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Abstract

The Human Speechome Project is an effort to observe
and computationally model the longitudinal course of
language development for a single child at an unprece-
dented scale. The idea is this: Instrument a child’s
home so that nearly everything the child hears and sees
from birth to three is recorded. Develop a computa-
tional model of language learning that takes the child’s
audio-visual experiential record as input. Evaluate the
model’s performance in matching the child’s linguistic
abilities as a means of assessing possible learning strate-
gies used by children in natural contexts. First steps
of a pilot effort along these lines are described including
issues of privacy management and methods for overcom-
ing limitations of fully-automated machine perception.

Stepping into the Shoes of Children

To date, the primary means of studying language acqui-
sition has been through observational recordings made in
laboratory settings or made at periodic intervals in chil-
dren’s homes. While laboratory studies provide many
useful insights, it has often been argued that the ideal
way to observe early child development is in the home
where the routines and context of everyday life are min-
imally disturbed. Bruner’s comment is representative:

I had decided that you could only study language
acquisition at home, in vivo, not in the lab, in vitro.
The issues of context sensitivity and the format of
the mother-child interaction had already led me to
desert the handsomely equipped but contrived video
laboratory...in favor of the clutter of life at home.
We went to the children rather than them come to
us. [Bruner, 1983]

Unfortunately, the quality and quantity of home ob-
servation data available is surprisingly poor. Observa-
tions made in homes are sparse (typically 1-2 hours per
week), and often introduce strong observer effects due
to the physical presence of researchers in the home. The
fine-grained effects of experience on language acquisition
are poorly understood in large part due to this lack of
dense longitudinal data [Tomasello and Stahl, 2004].

The Human Speechome Project (HSP) attempts to
address these shortcomings by creating the most com-
prehensive record of a single child’s development to date,
coupled with novel data mining and modeling tools to
make sense of the resulting massive corpus. The recent
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Figure 1: The goal of HSP is to create computational
models of word learning evaluated on longitudinal in vivo
audio-visual recordings.

surge in availability of digital sensing and recording tech-
nologies enables ultra-dense observation: the capacity
to record virtually everything a child sees and hears in
his/her home, 24 hours per day for several years of con-
tinuous observation. We have designed an ultra-dense
observational system based on a digital network of video
cameras, microphones, and data capture hardware. The
system has been carefully designed to respect infant and
caregiver privacy and to avoid participant involvement
in the recording process in order to minimize observer
effects.

The recording system has been deployed and at the
time of this writing (January 2006), the data capture
phase is six months into operation. Two of the au-
thors (DR, RP) and their first-born child (male, now six
months of age, raised with English as the primary lan-
guage) are the participants. Their home has been instru-
mented with video cameras and microphones. To date,
we have collected 24,000 hours of video and 33,000 hours
of audio recordings representing approximately 85% of
the child’s waking experience. Over the course of the
three-year study this corpus will grow six-fold.



Our ultimate goal is to build computational models of
language acquisition that can “step into the shoes” of a
child and learn directly from the child’s experience (Fig-
ure 1). The design and implementation details of any
computational model will of course differ dramatically
from the mental architecture and processes of a child.
Yet, the success of a model in learning from the same
input as a child provides evidence that the child may
employ similar learning strategies.

A critical question underlying any model of learning
concerns the balance between nature and nurture. HSP
brings a new perspective to this age-old debate. Given a
near-complete, contextually-rich record of a child’s first
three years, what are the set of ontological constraints
that must be built into a model for it to successfully
learn aspects of language? If a machine can be shown
to acquire some capability or structure X without cor-
responding innate preconditions, this provides evidence
that the child’s environment provides X — and thus need
not be innate. While definitive conclusions cannot be
drawn from a single subject study, the methodology de-
veloped herein enables a new line of investigation that
has until now been unexplored.

This paper is structured as follows. Some further
background motivation is provided for collecting ultra-
dense, in vivo observations. The data collection process
and a set of initial data visualization and mining tools for
semi-automatic annotation are then described. We con-
clude by sketching preliminary directions of a modeling
effort aimed at harnessingthe HSP corpus to examine the
role of physical and social interaction in word learning.

