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Abstract

1
: Wireless sensor networks can revolutionize soil 

ecology by providing measurements at temporal and spatial 
granularities previously impossible. This paper presents a 
soil monitoring system we developed and deployed at an 
urban forest in Baltimore as a first step towards realizing 
this vision. Motes in this network measure and save soil 
moisture and temperature in situ every minute. Raw 
measurements are periodically retrieved by a sensor 
gateway and stored in a central database where calibrated 
versions are derived and stored. The measurement database 
is published through Web Services interfaces.  In addition, 
analysis tools let scientists analyze current and historical 
data and help manage the sensor network.   The article 
describes the system design, what we learned from the 
deployment, and initial results obtained from the sensors.  

The system measures soil factors with unprecedented 
temporal precision. However, the deployment required 
device-level programming, sensor calibration across space 
and time, and cross-referencing measurements with external 
sources. The database, web server, and data analysis design 
required considerable innovation and expertise.   So, the 
ratio of computer-scientists to ecologists was 3:1.   Before 
sensor networks can fulfill their potential as instruments 
that can be easily deployed by scientists, these technical 
problems must be addressed so that the ratio is one nerd per 
ten ecologists.  

1. Introduction  

Lack of field measurements, collected over long periods 
and at biologically significant spatial granularity, hinders 
scientific understanding of how environmental conditions 
affect soil ecosystems.  Wireless Sensor Networks promise 
a fountain of measurements from low-cost wireless sensors 
deployed with minimal disturbance to the monitored site. 

In 2005 we built and deployed a soil ecology sensor 
network at an urban forest. The system, called Life Under 

Your Feet, includes:  

                                                 
1 An earlier (and shorter) version of this article appeared in 

[Musǎloiu-E 2006]. 

Motes are embedded computers that collect environmental 
parameters such as soil moisture and temperature and 
periodically send their measurements to gateways. 

Gateways are static and mobile computers that receive 
status updates from motes and periodically download 
collected measurements to a database server.  

Database stores measurements collected by the gateways, 
computes derived data, and performs data analysis 
tasks.  

Calibration algorithms convert raw measurements into 
scientific values like temperature, dew point, etc, that 
are stored in the database 

Access and analysis tools allow us to analyze and visualize 
the data reported by the sensors.  

Web site serves the data and tools to the Internet.   
Monitors are programs that observe all the aspects of the 

system and generate alerts when anomalies occur. 

The unique aspects of Life Under Your Feet are: (1) Unlike 
previous wireless sensor networks all the measurements are 
saved on each mote's local flash memory and periodically 
retrieved using a reliable transfer protocol. (2) Sophisticated 
calibration techniques translate raw sensor measurements to 
high quality scientific data. (3) The database and sensor 
network are accessible via the Internet, providing access to 
the collected data through graphical and Web Services 
interfaces. 

This system is only a first step in the arduous process of 
transforming raw measurements into scientifically 
important results. However, it promises to improve ecology 
and ecologists' productivity – and we believe it has 
implications for other disciplines that collect sensor data.  
Today the project has one ecologist and several supporting 
computer scientists.   We are working to reverse that ratio. 

The rest of the paper is structured as follows: Section 2 
provides background information on soil ecology, how 
sensor networks can help gather data from field 
deployments, and the requirements for doing so. Sections 3 
and 4 present the data collection and publishing system 
design. Section 5 presents results from a six-month 
deployment, and Section 6 we presents the lessons we 
learned from this deployment.  Section 7 summarizes the 
paper and suggests future research directions. 
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2. Soil Ecology 

Soil is the most spatially complex stratum of a terrestrial 
ecosystem. Soil harbors an enormous variety of plants, 
microorganisms, invertebrates and vertebrates. These 
organisms are not passive inhabitants; their movement 
and feeding activities significantly influence soil’s 
physical and chemical properties.  The soil biota are 
active agents of soil formation in the short and long term. 
At the same time, soil is an important water reservoir in 
terrestrial ecosystems and, thus, an important component 
for hydrology models. All these factors play fundamental 
roles in Earth’s life support system.  But, we poorly 
understand their interactions because of the enormous 
diversity of these organisms, and the complex ways they 
interact with their environment [Wardle2004], 
[Young2004]. 

Among the major challenges in studying soil biota are the 
size range (from micrometers to centimeters,) their 
diversity, their sparse yet-clustered population 
distribution, and the enormous spatial and temporal 
heterogeneity of the soil substrate.  

Soil organism population densities are skewed in all three 
dimensions. Often these distributions reflect diversity of 
the physical environment, because many soil invertebrates 
are sensitive to such abiotic factors as soil moisture, 
temperature, and light. Most species are negatively 
phototactic, i.e. tend to move away from light, although 
the diurnal cycle is still important in determining animal 
activity. Population aggregations can be biologically 
driven i.e. animals are ‘attracted’ to each other 
[Takeda1980], or they create favorable microhabitats for 
one another [Szlavecz1985]. More frequently, patches of 
favorable abiotic conditions or resources are the 
underlying cause, but sometimes there is no obvious 
physical or biological mechanism behind these 
aggregations [Jimenez2001].  

