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Abstract

We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image
pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an
MRF term encoding spatial coherency and a global constraint which attempts to match the appearance histograms of the
common parts. This energy has not been proposed previously and its optimization is challenging and NP-hard. For this
problem a novel optimization scheme which we call trust region graph cuis presented. e demonstrate that this framework
has the potential to improve a wide range of research: Object driven image retrieval, video tracking and segmentation, and
interactive image editing. The power of the framework liesin its generality, the common part can be a rigid/non-rigid object
(or scene), observed from different viewpoints or even similar objects of the same class.

1. Introduction

This paper looks at segmentation, which is a fundamentddleno in computer vision, and particularly at the simulta-
neous segmentation of a pair of images, an operation thaeme ‘cosegmentation”. Powerful procedures for low-level
segmentation can be produced by incorporating differeneasores at the level of pixels, into a global objective fiomct
[19, 3, 17]. The objective function can also incorporateralécy to coherence of regions. Completely automatic setane
tion is possible [19] but prone to error, and interactiveun|3, 17] or fusion with other modalities [13], is normallgeded
to correct those errors. Another source of information fmrecting segmentation is to supply a database of relatades
and segment them simultaneously [20]. Here we demonstratestipplying jusbne additional image can be sufficient to
segment both together, to higher accuracy than is achieitbceither one alone. Furthermore, in contrast to [20] we db n
exploit a shared shape model which has the advantage of beinpletely viewpoint independent.

Apart from clear applications in interactive graphics,§egmentation of images and videos, cosegmentation hagsanpl
tions in another important area: image similarity measu@asnmonly the degree of similarity of a pair of images hasbee
computed by comparing the global statistics of the two insaggypically the comparison is applied to the histograms of
each image, constructed from features such as colour andgeds 1, 7]. However, such a global, undifferentiated apgh
to comparison is liable to result in crude comparisons, agdig5, 6 show. Apparently, it is essential to incorporateeso
form of differentiation of parts of images, so that compamisan be based on those parts of an image pair which are shared
in common. In that way, a similarity between subjects candoees! highly, without unreasonable dilution by differesae
backgrounds. (Conversely, similarities in the backgroscehes of a pair of images could be captured despite thecssibje
being unrelated.) One approach to such differentiatiofintegrated region matching” [11], in which images are suaitgd
to mean-shift segmentation [5], and then a simple simylamiéasure records the similarity of paired regions, in ackeaver
both segmented images. However, the choice of paired ret¢gdes no account of object coherence, and so cannot properl
take account of the distinction between subject and backgtoHere we address that shortcoming aiytly cosegmenta-
tion the image pair using a proper MRF coherence prior angtadriam matching cost, and then compare either subject or
background.

A sub-problem which arises in cosegmentation is the proldéfinding a coherent image region with given target his-
togram. This problem has been approached previously uBipges or active contours to define coherence [6, 12, 9piied
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Figure l.Introducing cosegmentation.Given a pair of images (a) the objective is to segment the compart in both images. (b) Shows
the result of applying GrabCut [17] on the images separatéth a preference of foreground being more likely in the gma@enter. The
result is as expected since the joint foreground is not neatlelc) Shows the result of performing cosegmentation, kiewsvithout any
spatial constraints. (d) Result of our complete cosegnientéramework.

by [17], we instead define coherence via MRF priors and sbleg@toblem with iterated graph cuts.

In order to arrive at an objective function for cosegmentative begin, in sec. 2, by setting out a generative model for
an image pair, and then evaluating the hypothesis that thgesmishare common material. The recovered cosegmentation
will then be that pair of regions, one from each image, undaickvthat hypothesis is most probable. One approach to the
generative model considers pixels in the backgrounds amgifounds of each image to have been generated indepgndentl
from a certain probability distribution for colour (or texe). Then, under the hypothesis, the foreground distabatare
constrained to be identical. This can be shown to yield, dsiHood for the images, a function of the well-known Jamse
Shannon divergence between foreground histograms (seeéfowever, the independence assumption is something of a
drawback, as it is known that nearby pixels in an image argeoerally independent [8]. If instead we choose a generativ
model for the foreground histograms as a whole, rather thdimidual pixels, we can obtain other standard divergesueh
as variational distance. A further Ising prior on segmeaiest, gated by image contrast [3], encourages smooth boiesda