Longitudinal In Vivo Observation

Bruner’s comment is echoed in the work of many re-
searchers who recognize the importance of observing lan-
guage development as it actually unfolds in the home
(e.g., [Bloom, 1973, Nelson, 1974]). The value of longi-
tudinal small-subject studies for examining detailed dy-
namics of language acquisition is also well established
(e.g., [Brown, 1973]). The density of data samples is
critical.  With observations spaced weeks or months
apart, apparently sudden changes of linguistic abilities
(e.g., new vocabulary, new grammatical constructions)
cannot be carefully investigated. Most researchers rely
on speech recordings that cover less than 1.5% of a
child’s complete linguistic experience (e.g., most cor-
pora in the CHILDES archive [MacWhinney, 2000]) —
and far less, if any, visual context. As a result, theo-
ries of language acquisition hinge on remarkably incom-
plete observations and are subject to large random ef-
fects due to sampling errors. While researchers widely
recognize the need for increased observational data to
advance empirical and theoretical rigor in the field (e.g.,
[Tomasello and Stahl, 2004]), few efforts have been un-
dertaken to acquire ultra-dense longitudinal recordings
of language acquisition within the home environment.
Dense longitudinal observations, coupled with appro-
priate data mining and modeling tools, have the po-
tential to make significant theoretical advances. Nu-
merous theories of word learning have been pro-

posed, some positing language-specific learning con-
straints (e.g., [Clark, 1987, Markman, 1989]), domain-
general learning mechanisms (e.g., [Merriman, 1999,
Smith, 2000]), or the importance of social inference (e.g.,
[Baldwin et al., 1997, Bloom, 2000]). There is no ob-
vious way to resolve disputes that arise between these
views without a better understanding of the exact na-
ture of children’s input as it pertains to each theoretical
position. For example, domain-general learning theories
may explain results in controlled word learning experi-
ments, but we cannot know which aspects of real-world
word learning can be explained by these theories unless
they can be tested on more representative data. The
same argument holds for the other positions.

Historically, the scope of observational studies has
broadened with advances in technology. In the earliest
studies, parent-investigators relied on diaries to record
observations in the home. Diarists can of course only
record a small subset of complete activity — typically first
usages and salient errors. Detailed records of input to
the child (especially visual and social context) and com-
plete histories of the child’s everyday behavior cannot be
captured. The introduction of analog and then digital
audio recording technology has enabled more detailed
and unbiased observation. Video recordings, however,
are more difficult to make, are slower to analyze, and
thus remain rare in language acquisition studies. Yet,
visual context is vital for understanding language devel-
opment. For example, to study how a child learns the
meaning of thank you, investigators need to know the
non-linguistic contexts in which the phrase was heard
and used to understand how the child generalizes from
particular instances to new contexts.

In general, many hypotheses regarding the fine-
grained interactions between what a child observes and
what the child learns to say cannot be investigated due
to a lack of data. How are a child’s first words related to
the order and frequency of words that the child heard?
How does the specific context (who was present, where
was the language used, what was the child doing at the
time, etc.) affect acquisition dynamics? What specific
sequence of grammatical constructions did a child hear
that led her to revise her internal model of verb inflec-
tion? These questions are impossible to answer without
far denser data recordings than those currently available.

Ultra-Dense Observation for Three Years

Eleven omni-directional mega-pixel resolution color dig-
ital video cameras have been embedded in the ceil-
ings of each room of the participants’ house (kitchen,
dining room, living room, playroom, entrance, exercise
room, three bedrooms, hallway, and bathroom). Video
is recorded continuously from all cameras since the child
may be in any of the 11 locations at any given time.
In post processing, only the relevant video channel will
be analyzed for modeling purposes. A sample video
frame from the living room camera under evening light-
ing is shown in Figure 1(left image). The image on the
right shows an enlargement of a region of the left image
demonstrating the camera’s spatial resolution. Video is



captured at 14 images per second whenever motion is de-
tected, and one image per second in the absence of mo-
tion. The result is continuous and complete full-motion
video coverage of all activity throughout the house.

While omnidirectional cameras provide situational
awareness of essentially everything in the house (other
than objects occluded due to furniture and people), de-
tails such as facial expressions are lost. Although eye
gaze and other subtle behaviors are important for lan-
guage learning, current technology is unable to provide
both comprehensive spatial coverage and high resolution.
Given our interests in observing and modeling social dy-
namics expressed in the movements and spatial relations
of caregivers and infants throughout the house (see be-
low), we have opted for wide coverage at the expense of
resolution.

