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ABSTRACT

In this paper, we present a speaker identification algorithm for a mi-
crophone array based on a first-order joint Hidden Markov Model
(HMM) where the observations correspond to the angle of arrival of
the speech and the speech spectrum. The goal of the research is to
investigate whether including angle of arrival information improves
the speaker identification error rates compared to an algorithm based
on the speech spectrum only. The spectral model consists of a Gaus-
sian Mixture Model (GMM) using Multiple Discriminant Analysis
(MDA) coefficients, and the angle model includes a separate his-
togram for each participant. The convergence time of the joint HMM
is improved by estimating the GMM for each of the meeting partic-
ipants prior to the start of the meeting and initializing each partici-
pant’s spectral GMM in the joint HMM to the pretrained parameter
values. The performance of the algorithm is analyzed from data col-
lected during live meetings recorded using an eight element, circular
microphone array. For meetings where the participants are station-
ary, the results show significant improvement over a single channel
speaker ID algorithms based on spectrum only.

1. INTRODUCTION

Meeting transcription is a desirable, but extremely challenging, fea-
ture of automated meeting systems [1, 2, 3]. A preliminary step
to enabling meeting transcription is identifying who is speaking for
each frame of audio data. This problem is commonly referred to as
speaker diarization or speaker identification. By first preprocessing
the audio signal with a speaker identification algorithm, individual
speech recognition models can then be used on the segmented speech
pertaining to each of the meeting participants.

Speaker identification based on a single channel of audio data
has been an active area of research [4]. In meetings with several peo-
ple, close-talk microphones are not practical: these meetings can be
recorded with microphone arrays. In the past, several papers [5, 6, 7]
have suggested using a microphone array to preprocess the audio
signal in order to improve speaker identification as compared to pro-
cessing a single channel speech signal. Other papers have proposed
using the angle of arrival from a microphone array to segment (but
not identify) the speaker [8].

This paper uses a hybrid between the two approaches: we create
a speaker identification system based on a Hidden Markov Model
(HMM) where the observations form a joint distribution over the an-
gle of arrival of the speech and the speech spectrum produced by
a beamformer. This work extends previous work [9] with joint an-
gle/spectrum models, by operating on the beamformed output, rather
than deriving a spectrum from close-talking microphones.

Similar to [8], the angle of arrival from the microphone array
provides a very strong hint for segmenting the speech between speak-
ers. For the case where the participants do not move during the

meeting and where they are not located in close, angular proxim-
ity to one another, clustering based purely on the angle of arrival
may yield sufficient segmentation results. However, clustering does
not determine the identity of the person speaking and fails when two
individuals are located next to each other or one directly behind the
other. In addition, the angle estimate can also be distorted by re-
flections from objects within the meeting room (e.g. white-boards,
laptop computers, etc.). Single channel speaker identification algo-
rithms based on the speech spectrum can produce high error rates
unless significantly smoothed during post processing. By combin-
ing both the angle information from the microphone array with the
beamformed speech spectrum, the proposed speaker identification
algorithm is able to significantly improve speaker identification er-
ror rates by making the decision based on the speech spectrum for
data coming from only a single direction. This new speaker identifi-
cation algorithm provides extremely promising results on audio data
captured from an 8 element, circular microphone array for the case
where the participants are stationary.

The paper is organized as follows. In the following section, we
provide a high level description of the joint Hidden Markov Model
employed in this paper. The speaker identification algorithm based
on the joint HMM is presented in detail in section 3. Finally, numer-
ical results from three experimental meetings, and conclusions are
given at the end of the paper.

2. JOINT HIDDEN MARKOV MODEL

In this section and the following section, we describe the first-order
joint HMM following the notation and derivation given in [10]. An
HMM is a probabilistic model which is governed by a set of states
and an associated state transition probability matrix A with elements
a;;. At any given time step ¢, the current state depends solely on the
previous state at time £ — 1 and cannot be observed. The time in-
dex ranges from ¢ = 1,.--,7T where T is the time index for the
final observation. For the case of speaker identification, each hidden
state ¢ represents one unknown person speaking and ranges from
t=1,---, N given N participants in the meeting. In this work, we
assume that the participants are known at the start of the meeting. In
a standard HMM, the hidden state produces a single observation. In
this paper, we employ a joint HMM, illustrated in figure 1, where the
hidden state generates two observations: the angle of arrival of the
speech from the current person speaking which is detected by the
microphone array, and the spectrum of the speech output from the
microphone array’s beamformer. The angle of arrival is estimated
using a time delay of arrival algorithm [11]. The probability of ob-
serving the spectral observation and the angle observation at time ¢
for speaker ¢ are given by b, ;(0s,¢) and ba,;(0aq,¢ ), respectively.
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Fig. 1. Joint HMM for speaker identification with speech spectrum
and angle observations.