The optimisation of the objective function arising from ttlygggnerative model, is something of a challenge. Graph cut
algorithms are widely used for binary optimisation in Marknodels [10, 3], but have not been used before where the-objec
tive function contains a histogram difference measureaatigpires that such an objective function is not “submadalad
therefore strictly not tractable. Therefore we develogsdn. 3, a new, approximate algorithm based on graph cutallyin
in sec. 4, we show a series of results, demonstrating thetiw#aess of the new model and algorithm in image segmentati
and in the development of image similarity measures thaeeshe distinction between subject and background.

2. A Generative Model for Cosegmenting Image Pairs
2.1. Problem statement
Letk € {1,2} range overimages aricc {1,...,n} range over pixels.

e x1; € {0,1} indicates whether pixelin imagek is foregroundx,, is shorthand for the entire labeling in imageand
x is shorthand for both images.

e 25, iS an image measurement, e.g. color or texture at pikeimagek. We assume that this measurement falls into a
finite number of bins. Symbal will range over these bins. Givexy, 2 is shorthand for all foreground pixels, and
zkp for all background pixelsz;, is shorthand for the entire image andz is shorthand for all images.

e 0,y denotes foreground model parametersyfpr 6, denotes background model parametéjsis shorthand for both
(@, 0kp), and@ is shorthand for alpy,.

Given two image% = (z1,2z2), we consider two possible generative models, illustratefig. 2. In both models, the
segmentations and background models are independens amiages. 1f/ = 0 then the foreground models are independent;
if J = 1 then the foreground models are the same. This differencesshp only in the prior fo. Therefore the image
model given the segmentations is:

p(el%) = [ p(01) [ p(zas 101 otz 1010)d0 ®
k



Due to the number of pixels, the likelihood will be sharp sooar usually approximate the integral ofewith the maximum:

p(al] =0,%) ~ maxp(®) ] [ p(zis|0ks)p(24/0ks) (2a)
k
plJ=1,%) ~  max  p(0)]]p(zrs0ks)p(zs|01s) (2b)
0:01f:92f:0*f k

Under this approximatiomy(z|J = 0,x) > p(z|J = 1,x) always.
We want to choose the segmentatiaisso that the hypothesig = 1 has high posterior probability. In other words, we
want to find

X" = argmax p(J = 1|z,X)p(x) ®3)

wherep(J = 1|z, %) =

1
p(z|J = 0,x)p(J =0) +p(z|J = 1, x)p(J = 1)
We will setp(J = 0) = p(J = 1), so these terms disappear. Define

p(z|J =0,%)

D(z[x) = log 22 = %)
(z|%) 8 G =10

(4)

In this ratio, the background terms cancel, and we will abtameasure of divergence between the foreground areas of
andzs. Under the approximation (27 > 0.
Taking the negative logarithm of (3) gives the following ememinimization problem:

x* = argminlog(1 + exp(D(z[x))) — log p(X) (5)

~ argmin %D(Zb’() —logp(x) (6)

X

This approximation is justified wheR is small at the optimum.

2.2. Prior of the Model

We use an MRF model for each image. Furthermore, we assurmlathar foreground regions are more likely a priori.
Thus, we have
—logp(X) = g Z(l —xpi) + Z i kjlZri — Trj| + const (1)
ki k,(i,5)
where the second sum is over pairs of neighboring pixels. ¥&the following expression for coefficients;

Meikj = M + A2 exp(—| Ik — Ii;||?)

wherely; is the colour of pixel in imagek andj = (2 <||I;”» — ij||2>)*1. This is similar to the contrast-sensitive term
in [17], with the addition of Ising prioA; .
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Figure 2. The two hypotheses for image generation.