Boundary layer microphones (BLM) are used to record
the home’s acoustic environment. These microphones
use the extended surface in which they are embed-
ded as sound pickup surfaces. BLMs produce high
quality speech recordings in which background noise is
greatly attenuated. We have embedded 14 microphones
throughout the ceilings of the house placed for opti-
mal coverage of speech in all rooms. Audio is sampled
from all 14 channels at greater than CD-quality (16-bit,
48KHz). When there is no competing noise source, even
whispered speech is clearly captured.

Concealed wires (above the ceiling) deliver power and
control signals to the cameras and microphones, and
transmit analog audio and networked digital video data
to a cluster of 10 computers and audio samplers located
in the basement of the house. The computers perform
real-time video compression and generate time-stamped
digital audio and video files on a local 5-terabyte disk
array. With video compression, approximately 300 giga-
bytes of raw data are accumulated each day. A petabyte
(i.e., 1 million gigabyte) disk array is under construc-
tion at MIT to house the complete three-year data set
and derivative metadata. Data is transferred periodi-
cally from the house to MIT using portable disk drives.

Privacy Management

Audio and video recordings can be controlled by the
participants in the house using miniature wall-mounted
touch displays (Figure 2, right). Cameras are clustered
into eight visual zones (cameras that view overlapping
physical spaces are grouped into zones). Eight touch
displays are installed next to light switches around the
house, each enabling on/off control over video recording
in each zone by touching the camera icon. Audio record-
ing can also be turned on and off by touching the micro-
phone icon. To provide physical feedback on the status
of video recording, motorized shutters rotate to conceal
cameras when they are not recording. The “oops” but-
ton at the bottom of the display (marked with an excla-
mation mark) opens a dialog box that allows the user
to specify any number of minutes of audio and/or video
to retroactively and permanently delete from the disk
array.

Over the first six months of operation, the participants

Figure 2: Top left: Camera and microphone embedded
in ceiling with camera shutter open (the microphone is
the small dark disk to the right). Bottom left: shutter
closed. Right: Wall mounted touch display for recording
control (see section on privacy management for details).

have settled into a stable pattern of use with the privacy
controls. On most days, audio recording is turned off
throughout the house at night after the child is asleep
(typically just after 10pm), and is turned back on in
the morning when the child awakes (8am). Audio is
paused on average for one hour per day, mainly around
adult dinner time, for a total of about 13 hours of au-
dio recordings per day. Video is paused on average 2
hours per day, mainly during nursing, resulting in ap-
proximately 12 hours of video per day. The oops button
has been used 109 times (63 video deletions, 46 audio
deletions) in the first six months of usage. On average,
video (audio) segments deleted using this feature have
been 7.6 (8.4) minutes long.

Various other privacy management precautions are
being implemented including blackout of video related
to bathroom and change table interactions, procedures
for retroactive data retrieval from archives upon partic-
ipants request, and the design of secure data servers to
limit access to data.

Handling 338,000 Hours of Data

The network of cameras and microphones are generating
an immense flow of data: an average of 300 gigabytes of
data per day representing about 132 hours of motion-
compressed video per day (12 hours x 11 cameras) and
182 hours of audio (13 hours x 14 microphones). In
just the first six months we have collected approximately
24,000 hours of video and 33,000 hours of audio. At this
rate, the data set is projected to grow to 142,000 hours of
video and 196,000 hours of audio by the end of the three
year period. Clearly, new data mining tools must be
designed to aid in analysis of such an extensive corpus.
Figure 3 shows a screen shot of a multichannel
data browser and annotation system developed for this
project. Spectrograms of selected audio channels are dis-
played in the main window. A fish-eye timeline is used to
display large spans of data. The annotator can quickly
get the gist of activity throughout the house by view-
ing all channels simultaneously, and then focus in on
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Figure 3: Graphical environment for multi-channel data visualization, playback, and annotation.

regions of interest. To annotate audio, the user selects
segments by mouse and uses the right panel to add cat-
egorical labels (e.g., speech versus machine noise; iden-
tity of speaker, etc.) and text transcriptions. A second
window (not shown) displays video from all 11 cameras
simultaneously and plays synchronized audio recordings.
Future iterations of the browser will include video visu-
alization and annotation tools.