It is important to emphasize, that soil organisms are not 
just passively reacting to abiotic conditions; rather, they 
are active factors of soil formation influencing many of its 
physical, chemical and biological properties. Earthworms 
are often called ecosystem engineers or keystone 
organisms, because of their major role in soil processes.  
By feeding on detritus and mixing organic and mineral 
layers the profoundly affect soil aggregate stability, pore 
size distribution, carbon storage and turnover and thus 
indirectly plant growth. All these changes ultimately 
affect soil water holding capacity, therefore soil moisture 
conditions, which is a major abiotic factor determining 
earthworm distribution and abundance.   

Any field study of soil biota includes information on 
weather, soil temperature, moisture, and other physical 
factors. These data are usually collected by a technician 
visiting the field site once a week, month, or season and 

taking a few spatial measurements that are subsequently 
averaged. Therefore, only a few measurements per site are 
available.  These techniques are labor-intensive and do not 
capture spatial and temporal variation at scales meaningful to 
understand the dynamics of for soil biota. Moreover, frequent 
visits to a site disturb the habitat and may distort the results. 
Some sites are not easily accessible, e.g. monitoring wetland 
soils can be challenging, and some site visits involve property 
issues.  

The ecologist in the team works with the Baltimore 
Ecosystem Study LTER (www.beslter.org). The project 
focuses on urban ecosystems, and much of the field sampling 
takes place in residential areas. So far homeowners have been 
exceptionally cooperative and supportive to our work. A 
small device deployed on their property and taking 
environmental measurements is much less intrusive than a 
field technician trampling through their yards on a regular 
basis.   

Clearly, using in-situ sensors that can report results 
continuously and without visiting the site would be a huge 
productivity gain for ecologists. Such sensors could give 
them more data without perturbing the site after the   
installation. But, until recently, continuous-monitoring data 
loggers were prohibitively expensive.  That is about to 
change. 

2.1. Requirements 

Sensor systems promise inexpensive, hands-free, low-cost 
and low-impact ecological data collection — an attractive 
alternative to manual data logging — in addition to providing 
considerably more data at finer spatial and temporal 
granularity. However, to be of scientific value, the data 
collection design should be driven by the experiment's 
requirements, rather than by technology limitations. Here are 
the key requirements for soil ecology sensor systems: 

Measurement Fidelity: All the raw measurements should be 
collected and persistently stored. Should a scientist later 
decide to analyze the data in different ways, to compare it 
to another dataset, or to look for discrepancies and outliers, 
the original data must be available. Furthermore, given the 
communal nature of field measurement locations, other 
scientists might use the data in ways unforeseen when the 
original measurements were taken. Generally speaking, 
techniques that distill measurements for a specific purpose 

potentially discard data that are important for future 

studies. Both the raw and distilled data should be 
preserved. 

Measurement Accuracy and Precision: Research objectives 
should drive the desired accuracy. For example, while 
temperature variation of half a degree does not directly 
affect soil animal activity, soil respiration increases 
exponentially with temperature, so half a degree makes a 
significant difference. Movement and storage of soil water 
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is another good example. Most soil moisture sensors 
estimate soil water using a calibrated relationship 
between moisture content and another measurable 
variable (e.g. dielectric constant, electrical resistance). 
Measurement output can be volumetric moisture 
content or water potential. Choice of technique and 
desired accuracy depends on the project goal (in 
addition to the obvious factors such as cost, duration of 
the experiment, etc).  Calculating evapotranspiration 
rates for plant-soil interaction research requires more 
accurate measurements than deciding when to irrigate. 
Plant physiology studies and hydrology models need 
data on water pressure, while most soil invertebrate 
studies are interested in volumetric water content. In the 
latter case 1% change may not affect activity as long as 
it is within the species’ optimal range. However, if 
moisture content approaches the upper and lower 
species’ tolerance limits, even small changes may have 
big effects in activity or even survival. Again, soil 
respiration and in general, soil microbial activity is a 
function of soil moisture. Therefore, raw measurements 

need to be precisely calibrated, to give scientists high 

confidence that measured variations reflect changes in 

the underlying processes rather than random noise, 

systematic errors, or drift. 

Sampling Frequency: While fixed sampling periods are 
adequate for most tasks, there are scenarios where 
variable sampling rates are desirable. Hourly sampling 
is adequate for most environmental monitoring; 
however, during an extreme event such as a rainstorm, 
one wants to sample more frequently (e.g. every 10 
minutes). In other cases – sampling gas concentrations, 
for example – preliminary measurements are necessary 
to determine the optimal sampling frequency. It is 
evident from the above that the system should support a 

dynamic sampling frequency, at minimum based on 

external commands and potentially based on 

application-aware logic implemented in the network. 