2.3. Image generation model: Gaussian model on histograms

The remaining task is to specify the image generation maatethie foreground regionp(z |6 s). By choosing this

model carefully, we obtain a tractable divergence measur®ur choice is a Gaussian model on histogramslekgtbe the
empirical un-normalized histogram of foreground pixels:

hig(z Z i 0 (2hi — 2) (8)

Given a histogram, the foreground is generated by layingwaittly that number of measurements, then randomly pengnuti

them. Therefore:

[L.T(1+ hrs(2)
D(1+ 32, g (2))

The first term is the number of ways you can obtain a given inggeermuting a given histogram. It doesn’t dependso

it will cancel in the likelihood ratio. Now we only need to sjify the distributionp(hy¢|6s5). In the following, everything
concerns foreground so we will drop thfesubscript. The target histogralm, is generated by a Gaussian distribution with
parameter®;, = (myg, vy ), with hyperparameter, controlling the expected size of the foreground region:

hk|mk, Vi) HN hk )5 crm, (Z), C%’U;@ (2)) (10)

plhis = hiflOky) 9)

P(zif|Orp) =

Note that(my, v ) are shared undef = 1 butcy is not. Therefore;, can compensate for foreground size differences among
the images.

2.3.1 Approximate case

We will use a uniform prior onn;, and Gamma prior ofr:

p(ur(2) o ve() exp(~ 25 1)
WhenJ = 0:
1y, = hy /e, Vi =0, andp(z|J =0,%) ~ 1. (12)
WhenJ = 1:
o Ly e
m, = g DS (13)
0y (2) = argmin p(v4(2)) HN(ka(z), e, (2), cive(2)) (14)
k
_ : ve(2) > (hi(2) — cpring(2))?
= argmin exp(— = ) exp(— =k 270.(2) ) (15)
5() = Y (i) fex — () = 3 <hlc(f> - "12”) (19)
k
0, (2) = \if 5(2) 17)
(z|J = 1,%) Hp 2) [V (b (2); 1, (2), 64(2)) (18)
k
= || exp(— 5(2) ex —78(2)
= H P ) g o) (19)

= || exp(— b - ) (20)



Dividing J = 0 and.J = 1 gives:
D(z[x) = ~logp(z|J =1,%) = =~ Z S(z)
=3 Z

hl 2)
o

2.3.2 Exact case

Detalls are given in Appendix 1.

2.4. Image generation model: Independent-pixel model

Now consider a model where we generate the pixels indep#gd€he model parameters are histograms.

P(2z1|Ok, xx) = Hp(zkiwkf)z“p(zki|0kb)1*1m

P(2kilOkf) = Oky(2ki)

With this definition, (2) becomes

|J— 0, X Hekf Z/ﬂ iékb(zki)l_m’”

p(z|J =1,%) = Ho*f 21) 2 Oy (2 7T
ki

Ny = g Thi
:—E xkz Zkz

nkf

b..) = L;yfg@

Note thatd, is the same fo = 0 andJ = 1. Therefore the background cancels when compufing

= Z Tki log ?kf (Zki)
ki 0.1

(2ki)
ékf(y)
= X 15 Zki — log =
%y: ot =) go*f(y)
= Ny O lo Akf(y)
%: kfOks(y) log )

This is the Jensen-Shannon divergence between the histegia

3. Optimization

In the previous section we described a generative modeyiblals the following energy function:

B(x;c1,¢2) = —log p(x) + E9'°*! (hy, ho; c1, c2)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)



The first term is given by (7); it encodes the usual MRF priofairelingx. The second term is quite different from the first
one: it depends oglobal properties of segmentatioy namely histograms of foreground regidns h.:

b)) -

C2

~s 1
B9 by, ho;er, c0) = BT >

The presence of this global term makes the minimizationlprofguite challenging. One could think of using some gen-
eral inference algorithm, such as Swendsen-Wang Cuts iigplgag arbitrary posterior probabilities [1]. Another ifslity
is to use active contours [12, 9]. We argue, however, thatesMRF term is an essential part of the energy, it is desirable
to use the well-established technique for binary MRFs - roiincax flow algorithm [4]. Fortunately, the form of our gldba
term will allow to use max flow algorithm inside the methodedkubmodular-supermodular procedure [15].