Machine-Assisted Data Analysis

Speech analysis consists of two parallel paths. The first
path is to transcribe speech using a state-of-the-art au-
tomatic speech recognizer (ASR) designed for speech in
noise [Prasad et al., 2002]. Even the best ASR systems
will produce high error rates when transcribing uncon-
strained speech. Thus the second path introduces hu-
man annotation. A large corpus of speech which occurs
in the vicinity of the child will be manually transcribed
in order to obtain a relatively error-free complete tran-
script of all speech heard and produced by the child. The
practicality of this latter goal will depend on available
human resources for transcription as well as the devel-
opment of tools to speed transcription. Transcripts will
also provide immediate benefits to the development of
the ASR, which requires approximately 50 hours of tran-
scribed speech to adapt acoustic and language models for
optimal performance in the HSP recording environment.

Current transcription tools are unsatisfactory for
working with large, multi-channel recordings. Significant
time is spent on finding speech embedded within long
stretches of non-speech audio, and in selecting which

channel to transcribe given that sound sources usually
register on multiple microphones. To address these is-
sues, we have developed a transcription system which
automatically finds speech within long recordings using
a decision tree algorithm that operates on spectral fea-
tures extracted from the audio recordings. The speech
detection algorithm has been trained using labeled ex-
amples created using the annotation system (Figure 3).
Regions of speech activity are chunked at pause bound-
aries from the audio channel with the highest intensity
and integrated with a “listen-and-type” interface that
automatically paces speech playback to keep up with
transcription rate. In initial evaluations, we have found
that one minute of conversational speech takes approxi-
mately 2.5 minutes to transcribe, signifying a 2- to 3-fold
increase in speed over standard transcription tools used
in the field.

To automatically generate contextual meta-data for
speech transcription, we are experimenting with algo-
rithms for speaker identification, prosodic feature anal-
ysis, and audio event classification.

Our long term plan is to adapt and apply computer
vision techniques to the video corpus in order to detect,
identify, and track people and salient objects. Since the
visual environment is cluttered and undergoes constant
lighting changes (from direct sunlight to dimmed lamps),
automatic methods are inherently unreliable. Thus, sim-
ilar to our approach with speech transcription, we plan
to design semi-automatic tools with which humans can
efficiently perform error correction on automatically gen-
erated meta-data. The combination of automatic motion



tracking with human-generated identity labels will yield
complete spatiotemporal trajectories of each person over
the entire three year observation period. The relative lo-
cations, orientations, and movements of people provide a
basis for analyzing the social dynamics of caregiver-child
interactions.

Modeling In Vivo Word Learning

As data collection and analysis proceeds, the HSP cor-
pus may be used to study numerous aspects of language
including the development of grammatical constructions,
prosody, speech acts, and so forth. In this section, we
describe first steps of one effort underway to model word
learning.

In previous work, we developed a model of word learn-
ing called CELL (Cross-Channel Early Lexical Learning)
which learned to segment and associate spoken words
with acquired visual shape categories based on untran-
scribed speech and video input. This model demon-
strated that a single mechanism could be used to re-
solve three problems of word learning: spoken unit dis-
covery, visual category formation, and cross-situational
mappings from speech units to visual categories. The
model operated under cognitively plausible constraints
on working memory, and provided a means for analyzing
regularities in infant-directed observational recordings.

CELL was evaluated on speech recordings of six moth-
ers as they played with their pre-verbal infants using
toys. Recordings were made in an infant lab using a
wall-mounted video camera and a wireless microphone
worn by the mothers. The speech recordings were paired
with video of the same objects recorded by a robot,
providing multisensory “first-person” audio-visual input
for the model (the video of caregiver-infant interactions
was only used to keep track of which toy was in play).
CELL successfully acquired a vocabulary of visually-
grounded words using a learning strategy that combined
within-modality co-occurrence and recurrence analysis
with cross-modal mutual information clustering. The
model enabled quantitative analysis of the effects of vi-
sual context on speech segmentation, and the effects of
short term memory size on word learning performance
(see [Roy and Pentland, 2002] for details).