3. SPEAKER IDENTIFICATION ALGORITHM

Next, we describe the audio system and derive the joint HMM al-
gorithm. Multichannel audio data is captured from the eight, unidi-
rectional microphones, and each of the time domain signals is con-
verted to the frequency domain using the modulated complex lapped
transform (MCLT) [12]. Alternatively, the time to frequency domain
conversion can be computed using other transforms such as the fast
Fourier transform (FFT). The microphone array processes the mul-
tichannel MCLT stream and produces a single channel, beamformed
output at each frame. This beamformed output is used to compute
the spectral observation for the HMM. Furthermore, for those frames
containing speech, as determined by a voice activity detector, the an-
gle of arrival is also estimated as part of the microphone array algo-
rithm

3.1. SPECTRAL PROCESSING

In the microphone array hardware, the audio data is sampled at 16
kHz with 20 msec frames. Typical speaker identification algorithms
process a single frame (e.g. 20 msec) at a time. In this algorithm, the
magnitude of the MCLT spectrum from twenty-four, 20 msec frames
of audio data are aggregated. Only the 220 bands above the lower 50
Hz for each spectral frame are processed and aggregated. The choice
of using 24 aggregated frames is determined by listening tests of hu-
mans being able to identify a speaker based on 500 msec of speech.
In order to remove the spectral tilt effects from the microphones,
the MCLT is further preprocessed using a liftering technique [13].
If twelve or more of the twenty-four frames contain valid speech,
the aggregated spectral vector is projected into a lower subspace of
dimension D using multiple discriminant analysis (MDA). The deci-
sion to use MDA coefficients is based on the results from table 1 for
a single channel speaker ID algorithm using only spectral acoustic
data. In table 1, we investigate the performance of MDA coefficients
versus Mel Frequency Cepstral Coefficients (MFCCs). In addition,
we also compare K nearest neighbor (KNN) and Gaussian Mixture
Models (GMMs) for the classification method. The results in table 1
do not include post processing to smooth, or filter, the outputs to re-
move spurious incorrect speaker decisions. Post processed smooth-
ing significantly reduces error rates for single channel speaker iden-
tification algorithms. For example, smoothing drops the error rate
from 33.5% to 15.3% for the case of MDA with 30 coefficients and
K = 9 KNN classification. The MDA projection coefficients are
found by maximizing the between class distances while simultane-
ously minimizing the within class distances and were trained on the
TIMIT database. In this paper, we use a separate GMM to model the
spectral observations from each speaker for the joint HMM. The D

Feature Vector | Classification Method | Error Probability
30 MDA Coefs KNN (K =9) 33.5%

13 MFCCs GMMs (N = 10) 39.5%
30 MDA Coefs GMMs (N = 10) 30.1%

40 MFCCs KNN (K =9) 35.2%

Table 1. Speaker ID error rates for various algorithms.

dimensional spectral feature vector at time ¢ is denoted by o5 +.

A key step in the algorithm is pretraining the spectral GMMs for
individual speakers prior to the start of the meeting. At the beginning
of the meeting, the GMMs for the separate states representing each
of the known participants in the meeting are initialized to the origi-
nal, pre-trained GMMs corresponding to that person. Each speaker’s
GMM is then adapted over the coarse of the meeting. For meeting
participants without pretrained GMMs, a short training session can
be conducted at the start of the meeting or those participants can be
identified as unknown participants.

3.2. ANGLE OF ARRIVAL PROCESSING

While the speech spectrum for each speaker is modelled with a GMM,
the angle of arrival is modelled by a separate histogram for each
speaker. The microphone array produces an angle of arrival esti-
mate in the range of 0 to 360 degrees. The number of valid speech
frames in the twelve most recent raw angle measurements are aver-
aged to smooth the angle estimate. This filtered angle estimate is
then quantized into a histogram with N, bins. The angle observa-
tion o0,,¢ represents the index of the histogram associated with the
microphone array’s angle of arrival estimate at time ¢.