Fusion with External Sources: Comparing 

measurements with external data sources is crucial. For 
instance, soil moisture and temperature measurements 
must be correlated with air temperature, humidity, and 
precipitation data. Animal activity is determined by 
these factors as much as by soil temperature and 
moisture. In the case of hydrology models, one can only 
make sense of soil moisture if precipitation data is 
available. In addition to “traditional” external data 
sources such as weather stations, data from other sensor 
systems can be useful. Hence, the sensor net, should 
export it data using a controlled vocabulary and well 
defined schema and formats. 

Experiment Duration: Some ecological studies, such as 
identifying the interactions between plant growth and soil 
water, require measurements on short temporal scales ― 

a single growing season or a few years.  But, measurements 

for ecosystem studies generally last several years.  This 
makes per-mote battery-powered deployments infeasible. In 
these cases, alternative energy sources such as energy 
harvesting are necessary [Jiang2005]. The scientific questions 
underlying the deployment drive the experiment’s duration.  
At one extreme, scientists might want to observe long-term 
changes: How do soil conditions change during secondary 
succession after clear cutting? Such an experiment would last 
at least fifty years. The primary goal of the he NSF-funded 
Long Term Ecological Research (LTER) System is to 
investigate ecological processes over long temporal and 
broad spatial scales (http://www.lternet.edu/). Such long-term 
monitoring has become essential to provide data on climate 
change and other global environmental issues (e.g. melting of 
permafrost and subsequent carbon release, altered soil 
conditions in urban environments, effect of no-till farming on 
soil moisture, etc).   

Deployment Size: Scientists have very little information 
about the size of underground organism population-
patches. Therefore, the spatial measurement requirements 
are not known. This is typical of the current state of 
ecological measurement. For example, to observe 
earthworm aggregations one needs at least a 10 x 5 grid 
with the grid-points 5-10 m apart – but a finer grid would 
be better. In many cases, using a grid is not the preferred 
sampling method. For instance, scientists would like to 
deploy ecology sensor systems in lawns, flowerbeds, 
vegetable gardens, and other land cover types. In these 
cases, the emphasis is on the land cover categories, as they 
presumably drive population skew.  Therefore, systems 

should be deployed in ways that capture the heterogeneity 

of land use on multiple scales.  

3. System Architecture 

Figure 1 depicts the overall architecture of the system we 
developed and deployed during the Fall of 2005 in an urban 
forest adjacent to the Homewood campus of the Johns 
Hopkins University. Each of the deployed motes measures 
soil conditions. The collected measurements are stored on the 
motes’ local flash memory and are periodically retrieved by a 
sensor gateway over a single-hop wireless link. The raw 
measurements retrieved by the gateway are inserted into a 
SQL database.  They are then calibrated using sensor-specific 
calibration tables and are cross-correlated with data from 
external data sources (e.g. data from the weather service and 
from other sensors). The database acts both as a repository 
for collected data and also drives data conversion. Data 
analysis and visualization tools use the database and provide 
access to the data through SQL-query and Web Services 
interfaces. 
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3.1. Motes and Sensors    

A mote platform that meets the requirements outlined in 
Section 2.1 must be relatively low-cost, energy-efficient, 
user-programmable (to collect data from custom sensors), 
and have wireless communication capabilities.  With 
these objectives in mind, we selected the popular MICAz 
mote from Crossbow [Crossbow], [MICAz]. 

MICAz is a user-programmable device using a Atmel 
ATMEGA 128L microcontroller with 128 KB of program 
memory and 4 KB of RAM, 7 Analog to Digital 
converters (ADC) with 10-bit resolution, and 512 KB of 
flash for persistent storage. It also has a CC2420 802.15.4 
radio transceiver capable of 250Kbps at 100 m range [TI]. 
Each MICAz has a Crossbow MTS101 data acquisition 
board [MTS] for custom sensor interfaces.  The MTS101 
includes an ambient light and temperature sensor in 
addition to connections for 5 external sensors. We 
designed a custom waterproof case for the whole 
assembly powered by two AA batteries (Figure 2.) 

The MICAz motes run software we developed on 
TinyOS, an open-source operating system for wireless 
embedded sensor systems [Hill2000]. Using component 
libraries from TinyOS and our own written using nesC 
[Gay2003], we are able to customize the motes to support 

our sensors, meet our deployment requirements, and control 
its behavior. 

The TMote Sky mote [MotIV] also meets our requirements. 
Its capabilities are comparable to the MICAz, but has lower 
power consumption in most operating modes,  is equipped 
with integrated light, temperature, and humidity sensors, and 
is directly programmable via an on-board USB connector (an 
external programming board is required for MICAz motes). 
The TMote has 12-bit ADCs compared to the 10 bits of 
resolution provided by MICAz. On the other hand, a 
significant benefit of MICAz is its 51-pin expansion 
connector. This allowed us to design, prototype, and test our 
custom sensors without direct soldering to the mote via the 
MTS101 data acquisition board.  The deciding factor was 
ultimately the flexibility of the MICAz platform compared to 
the longer lifetime offered by TMote. 

