texture harelwa fx = dot(T, B; Ty = dot(B, B);
filtering for proper anti-aliasing. We have also presented a AL L
additional application of our technique, silhouette vimza /1 fetch the VE sample
tion’ beyond hlgh Speed and h|gh quallty rendering_ ) return cos(Pl * tex3D( siltexSanpler, float3(tex, fangle)).a);
For future work, we plan to extend our technique to han- fioat4 Ps_SilTex(

. ] . . . in float3 normal : NORMAL, /1 Cp
dle dynamic, articulated objects. In principle, we could-pr infloat3 tangent —: TANGENT,  //Tp

. . .o infloat2 tex : TEXCOORDO,
compute silhouette textures for each individual body parts  in fioat3 v : TEXCOORDL //Viewing direction

: COLOR

(head, torso, and limbs) and combine them in a novel way %

during rendering. The challenges include how to perform ~ f'°a® N T

proper visibility sorting and how to incorporate vertexrski N T oo mer POt 2 et morel
ning. We are also interested in exploring additional applic 1 :%rhﬁgﬂmzé(et ;gge:ﬂ?eggt(mgemy NN
tions that require silhouette information, which is naliyra L isibi ity Rnetion(®) - true 2
provided by our silhouette texture representation. it ( dot(N, v) >= LookUpSilTex(texSanpler, v, N, T, tex) )
; Irelurn Shade(...... ); /1 a user-defined function for shading
el se
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viewers for their comments. We originally planned to uéliz =~ !}
several complex models from Digital Michelangelo project Table 2: Our pixel shader program written in HLSL.
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Appendix A: Pixel Shader

[DFR04] DeCARLO D., FINKELSTEIN A.,
To facilitate reproduction of our technique, we have attach RUSINKIEWICZ S.: Interactive rendering of sug-
our pixel shader in Table 2. gestive contours with temporal coherence. NIFAR

'04: Proceedings of the 3rd international symposium
on Non-photorealistic animation and renderifg004),
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outer hull + normal map original mesh our result

Figure 16: Rendering quality comparison for various meshes. PledseteTable 1 for performance timing and mesh statistics.
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