For simplicity, in this paper we set = c; = 1, which means that we prefer foreground regions of the samee #i is
easy, however, to extend the model to account for differigets we can put some prior @q, co and minimize energy (33)
iteratively, i.e. fixcy, co and optimize ovek and then the other way around.

We now describe how we minimize energy (33). We iterate betwtbe following two steps: (1) Fixs, optimize over
x1, and (2) Fixx;, optimize overx,. Each subproblem requires minimizing the following funati

~logp(xs) + g5 3 (=) — her () (35)

where the target histogrant®"9¢! is the empirical histogram of the foreground in other imager the remainder of this
section we focus on how to solve this subproblem for givergeia Sincek is fixed, we will omit it for brevity.
The energy function can be written as
E(x) = Er(x) + E2(x) (36)

where the first term corresponds to the priorsoand the second to the global histogram term. An importang¢isasion is
that £y is submodular and E; is supermodular, i.e. they satisfy

Ei(xAX')+ Ei(xVxX') < Fi(x)+ By (x)
Es(x AX') + Ex(x VX') > Fa(x) + Ex(x')

for all configurationsx, x’. (A proof that our histogram terms is supermodular is given in the Appendix 2. In fact, we
prove a slightly more general statement.)

It is well-known that any submodular function can be miniedzn polynomial time [18]. In our cask; (x) is a sum of
unary and pairwise terms, so a global minimunfifcan be computed very efficiently via min cut/max flow algarthThe
presence of supermodular part, however, makes the probRmaxd.

The submodular-supermodular procedure [15] is a promigpfroximate minimization technique for functions of the
form (36). Sec. 3.1 gives an overview of this approach. S@adi3cusses its potential difficulties and proposes amitive
method -trust region graph cuts.

3.1. Submodular-supermodular procedure (SSP)

This method was inspired by concave-convex procedure famnizing functions of continuous variables [21]. SSP is

an iterative technique which produces a sequence of coafignsx’, x', ..., x?,.... The main property of SSP is that the
energy never goes up, i.&(x") > E(x!) > .... Letx’ be the current configuration. The method performs the fotigw
steps:

(a) Replace supermodular pdtt(x) with a linear approximation@Q(x) =C+ (x,y) = C+ >, zy; whereC'is a
constant ang is a real-valued vector. (Such a function is also caftedular).

(b) Compute a global minimum of functiad; (x) + B, (x) to get new configuratior’*?.

Note that minimization in the second step can be performgmbipnomial time since the function is submodular. (Linear
function(y, x) simply adds unary terms t, (x)).

Linear approximation chosen in step (a) must satisfy tweerties: (i) It must be an upper bound on the supermodular
part, i.e.Fx(x) > Fs(x) for all configurationsc. (i) The functions should touch at': E»(x!) = E»(x'). These properties
ensure that the original energy does not go up siice' 1) < By (x!*1) + Ey(x'1) < By (x!) + Ey(x!) = E(x").



It remains to specify how to choose an upper bo@yﬂx) (i.e. corresponding vectgy) with the properties above.
(Existance of such a bound follows from supermodularityZgj. [15] uses the following procedure. First, an ordering of
nodesn(-) is selected which “respects” current labeling i.e. all ones precede all zeras; ) > @} ) > ... > 2.
This ordering defines the following + 1 configurations:

x© = (0,0,...,0)
xM = (1,0,...,0)

xW =(1,1,...,1)

where we assumed that the nodes are ordered according (Bormally, a:z(.j) is zero if r(i) < j, and one otherwise).
The fact that ordering “respects” current labeling’ simply means that? is one of these: + 1 configurations. Finally,
approximationZs (x) is chosen so that it is exact for theser 1 configurations:Ey(x1)) = Ey(xY)), j = 0,1,...,n.
Solvingn + 1 equations witm + 1 unknowns yields

C =B (x), Yr(i) = By (x) — By (x(71)

3.2. Trust region graph cuts (TRGC)

For SSP it is important to choose “good” representative gomditionsx() . .., x(")_ If, for example, a global minimum
of E(-) happens to be among these configurations, then the proogiiied this minimum. Choosing good configurations,
however, is a difficult problem. First, there is a restrintan representative configuratidnghere must hold eithex(?) < x*
orxU) > xt. Second, even if there is an ordering that would decreasertegyy, computing such an ordering is a difficult
problent; in fact, it is NP-completé R

It could be desirable to choose linear approximafidiix) = C'+ (x, y) which is not based on any ordering. For example,
we could setj; = Eo(x%!) — FEy(x%Y) wherex®* is the labeling obtained from’ by settingz; to s. This approximation
is exact for all configurations that differ frosf by at most one pixel. It can also be obtained by keeping literans in the
Taylor expansion of energly, expressed as a function of the global histogram ¢dissuming thaf; is differentiable).