3.3. JOINT E STEP

The joint HMM model parameters are trained using the EM (Ex-
pectation - Maximization) algorithm. In order to highlight the dif-
ferences between the joint HMM and the standard HMM presented
in [10], we next give the details for the joint EM algorithm. In the E
Step, the model parameters for the joint HMM A, the angle model
Aa, and the spectral model A, are fixed and the responsibility vectors
are updated. The first step is to compute the forward variables

ai(t) =p(O1 =01, ,0¢ = 0¢,Qt = i|An, Aa, Xs) (1)

fort =1,--- T using the forward algorithm and the joint observa-
tion vector at time ¢ composed of the angle and spectral observations
ot = {0a,t,0s,}. Similarly, the backward algorithm computes the
backward variables 3;(t) fort = 1,--- , T where

Bi(t) = p(Ot41 =01, ,Or = 07|Qt = iy Any Aa, As). (2)

After computing «; (¢) and (3;(t), the joint responsibility vectors can
now be computed as

- ai(t)Bi(t)
i(t) = pQr =110, Ay Aay As) = e 2
7i(t) = p(Qr = i ) Sy (080

and the probability of speaker 7 talking at time ¢ and speaker j talking
attime ¢t + 1 as

(€)

Yi(t)aizbj(os+1)B5(t + 1)
Bi(t)

fori=1,--- ,N,j=1,---, N where b;(0¢+1) is the joint output
probability at time ¢ + 1.

§ij (t) = )



Finally for the spectral GMMs, we compute the responsibility
vectors for each Gaussian component in the GMM as

i(t)citbs i (0s
valt) = Mo e ©

where ¢;; is the GMM mixing coefficient for the [** Gaussian of
speaker ¢’s mixture.

3.4. JOINT M STEP

In the M Step, the responsibility vectors are fixed and the parameters
of A\, As and A\, are updated. To update the spectral model A, the
mixing coefficients c;;, mean p;;, and the diagonal covariance matrix
3, for the I** Gaussian of speaker ¢’s mixture are updated as

Ci] = = (6)
l ZZ:I ’V’L(t)
S it (t)os s
" ey ()
i = Zthl it (t)(0s,¢e — Hil)Q. N

23:1 Vil (t)
The algorithm currently assumes a diagonal covariance for each spec-
tral GMM although a full covariance could also be used given enough
data. Furthermore, we require all variances on the diagonal to be
greater than or equal to some minimum value, X;;(m, m) >= 02 in

Next, the joint HMM model parameters are updated including
the initial probabilities 7; = =;(1) and the transition matrix coeffi-

cients o
- L”(t) )
i = T -1
21 it
fori = 1,---,N,j = 1,--- ,N. To compute the joint output

probabilities, we must first compute the output probabilities of the
angular histogram for each bin k corresponding to the quantized an-
gle observations

_ 2321 50a,twk%(t)

ba.i(k) = 10
i) 25:1 7 (1) 1o

and for the spectral data

bs,i(os,t) - p(Oi = Os,t

M
Qi =1) = Z Citbs,i1(0s,t) an
-1

where M is the number of mixtures in the GMM. The joint output
probability can then be computed as

bi(Ot) = (1/D)bs,i(03,t)ba,i(Oa,t)- (12)

3.5. INITIALIZATION

Prior to running the joint EM algorithm, the transition matrix A is
initialized so that the current frame of speech most likely comes from
the same person who spoke the previous frame. We can achieve this
by initializing the diagonal elements of A with a probability close to
one and the off-diagonal probabilities of equal value so that the sum
of the transition probabilities out of a particular state equal one. For
example, we set a;; = 0.95 and a;; = 0.05/(N — 1). Next, we
initialize the probability of the observation sequences for the angle

estimates to be uniform across the N, bin histogram, bs,;(04,0) =
1/No. The output probabilities for the spectral data based on the
spectral GMMs are initialized as

M
bs,i(0s,0) = Z ciths,i1(0s,0)- (13)
=1

With the spectral and angle output probabilities initialized, the joint
output probability can also be initialized as in (12) with ¢ = 0. Fi-
nally, the initial probabilities, 7 (%), are initialized so that they are
approximately uniformly distributed plus a small amount of random
noise.

3.6. SPEAKER IDENTIFICATION

Once the joint HMM has been trained, the estimated state sequence
identifying which person spoke for each frame can now be found
from the spectral and angle observations. This problem is known as
the decoding problem, and can be solved using the Viterbi algorithm.

4. NUMERICAL RESULTS

In this section, we provide numerical results for the new speaker
identification algorithm based on the joint HMM. Results were gen-
erated from three test meetings in a medium size conference room
of size 18.5” x 9’ x 13’. In the conference room, an end wall and a
side wall are covered with white-boards creating a highly reverber-
ant environment. Three known participants speak in each of the three
experimental meetings; however, the participants vary from meeting
to meeting. For the speech spectrum D = 13 MDA coefficients are
processed for each of the M = 10 Gaussian mixtures. Likewise, the
angular histogram is composed of N, = 45 bins. The position of
the participants for each meeting are shown in figure 2, and the error
rates for the three meetings are summarized in tables 2 and 3.
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Fig. 2. Room configuration for the three experimental meetings.