3.2. Sensor Interfaces and Drivers 

The motes are equipped with Watermark soil moisture 
sensors, which vary resistance with soil moisture, and soil 
thermistors which vary resistance with temperature.  
Watermark soil moisture sensor respond well to soil wetting-
drying cycles following rain events [Shock200], and are 
inexpensive —an important issue for large deployments. Both 
sensor types were purchased from Irrometer [Irrometer]. 

These sensors report changes in physical parameters by 
changing their resistance. Since the analog to digital 
converter digitizes voltage readings, we built a voltage 
divider that varies the ADC voltage as the sensor resistance 
changes by connecting a 10 kΩ resistor between power and 
the ADC pin and connecting the sensor to the ADC pin and 
ground.  This uses a power pin and an ADC pin per sensor 
but eliminates the need for a multiplexer. 

The TinyOS device driver we developed for the moisture and 
temperature sensors are similar to the ones used for the photo 
and temperature sensors on the MTS101. 

3.3 Sensor Calibration 

Knowing and decreasing the sensor uncertainty requires a 
thorough calibration process before deployment ― testing 
both precision and accuracy.  

An evaluation the soil thermistors showed they are relatively 
precise (±0.5ºC), yet consistently returned values 1.5ºC below 
a NIST approved thermocouple. The 1.5ºC bias does not 
present a problem because we convert resistance to 
temperature using the manufacturer's regression technique. 
Furthermore, a 10 kΩ reference resistance is connected in 
series with the moisture sensors on each mote. Since the 
resistance's value directly factors into the estimation of the 
sensor resistance, the bias is measured individually, recorded 
in the database, and used during the conversion from raw to 
derived temperature. 

 
Figure 1: The overall data collection system architecture. 

 
Figure 2: Motes used for soil monitoring. (a) MICAz mote 
with data acquisition board, moisture and temperature 
sensors. (b) Field deployed mote in water-proof enclosure. 
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The temperature sensors are easily calibrated; their output 
is a simple function of temperature. However, each 
moisture sensor requires a unique two-dimensional 
calibration function that relates resistance to both soil 
moisture and temperature. Each moisture sensor is 
calibrated individually by measuring resistance at nine 
points (three moisture contents each at three 
temperatures) and using these values to calculate 
individual coefficients to a published regression 
[Shock1998].  Moisture sensor precision was tested with 
eight sensors in buckets of wet sand measuring their 
resistance every ten minutes, while varying the 
temperature from 0ºC to 35ºC over 24 hours. We found 
that six sensors gave similar readings, but two did not. 

3. 4. Data Collection Subsystem  

We programmed the motes to sample each onboard sensor 
once a minute and store the data in a circular buffer in 
their local flash. Using flash memory allows retrieving all 
observed data over lossy wireless links — in contrast to 
sample-and-collect schemes such as TinyDB which can 
lose up to 50% of the collected measurements 
[Tolle2005]. Since each mote collects approximately 23 
KB per day, the MicaZ 512 KB flash can buffer for 22 
days. In practice, sensor measurements are downloaded 
from the motes weekly or at least once every two weeks.  
To allow on-line monitoring, each mote periodically 
broadcasts a series of status messages.  During the testing 
period, these broadcasts happen  every two minutes – but 
to extend battery life, the broadcasts could be once an 
hour. Each status message contains the mote's ID, the 
amount of data currently stored, the current battery 
voltage reading, and a link-quality indicator (LQI)2.  The 
message exchanges during the status report phase are 
depicted in Figure 3 (a).  Immediately after turning the 
radio on, the mote sends a status message to signal its 

                                                 
2 The LQI is provided by the mote connected to the base-station 

that receives the status report. 

presence.  During the 2 seconds that the radio is active, the 
mote sends 5 more status messages, each 250 milliseconds 
apart.  The mote turns its radio off until the next status report 
to conserve energy, if the base does not make any requests 
during this period,. 

The base station periodically retrieves collected samples from 
each of the motes in the network as shown in Figure 3.b.  
Upon receiving a status message from the mote, the base may 
issue a download request for all new data since a specified 
time. This Bulk Phase concludes with the mote transmitting 
another status message.   Radio packets may be lost due to 
the variable radio link quality.  The base station maintains a 
list of “holes” signifying missing or malformed (e.g., bad 
CRC) packets. A NACK-based automatic repeat request 
(ARQ) protocol recovers these lost packets during the Send-

and-Wait Phase in which the base station sequentially 
requests each missing data packet.  This phase concludes 
when all the missing data segments have been recovered.   

4. Database Design 

The database design (Figure 4) follows naturally from the 
experiment design and the sensor system. Each entry in the 

Site table describes a geographic region with a distinct 
character (e.g. an urban woodland or a wetland). All the sites 
in our case are in the Greater Baltimore area, for which 
common macro-weather patterns apply. Each site is 

partitioned into Patches. Each patch is a coherent 

deployment area, defined through its GPS coordinates.  Each 

patch contains Motes.  A particular mote has an array of 

Sensors that report environmental measurements. Mote and 
sensor locations are precisely located relative to the reference 
coordinates of a patch. 