Unfortunately, this approximation is not an upper boundMiix). This means that minimizing; (x) + E5(x) is not
guaranteed to decrease the original energy. To remedy rthidgm, we propose an alternative method which we tcadt
region graph cuts (TRGC). It allows arbitrary linear approximatiors; (x) which are not upper bounds. Furthermore, in this
method functionF»(x) can also be arbitrary - it is no longer required to be superurtzod

Trust region methods are well-known in continuous optitiara[2]; TRGC can be viewed as their discrete analogue. A
related continuous optimization method is the lineara@atnethod of Pschenichnyj [16].

Description of TRGC Instead of selecting unary potentigtsbased on some ordering, we wiptimize overy. Our
technique produces a sequence of vedte?sy?), .. ., (x!,y?), .. . with the following properties: (ix! = arg miny F; (x)+
(x,y"), and (ii) the energy does not go up(x’) > E(x!) > ....

The method works as follows. Lék!, y') be the current state, adfth(x) = C + (x,y) be a desired approximation of
Es(x). Letus defingr(a) = (1 — a)y* + ay, and letx(«) be a global minimum of functiof; (x) + (x, y(a))*. Note that
a = 0 corresponds to the current solutish, anda = 1 corresponds to taking approximatiaﬁa(x). We now search for
a € [0,1] that minimizesE(x(«)). This defines new vectoss ™! andy®*!. If o = 0 is within the range of values that we
test, the energy is guaranteed not to go up.

INote that this restriction on representative configuratidoes not necessarily mean that that SSP cannot “exchaingds. pif some configuration is
not amongx(® | ..., x(™) | it may still happen that approximatioﬁ2 (x) is tight for this configuration. Furthermore, even if the epgmation is not very
tight, theoretically it is still possible that SSP will goette.

2To illustrate the difficulty, suppose that the target histmg has 100 pixels of a certain class (e.g. red pixels), vih#ecurrent segmentation has 110
red pixels, 10 of which are labeled incorrectly. Orderindefines unary potentials as follows: the first 100 pixels aalve a preference towards foreground
and the last 10 pixels - towards background. In order to rentbe incorrect region, most of its pixels should be orderethé very end. This is very
unlikely for a random ordering.

3To see this, consider a class of energy functions with imtpglynomially bounded values such that minimizing funetién this class is NP-hard. Now
apply an iterative minimization algorithm where we firstgflinodes in the current configuration to makegat 0, . . ., 0). After this flipping any labeling
can be obtained with a certain ordering.

4If there are multiple global minima, then(c) will denote one of the them. There is one exception, howefet! is also a global minimum, then we
setx(a) = xt.
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Figure 3.Comparison of TRGC and SSPThe goal is to segment the object (penguin) in the input infapgiven the target histogram of
the ground truth segmentation (b). The result of TRGC (@ntyeoutperforms SSP (d).

We implemented the following one-dimensional search rautive start withh = 1 and we keep halving it until one of
the following happens: (a(a) = x¢; (b) a < 1073; or (c) energyF (x(«)) is larger compared to the previousand the
energy for the previous was smaller thar(x?).

It is important to note that TRGC is a trust region method vrogkn thedual space: we optimize over dual variablgs
rather than primal variables

3.3. Implementation details

The general structure of the algorithm for cosegmentingnaagie pair is described in the beginning of sec. 3. The
remaining question is the initialization of the target dimitions and the segmentation for the first iteration. Fus tve
employ a procedure which finds the largest regions in two gsayf the same size whose histograms match perfectly. This
is done via a greedy algorithm that adds one pixel at a timbeeditst and second foreground regions. Note, this gives the
minimum energy if the spatial prior is ignored.