Three simplifications made in CELL may be con-
trasted with our new modeling effort using the HSP cor-
pus. First, CELL was evaluated on a relatively small
set of observations. Caregiver-infant pairs were only ob-
served for two one-hour play sessions, held about a week
apart. The data was thus a snapshot in time and could
not be used to study developmental trajectories. Sec-
ond, observations were conducted in an infant lab leading
to behaviors that may not be representative of natural
caregiver-infant interactions in the home. It is unclear
whether CELL’s learning strategy would work with a
more realistic distribution of input. Third, visual in-
put was oversimplified and social context was ignored.
The only context available to CELL was video of single
objects placed against controlled backdrops. As a con-
sequence, the model of conceptual grounding in CELL
was limited to visual categories of shapes and colors un-
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Figure 4: Sample camera image from the kitchen camera
(top left), 10 regions of interest (bottom left), and visual-
ization of activity of 1 minute, 22 minutes, and 24 hours
(right). For each of the displayed periods, the level of
movement in each region is indicated by the brightness
of the corresponding horizontal band, with time running
from left to right. In the lowest display of a full 24 hour
period, three meals are revealed as clusters of activity
most clearly indicated in region 10.

derlying words such as ball and red. It could not learn
verbs (since it did not model actions), nor could it learn
social terms such as hi and thank you.

The HSP corpus overcomes the limitations inherent in
collecting small corpora within laboratory settings. To
address the issue of semantic grounding in terms of phys-
ical and social action, we have recently developed com-
putational models of perceived affordances for language
understanding [Gorniak, 2005] and intention recognition
for word learning [Fleischman and Roy, 2005]. In these
models, stochastic grammars are used to model the hi-
erarchical and ambiguous nature of intentional actions.
In [Fleischman and Roy, 2005], sequences of observed
movements are parsed by behavior grammars yielding
lattices of inferred higher level intentions. Verb and noun
learning is modeled as acquiring cross-situational map-
pings from constituents of utterances to constituents of
intention lattices. We plan to use a similar approach
with the HSP data, but with a semi-automatic procedure
for learning behavior grammars from video data. Words
related to routines (baths, meals, etc.) and names of lo-
cations (crib, highchair, etc.) might be modeled on this
basis.

The first stage in learning behavior grammars is
to identify stable, hierarchically organized patterns of
movements that yield a “behavior lexicon”. We exploit
the fact that we have static cameras in order to divide
each room into human assigned regions of interest (in-
dicated as numbered regions on the lower left of Figure
4). These regions correspond to locations or objects in
the room that do not move (e.g., the refrigerator) and



have some relevance to various actions (e.g., is used in
cooking events). Computing the amount of movement
in each region provides a multi-variate representation of
movement patterns within a room. This representation
is useful for visualizing behavioral patterns at multiple
time scales (see right side of Figure 4).

We can recast the problem of learning behavior gram-
mars into one of discovering reliable patterns of move-
ment in these multi-variate data streams. In an initial
experiment, we used a set of temporal relations such as
before and during as the basis for learning these pat-
terns. We designed an algorithm that identifies move-
ments in different regions of interest that reliably oc-
cur in those temporal relations (e.g. counter-movement
before sink-movement). When a relation between such
primitive movements becomes significantly reliable, it is
treated as a complex movement which itself can partic-
ipate in temporal relations with other movements. The
algorithm proceeds through the data in an online fash-
ion, generating hierarchical patterns of movement until
all the data is examined. We have found that these pat-
terns can be used to recognize high level events such as
making coffee and putting away the dishes (details forth-
coming).

Extensions of this work will focus on developing a
video parser that uses grammars constructed from ac-
quired behavior patterns to infer latent structure un-
derlying movement patterns. Cross-situational learning
algorithms will be developed to learn mappings from spo-
ken words and phrases to these latent structures.

Conclusions

The Human Speechome Project provides a natural, con-
textually rich, longitudinal corpus that serves as a basis
for understanding language acquisition. An embedded
sensor network and data capture system have been de-
signed, implemented, and deployed to gather an ultra-
dense corpus of a child’s audio-visual experiences from
birth to age three. We have described preliminary stages
of data mining and modeling tools that have been devel-
oped to make sense of over 300,000 hours of observations.
These efforts make significant progress towards the ul-
timate goal of modeling and evaluating computationally
precise learning strategies that children may use to ac-
quire language.
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