The Mote and Sensor types (metadata) are described in 

corresponding Type tables. Each mote has a record in the 

Motes table describing its model, deployment, and other 

metadata. Each Sensor table entry describes its type, 
position, calibration information, and error characteristics.  

The Event table records state changes of the experiment 
such as battery changes, maintenance, site visits, replacement 
of a sensor, sensor failure, etc. Global events are represented 
by pointing to the NULL patch or NULL Mote. The site 

configuration tables (Site, Patch, SiteMap) hardware 

configuration tables (Mote, Sensor, MoteType, 

SensorType), and sensor calibrations (DataConstants, 

RToSoilTemp) are loaded prior to data collection. As new 
motes or sensors are added, new records are added to those 
tables. When new types of mote or sensor are added, those 
types are added to the type tables. 

Measurements are recorded in the Measurement table which 
has a timestamped entry containing each raw value reported 

by a mote.  The Measurement table is actually a “wide” 
vector-of values today because all the motes report the same 
data; but the table should be pivoted (sensor,time,value) to 

Figure 3. Mote-base communication: (a) Status report 
protocol  and (b) download protocol. 
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support a more heterogeneous sensor system in the future. 
Figure 1 shows that pivoted schema.  Calibrated versions 
of the data and derived values are recorded in the 

Calibrated table. External weather data is recorded in 

the WeatherInfo table. Various support tables contain 
lookup values used in sensor calibration. 

The database, implemented in Microsoft SQL Server 
2005, benefits from the skyserver.sdss.org database and 
website design and support procedures built for 
Astronomy applications [SDSS].  The new website 
inherited the SkyServer’s self-documenting framework 
that uses embedded markup tags in the comments of the 
data definition scripts to characterize the metadata (units, 
descriptions, enumerations, for the database objects, 
tables, views, stored procedures, and columns.)  The data 
definition scripts are parsed to extract the metadata 
information and insert it into the database. A set of stored 
procedures generate an HTML rendering of the 

hyperlinked documentation (see the Schema-Browser 

tab on [LifeUnderYourFeet]).  

4.1. Loading Raw Data 

The initial deployment collected 1.6M mote readings (soil 
moisture, soil temperature, ambient temperature, ambient 
light, and battery voltage), for a total of 6M measurements.  
Raw measurements arrive from the gateway as comma-
separated-list ASCII files. The loader performs the two-step 
process common to data warehouse applications. (1) The data 
are first loaded into a quality-control (QC) table in which 
duplicate records and other erroneous data are removed. (2) 
Next, the quality-controlled data are copied into the 

Measurement table, with the processed flag set to 0.  

In the terminology of NASA’s Committee on Data Management, 

Archiving, and Computing (CODMAC) Data Level Definitions 
[CODMAC], this input data is Level 0 data (raw time-space 
data) that is transformed to Level 1 data by converting 
“sensor time” to GMT, and by geo-locating the 
measurements.   These transformations are invertible and 
lossless, so the Level 0 data can be reconstructed from the 
Level 1 data.  Consequently, once the Level 0 data is moved 

to the Level 1 Measurement table, the contents of the QC 
table are purged. 

4.2 Deriving Calibrated Measurements 

The raw data is converted to scientifically meaningful values 
by a multistage program pipeline run within the database as 
SQL stored procedures. These procedures are triggered by 
timers or by the arrival of new data.  The conversions apply 

to all Measurement values with processed = 0.  Each 
conversion produces a calibrated measurement for the 

Measured table, and sets the value’s 

Measurement.processed = 1.  

As explained in Section 3.3, the raw sensor data voltages are 
converted to science data using sensor-specific algorithms 
that often need other environmental data.  The conversion 

takes an unprocessed “row” from the Measurement table 
and computes several derived values.    

As shown in Figure 5, calibrated data is saved in the 

Calibrated table, where each measurement from each 
sensor is stored in a separate row (i.e., the data is pivoted on 
(time, sensor, value, StdError)).  

The calibrated data is aggregated and gridded into the 

DataSeries table, which contains calibrated data values 
averaged over a predefined intervals, defined by the 

TimeStep table. This time-and-space gridded DataSeries 
representation is convenient for analysis. 

In the CODMAC Data Level Definitions [CODMAC], this is a 

conversion from Level 1 data (raw time-space data) to 

Level 2 Measures data (calibrated science data), and the 

averaged, interpolated, and time-gridded DataSeries data is 
Level 3 data. 