SSP.The most important question for SSP is how to choose an aiglefinodesr. We tested two schemes. In the first
one we selected a random permutation of elements that tsspatent configuratios. This is similar to the technique
used in [15], with one modification: we take random permatatf 10 x 10 blocks rather than individual pixels. Inside
each block pixels with the same segmentation are orderageséglly. Thus, we try to take into account the fact that due
to spatial coherence all pixels inside a block are likely awéhthe same segmentation. Our second scheme is deteitninist
given initial configuration, we compute a signed distance fmam segmentation boundary and order pixels accordingj$o t
distance. In this scheme representative configurasiéis. . ., x(™) correspond to diluting or eroding the current foreground
region. For a fixed target histogram we ran a maximurd(aterations of SSP procedure. We observed, however, thagin t
majority of cases only the first few iterations decrease ttexgy, and then the energy stays constant.

TRGC. We used the SSP procedure for initialization (i.e. for cotimgu(x", y°)). We ran the algorithm until conver-
gence, i.e. until searching overdid not yield any improvement in the energy.

For both approaches we used maxflow algorithm in [4]. Funifoee for all experiments we s@f, = 0.3, \; = 1, A\g =
50 andb = 0.5. Finally let us introduce our appearance model. We haverarpated with a simple 2D intensity normalized
RGB colour space and a richer texture (texton) based modgl fthich has been proven to be very powerful for image
retrieval [7]. Apart from scenarios of retrieving imagediod same class we have used the simple model since the eraphase
on colour improved the performance, if the common part isdleatical object. A thorough testing of different appea®n
models is a part of future work.

4. Experiments

Comparison of SSP and TRGC.We built a data set 050 images which depict a foreground object in front of a back-
ground. The ground truth segmentation of the foregroundailfjas been achieved manuallyn some images the object

is "camouflaged” (e.g. fig. 3(left)), where fore- and backgrd have similar appearance, in other images (e.g. 4(taf))
have different appearances. Given the target histograheajriound truth segmentation we compare the performanteof t
submodular-supermoduler procedure (SSP) with our ve(JIRGC). We also compare the performance of ordering of the
nodes (see sec. 3.3): Random ordering (rand.), as suggdestes], versus distance map ordering (dist.). As perforogan
measure we utilize the average energy (av. Energy) and tieemtage of misclassified pixels (av. Error) with respect to
ground truth. The results are summarized in table 4. It iardleat TRGC outperforms SSP considerably both in terms of

5The data set is publicly available at http:/research.asioft.com/vision/cambridge/i3l/segmentation/Grablim



Table 1.Comparison of SSP and TRGCwith random ordering (rand.) and distance map ordering.jdf the nodes. Note that the

energies are scaled by 2.

Method av. Energy| av. Error (%) | av. # lter.
TRGC(dist.) 408 2.33 7.8
TRGC (rand.) 417 2.33 7.8

SSP (dist.) 426 2.77 4.6
SSP (rand.) 461 2.81 4.6
Ground Truth 429 0.0 -

Input Image Pair

Figure 4.Dependency on background penaltyThe background penalty determines the amount of sharegrfarad. With our standard
setting of A = 0.3 only part of the object was detected. By increasiyg = 0.8 we force more foreground material to appear. Given our

Kig = 03

generative model we plan to leakp, from a larger training/validation data set.

Figure 5.Robust Image distance - same scen€onsider the triplet of images in the top row. The left and diedmage depict part of
the same scene, where the right image shows an unrelatedti $oene. The distance (SAD) of the global colour histograittise whole
images says that the middle image is more similar to the ([¢8%) than to the left image (52%). Running cosegmentativesgthe
expected answer (bottom row). The cosegmentation of theufef middle image nicely moves the regions which do not apipelaoth
images (telephone box, sky and road) to the backgroundl (ighéblue). Note that the depicted cosegmentation of thedhe image is
with respect to the left image. When using the energy of tleegmentation as distance measure, the middle image is nogvsimilar
(42%) to the left than the right image (58%). Note that theepetages are derived by comparing the absolute energiss, #déte that the
cosegmentation measure without the spatial coherence(l#RFR) gives, as the global histogram of whole images, therirect answer.