In the first meeting, the three participants sat at 0°, +90°, and
—90°, relative to the placement of the microphone array , and each
person spoke for approximately 45 seconds before the next person
started speaking. After all three people took turns speaking, the se-
quence of people speaking was repeated for another 45 seconds each.
As shown in figure 2, the microphone array was oriented to produce
a strong reflection generated by the third speaker at +90° due to



Table 2. Speaker ID error rates showing significant improvement for
the joint HMM algorithm, compared to the spectral only HMM, for
the first two experimental meetings with stationary participants.

the white-board. For the meeting, all speech frames were correctly
identified except for six. After reviewing the data, all six frames
were due to a short burst of laughter. The joint HMM filtered out
the laughter and did not switch to the person laughing. By taking the
speech spectrum into account, the joint HMM improved the perfor-
mance compared to an HMM observing the angle alone. Due to the
long periods of speech by a single participant, table 2 shows that the
joint HMM was able to accurately smooth the results producing an
error of 1.8% compared to an error rate of 2.9% based on an HMM
using only the speech spectrum.

In the second meeting example, the participants were arranged
as in the previous experiment. However, instead of speaking for long
durations, a natural conversation was recorded with a high num-
ber of occurrences of overlapping speech segments between partici-
pants. As in the first meeting experiment, the participants remained
sitting. In this example, the algorithm also performed very well
decreasing the error rate from 8.2% for the speech spectrum only
model to 5.6% for the joint model.

The goal of the third meeting was to significantly stress the al-
gorithm having one or more participants sitting far away from the
microphone array and having them take turns going to the same lo-
cation at the white-board to write or draw. Again, the participants
engaged in natural overlapping conversation and while standing at
the white-board, they would often turn toward the white-board while
drawing or writing thereby causing a distortion in the spectrum due
to the reflected speech. Various 4 minute sections of the recorded
meeting were processed at different offsets. Table 3 summarizes the
error rates, in percent, at these offsets, in seconds, from the start of
the meeting for both the spectrum only HMM and the joint HMM.
As the table shows, the algorithm produced a wide variance of error
rates with the joint HMM usually providing better results. However,
the spectrum only HMM algorithm sometimes performs better (e.g
360 second offset) when there is significant movement as a partici-
pant moves to/from the white-board. In this case, the angular infor-
mation penalizes the spectral estimates. For example with the 360
second offset, speaker 3 was standing at the white-board, returned
to his seat, then speaker 1 went to the same location at the white-
board and began speaking and drawing. In addition to the moving
participants and reflected speech, the signal to noise ratio (SNR) was
also fairly low for participants 1 and 2 due to the increased distance
from the array shown in figure 2. Participant 2 was located approxi-
mately 5.5” away from the microphone array, although still sitting at
the conference table. Most likely this low SNR also contributed to
the higher error rates compared to the first two meetings where the
participants were located closer to the microphone array.

5. CONCLUSIONS

In this paper, we have presented a speaker identification algorithm
based on the joint speech spectrum and angle of arrival observations.
Including the angle observation significantly improves the error rates
for natural meetings with stationary participants as well as filters out

Meeting Speech Spectrum HMM | Joint HMM Offset 0 120 | 240 | 360 | 480 | 600 | 720

Error Rate Error Rate Spectrum | 41.3 | 552 | 41.3 | 455 | 32.6 | 17.5 | 239

1 non-overlapping 2.9% 1.8% Joint 363 | 67.8 | 39.6 | 57.2 | 18.6 | 10.6 | 26.6
overlapping 8.2% 5.6%

Table 3. Speaker ID error rates for the joint and spectral only HMM
algorithms for the extremely challenging, third meeting with partici-
pants moving back and forth to the same location at the white-board
and sitting at far distances from the microphone array. The offset
times are given in seconds, and the error rates are given in percent
for the spectrum only HMM and joint HMM.

spurious vocal noise which is not similar to the speech spectrum.
Due to the inherent algorithm smoothing, the joint HMM algorithm
does not require additional post processed smoothing that is required
for single channel speaker identification algorithms. However, when
the participants move significantly and when the SNR is too low, the
error rate is too large for practical systems. Additional research is
needed to improve the model thereby decreasing the error rates for
the case where participants do not remain seated.
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