Figure 4. Sensor Network Database Schema. The raw 
measurements are converted to calibrated data that in turn 
is interpolated into data series with regular time steps.  
Some auxiliary tables are not shown 
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Each load and calibration step is recorded in the 

LoadHistory table, with the input filename, the 
timestamp of the loading, and its own unique 

loadVersion value, and some metadata information 
about what procedures were used, and what errors were 

seen. This LoadVersion value is also saved with every 

entry in the Measurement table and the version of the 

calibration software is recorded in each Calibrated 
table entry. This tracks data provenance (i.e., the origin of 
each data value). 

Figure 5 illustrates the data flow in the calibration 
pipeline that provides the precision and accuracy 
necessary for sensor-based science. Since soil moisture 
sensors have strong temperature dependence, an average 
soil temperature at each time step is used to calibrate 
moisture measurements for motes without a soil 
temperature value. This allows meaningful moisture 
results for all sensors.  

We are currently implementing a database representation 
of the calibration workflow, representing the workflow as 
a graph, with the processing steps connecting the motes. 

Some calibrated data is known to be bad.  These intervals are 

represented in a BadData table, and the corresponding rows 

in the Measurement table are marked with an isBad=1 
flag, and these data values are never copied into the 

Calibrated table. For example, the interface boards on 
some sensors had loose connections for a while. As a result, 
some these measurements were invalid. Those intervals are 

represented in the BadData table. 

There are two ways to deal with missing data, either 
interpolate over them, or treat them as missing. We believe 
that both approaches are necessary, their applicability 
depends on the scientific context. In any case, in the database 
the processing history must be clearly recorded, so that we 
can always tell how the calibrated data was derived from the 
raw measurements. 

Background weather data from the Baltimore (BWI) airport is 
harvested from wunderground.com and loaded into the 

WeatherInfo table. This data includes temperature, 
precipitation, humidity, pressure as well as weather events 
(rain, snow, thunderstorms, etc). In the next version of the 
database the weather data will be treated as values from just 
other sensors. 
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Figure 5. Calibration workflow converting raw to derived science data. 
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4.3. Web Data Access   

The current and historical sensor data and measurements 
are available from the website via standard reports.   
These reports present the data in tabular and graphical 
form with at common aggregation levels.   The reports are 
useful for doing science and are also useful for managing 
the sensor system.  

The reports present tabulated values for all the sensors on 
a given mote or for one sensor type across all motes (see 
http://lifeunderyourfeet.org/en/tools/visual/timeseries.aspx.) 
Another display shows the motes on a map with the 
sensor values modulating the color  (see 
http://lifeunderyourfeet.org/SensorMap/MapView.aspx.)  

The time series data can also be displayed in a graphical 
format, using a .NET Web service. The Web service 
generates an image of the raw or calibrated data series 
with the option to overlay the background weather 
information: temperature, humidity, rainfall, etc. 

The web user interface and reporting tools need 
considerably more work -- soil scientists do not want to 
learn SQL and they often want to see graphical and spatial 
displays rather than tables of numbers.  

They often want to see the aggregated sensor responses to 
discrete events like storms, cold-fronts or heat waves. For 
example: how does soil moisture vary as a function of 
time after a rain? We plan to provide spatial and temporal 
interpolation tools that answer questions such as: what is 
the soil moisture at the position of a sample of soil 
animals collected at a given time, from a certain depth? 
Eventually we will need to cross-correlate these 
interpolated values with results from other experiments. 

As a stop-gap, and as a way to allow arbitrary analysis, 
the web and web-service interfaces expose the SQL 
Schema and allow SQL queries directly to the database:  
http://lifeunderyourfeet.org/en/help/browser/browser.asp 
and http://lifeunderyourfeet.org/en/tools/search/sql.asp.  
This guru-interface has proven invaluable for scientists 
using the Sloan Digital Sky Survey [SDSS], and has 
already been very useful to us.  If there is some question 
you want to ask that is not built-in, this interface lets you 
ask that question.   In addition, we expect to implement 
the MyDatabase and batch job submission system similar 
to the CasJobs system implemented by the SkyServer 
[O’Mullane2005].   

4.4. OLAP Cube for Data Analysis 

In addition to examining individual measurements and 
looking for unusual cases, ecologists want a high level 
view of the measured quantities; they want to analyze 
aggregations and functions of the sensor data and cross-
correlate them with other biological measurements.  

The data is being collected to answer fundamental soil-
science questions exploring both the time and spatial 
dimensions for small soil ecosystems. Typical questions we 
expect to answer are: 

1. Display the temperature (average, min, max, standard 
deviation) for a particular time (e.g., when animal 
samples are taken) or time interval, for one sensor, for a 
patch, for all sensors at a site, or for all sites. Show the 
results as a function of depth, time, as well as a function 
of patch category (land cover, age of vegetation, crop 
management type, upslope, downslope, etc).  

2. Look for unusual patterns and outliers such as a mote 
behaving differently or an unusual spike in 
measurements.  

3. Look for extreme events, e.g. rainstorms or people 
watering their lawns, and show data in time-after-event 
coordinates.  