lower energy and quality of result. Note that the energy ofSTRwasalways lower than SSP. With respect to the pixel
ordering: random versus distance transform, the latelopad slightly better, and is also deterministic. Consetjyeme
used the TRGC method with distance transform ordering ftialization as our method for the remaining experimentg. F

3 shows an example where TRGC outperforms SSP. Note, théhteicthe ground truth has a relatively low energy shows

'l

that our problem setting is reasonable.

Examples of cosegmentation using TRGC are shown in fig. 1,BiJ. 4 demonstrates that the segmentation quality
depends on the background penalty. Our generative framework gives us the option of learning plarameter given a

Image distance using

gl

obal histogram

T8 450,
Fia

Robust Image distance using cosegmentation

58%

Npg = 0.8

training and validation data set. To obtain such a datalsgsart of future work.




Image distance using global histogram

37 %

Figure 6.Robust Image distance - similar objectsSame explanation as in fig. 5, apart from the fact that thearppee model is based
on texture (textons [14]). Note that the trees in the baakgdovhere assigned a different texton label.

Robust Image distance for Image retrieval.In the following we consider two examples where we demotesteat coseg-
mentation improves an image retrieval system based on Ighidgtagram comparison. The key idea is to use the energy as
a distance measure between an image pair. This is a validumezasnt since identical images have energy (distabce)
Another nice feature of our energy is that by adjustiag = oo it gives the standard global histogram difference of the
whole image, as used in e.g. [7]. As in all previous exampleset\,, = 0.3.

In fig. 5 we compare the distance between three images whereftivem depict the same scene and the third an unrelated
scene. We demonstrate that using cosegmentation two ino&g¢fes same scene have a smaller distance than two unrelated
images. This is in contrast to using an appearance statistithe whole image where two unrelated images have a smaller
distance (details in figure caption).

In the second example, fig. 6, we compare the distance oflattopimages where two images depict an object of the
same class (bus) and a third unrelated image. The findingasaire the previous case, cosegmentation gives the correct
relationship for the triplet (see figure caption for defail&iven the middle image in fig. 6 as query, the right imagenis i
fact the most similar image from the Corel database of 10G@as used in [11] and based on global texture (texton [14])
statistics. The fact that our cosegmentation system retamnmage containing an object of the same class ( fig. 6 keft) i
a proof of concept that the retrieval performance for thigipalar query image improves. Further quantitative testthe
whole database have to be carried out. In particular, ittvas tested that ignoring the similarity of the backgrounesiaot
decrease performance for a query image which does not cantaell defined object.

Further Applications. Let us demonstrate other applications where our generaiveework can be applied successfully.
Fig. 7 shows an example for video summarization and inteeacibsegmentation (see figure caption for details). Fig.
8 depicts an application where our generative frameworksédufor automatically tracking and segmenting a foreground
object in a video sequence given a target distribution irfiteekey frame (details in figure caption).

5. Conclusion and Future Work

We have presented a novel generative model for cosegmehgngommon parts of an image pair. The strength of the
model is its generality: The common part can be a rigid/rigittiobject (or scene), observed from different viewpoimts
even similar objects of the same class. Inference in the hieads to minimization an energy with an MRF term encoding
spatial coherency and a global constraint which tries tachntite appearance histograms of the common parts. This exact
energy has not been proposed earlier and its optimizatihaibenging and NP-hard. We have presented a novel optimiza
scheme which we call trust region graph cuts, and have denabed its superiority to a competitive method on a larga dat



Key frame 1 Key frame 2 automatic cosegmentation interactive cosegmentation

Figure 7.Video Summarization and Interactive cosegmentationGiven two key frames from a video, our method can extractraate
ically the common part. This can be used to summarize theovitte this case the segmentation is not perfect, due to colauations
on the book cover. In an interactive cosegmentation systenforeground object can be extracted frbath images, by editing onlpne
image. We utilize the interactive brushing style of [3]. hetimage (second from right) a red brush stroke indicatesalicé marking of
the foreground. Obviously, the updated histogram of theedge forced a better solution for the right image.