4. Correlate measurements with external datasets (e.g., with 
weather data, the CO2 flux tower data, or runoff data).  

5. Notify the user in real-time if the data has unexpected 
values, indicating that sensors might be damaged and 
need to be checked or replaced.  

6. Visualize the habitat heterogeneity, preferentially in 
three dimensions integrated with maps (e.g. LIDAR 
maps, with vegetation data, animal density data).  

Queries 2-5 are standard relational database queries that fit 
the schema in Figure 4 very nicely —indeed the database was 
designed for them. But, Query 1 is really the main application 
of the data analysis and calls for a specialized database design 
typical of online analytical processing —a Data Cube that 
supports rollup and drill down across many dimensions 
[Gray1996].  The   datacube and unified dimension model 
based on the relational database  shown in Figure 6 follows 

Measurement

sensor hour

day

week

season

year

all

tenMinute

depth

categoryall

all

all Hour of Day

Day of Season

Week of Season

Season of Year

Patch

Site

all

 

Figure 6.  Sensor data cube dimension model. 
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fairly directly from the relational database design in 
Figure 4 It is built and maintained using the Business 
Intelligence Development Studio and OLAP features of 
SQL Server 2005.  

The cube provides access to all sensor measurements 
including air and soil temperature, soil water pressure and 
light flux averaged over 10-minute measurement 
intervals, in addition to daily averages, minima and 
maxima of weather data including precipitation, cloud 
cover and wind. 

The cube also defines calculations of average, min, max, 
median and standard deviation that can be applied to any 
type of sensor measurement over any selected spatio-
temporal range. Analysis tools querying the cube can 
display these aggregates easily and quickly, as well as 
apply richer computations such as correlations that are 
supported by the multidimensional query language MDX 
[MDX]. Users can aggregate and pivot on a variety of 
attributes: position on the hillside, depth in the soil, under 
the shade vs. in the open, etc.  

The cube aggregates the DataSeries fact table around 
three dimensions (when, who, where) – Time 

(DateTimes), Location/Sensor (Sensor), and 

Measurement Type (MeasurementType) (see Figure 6.)   

The Time dimension includes a hierarchy providing 
natural aggregation levels for measurement data at the 
resolution of year, season, week, day, hour and minute (to 
the grain of 10-minute interval).  Not only can data be 
summarized to any of these levels (e.g. average 
temperature by week), but this summarized data can then 
also be easily grouped by recurring cyclic attributes such 
as hour-of-day and week-of-year. 

The Location/Sensor dimension includes a geographic 
hierarchy permitting aggregation or slicing by site, patch, 
mote or individual sensor, as well as a variety of 
positional or device-specific attributes (patch coordinates, 
mote position, sensor manufacturer, etc.)  This dimension 
itself is constructed by joining the relational database 
tables representing sensor, site, patch and mote. 

The weather data available in the cube uses these 
dimensions as well, although at a different time and space 
grain.  In the Location/Sensor and time dimensions, 
weather is available per-site and per-day respectively.  By 
sharing the same dimensions as the sensor measurements, 
relationships between weather and measurement 
information can be readily analyzed and visualized side-
by-side using the tools. 

Data visualization, trending and correlation analysis is 
most effective when measurement data is available for 
every 10-minute measurement interval of a sensor.  While 
it is straightforward to handle large contiguous data gaps 
by eliminating a gap period from consideration, frequent 

gaps can interfere with calculations of daily or hourly 
averages.  To avoid these problems, we plan to use 
interpolation techniques to fill any holes in the data prior to 
populating the cubes.   

This OLAP data cube, using SQL Server Analysis Services, 
will be accessible via the Web and Web Services interface. 
We are experimenting with SQL Servers’ built-in reporting 
services [Reporting Services], as well as the Proclarity 
[Proclarity], and Tableau [Tableau] data analysis tools that 
provide a graphical browsing interface to data cubes and 
interactive graphing and analysis.    

5. Results 

We deployed 10 motes into an urban forest environment 
nearby an academic building on the edge of the Homewood 
campus at Johns Hopkins University in September 2005. As 
Figure 7 illustrates, the motes are configured as a slanted grid 
with motes approximately 2m apart.  A small stream runs 
through the middle of the grid; its depth depends on recent 
rain events. The motes are positioned along the landscape 
gradient and above the stream so that no mote is submerged. 

A wireless base station connected to a PC with Internet 
access resides in an office window facing the deployment.  
Originally this base station was expected to directly collect 
samples from the motes.  Once the motes were deployed, 
however, we discovered that some motes could not reliably 
and consistently reach the base station.  Our temporary 
solution to this problem was to periodically visit the 
perimeter of the deployment site and collect the 
measurements using a laptop connected to a mote acting as 
base station. 