Frame 1 (a) Frame 10 (b) Trimap segmentation (c) QOur Method (d)

Figure 8.Video Tracking and Segmentation.Given a perfect segmentation in a key frame (a) we would tkeegment the the foreground
object in all subsequent frames, e.g. fame 10 (b). An obwsoligion is to apply standard image segmentation [3] usitngreap, which is
derived by dilating the segmentation of the previous frame fixed number of pixels. The result (c) is good, however ggrentation
of the book is sub-optimal. Our result (d) is better, by fogethe foreground object to have the same target histogramths previous
frame.

set. Our new framework has clear applications for intevaaraphics, video tracking and segmentation. Probablynibe&t
important application is object-driven image retrieval, ¥hich we propose a new and robust similarity measurenoent f
image pairs. In the future we hope to quantify our initial firgs in this area. A further future direction is the incorgtion of
feature matches (optical flow) which is an essential compbokany standard wide-baseline matching, or trackingesyst
Also a comparison with an alternative generative modehtesduced here is important.

Appendix 1: Gaussian model on histograms - Exact case

Here we will do the full integrals required by (1), with prageiors. The priors are:
_ 1 1/2 _Uk(z)
p(mi(2)|ve(2)) ~ N(mo(2), avk(2)) (38)

WhenJ = 0:
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/OO p(mi(2)[o (2))N (i (2); crmie(2), con (2))dmy (2) = N (e (2); ermo (2), o (2)(1 + a)) (40)
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wherefy(z) = b(1+ «) - K b(1+ «) - )
(43)
Here K, is the modified Bessel function of the second kind. It has topérty that
Jim fr(z) =1 (44)
Putting all of this together gives:
ST — _ 1. (1 + his(2)) (1+a)”
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whereS(z) is defined by (16) and
S§'(2) = 8(2) + (i (2) — mo(2))?/(1/2 + @) (51)
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Dividing J = 0 and.J = 1 gives:

24a)? 50
Zl 2F 3/2 1_|_ a) gﬁk(z)] eXP(T) (55)
lim D(z|x) = const4 — Z \/— (56)

a—00
which is the same as (21) plus a constant that has no effebeasptimization ovexk.

Appendix 2: Supermodularity of the histogram term

We will prove a slightly more general fact than stated in isec8: we will show that the global term is supermodular as
a function of segmentations both images. However, this only holds if we use a particular repngation. Let us introduce
binary vectork, which is related tax; as follows: 2o = 1 — x5. We can express the global histogram term as a function of
X1, X9:

foa%e) =Y larhi(2) — asha(2))|

z

wherea;, = 1/(2bcy) is a positive constant and
z) = Zx;ﬂ&(zm =z)

Let us prove thaf is supermodular. Defing(z) = {i|zr; = z}, then

f(x1,%2) = Z Z a11; — Z az(l — Tg;)| =
z  [i€S1(z) 1€S2(z)
= Z Z arri; + Z azlo; — az|S2(2)|
z |i€S1(2) 1€S2(2)
It is easy to see that for eachthe corresponding term in the sum is supermodular. Indegd, ..., s, be all variables

involved in the sum. The term can be Writtengagj «;s;) wherej ranges fronl to m, a;’s are positive constants afpds
a convex function. It is well-known that such weighted caadity function is supermodular. Indeed, consider lalgsin s’,

and define
Ni =3 ;0;8; Nmin=),aj(sNs’);
NQZZJ- OéjS;- Nmax:Zj Oéj(S\/S/)j
There holdsV; + No = Nuin + Nimax @and Ny, < Np, No < Npax. Therefore, from convexity of we get

g(Nl) +g(N2) S g(Nmin) +g(Nmax)

as desired.

It can be seen that the MRF terfiy (x2) in section 3 expressed as a functionxaf remains submodular. Thus, it is
possible to apply the submodular-supermodular proceduttestentire segmentation, rather than iterating betweefirtt
and second images. We intend to test this in a future work.
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