 
Figure 7. Ten motes with sensors were deployed in a 
wooded area behind Olin Hall, an academic facility 
at Johns Hopkins University.  A base station attached 
to a networked PC is in an office facing the 
deployment site approximately 35m away.  
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5.1. Ecology Results and Outlook 

During a 147 day deployment, the sensors collected over 
6M data points. A subset of the temperature and moisture 
data is shown on Figures 8 and 9 respectively. 
Temperature changes in the study site are in good 
agreement with the regional trend. An interesting 
comparison can be made between air temperature at the 
soil surface and soil temperature at 10cm depth. While 
surface temperature dropped below 0ºC several times, the 
soil itself was never frozen. This might be due to the 
vicinity of the stream, the insulating effect of the 
occasional snow cover, and heat generated by soil 
metabolic processes. Several soil invertebrate species are 
still active even a few degrees above 0ºC and, thus, this 
information is helpful for the soil zoologist in designing a 
field sampling strategy. 

Precipitation events triggered several cycles of quick 
wetting and slower drying. In the initial installation, 
saturated Watermark sensors were placed in the soil and 
the gaps were filled with slurry. We found that about a 
week was necessary for the sensor to equilibrate with its 
surrounding. Although the curves on Figure 9 reflect 
typical wetting and drying cycles, they are unique to our 
field site because the soil water characteristic response 
depends on soil type, primarily on texture and organic 
matter content [Munoz-Carpena2004]. 

We deliberately placed the motes on a slope, and our data 
reflect the existing moisture gradient. For instance mote 
51   placed high on the slope showed greater fluctuations 

then motes 56 and 58, which were closer to the stream (see 
Figure 9). We occasionally performed synoptic 
measurements with Dynamax Thetaprobe sensors to verify 
our results.  

Four of our current research topics within the Baltimore 
Ecosystem Study will benefit from the data provided by the 
sensor system: 

1. How do non-native become established and spread in 
urban areas? Urban areas are “hotspots” for species 
introduction. The nature and extent of soil invertebrate 
invasions and the key physical and biological factors 
governing successful establishment are poorly known. 
[Johnston2003, 2004] Our hypothesis is that exotic species 
survive better in cities because they are less fluctuating 
environments. Population data show that both earthworm 
biomass and density are 2-3 times larger in urban forests 
[Szlavecz2006]. The sensor system will provide important 
data to two questions related to this topic: (1) Do urban and 
rural soil abiotic conditions in the same type of habitat 
differ?  (2) Which elements of the urban landscape act as 
refuges for soil organisms during unfavorable periods?  For 
instance irrigation of lawns and flowerbeds maintains a 
higher moisture level. In winter, the organisms can 
congregate around houses, or compost heaps, where the 
temperature is locally higher. Both examples promote both 
survival and longer periods of activity, which may result in 
greater number of offspring.  

2. What are the reproductive strategies of invasive species?  

Although the exact mechanisms leading to successful 
invasion are poorly understood, the species’ reproductive 

 
Figure 8. Air temperature data recorded by three motes at soil surface (upper figure) and at 10 cm depth (lower figure) 

during January 2006 (note the difference in  the temperature scales. Data   Shaded area is minimum and maximum air 
temperature for the Baltimore Metropolitan Area.    
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biology is often a key element in this process. In 
temperate regions, reproduction is closely tied to 
seasonal temperature changes. For terrestrial isopods 
the situation is more complicated, because hormonal 
changes necessary to initiate reproduction are also 
influenced by in light intensity and wavelength 
composition [Juchault1981], [Jassem1981]. Sensor 
systems can measure detailed temperature, light, and 
spectral flux both at the soil surface level, and at the 
strata within the soil where the organisms live.  

3. What are the biogeochemical cycles in urban soil? 

Human impact on biogeochemical cycles is a global 
environmental issue. The pools and fluxes of carbon in 
urban/suburban soil and its contribution to the global 
carbon cycle are poorly known. Understanding carbon 
cycle processes in urban habitats is one of the critical 
scientific issues recently outlined by an NSF-AGU 
Committee report [Johnston2003]. Given the enormous 
heterogeneity of the urban/suburban landscape such 
assessment is a challenging task. We plan to add CO2 

sensors to the motes, and later add other gas sensors 
(e.g. CH4, N2O). Our measurements will complement 
data collected at different heights by the Cub Hill 
carbon flux tower. Ten CO2 rings are currently 
operating in the Cub Hill area. These rings are sampled 
monthly. Comparison of different methods will enable 
us to test the reliability of the sensors in real field 
conditions.  

4. What is the effect of urbanization on water 

pathways and what is the coupling of water and 

carbon storage and flux? Our pilot study drew a 
somewhat unexpected interest from hydrologists. As 
mentioned in the Section 2, soil is an important water 
reservoir and thus input element in terrestrial hydrology 
models. Cities have the most heterogeneous landscape 
due to various land cover and land management.  
Measurements on soil moisture should reflect this 
heterogeneity and sensor systems can achieve this goal.  

These are ambitious research goals.  They would be 
difficult and expensive to achieve without our current 

sensor and data analysis infrastructure.   But sensor 
technology is improving rapidly, costs are dropping, and our 
acquisition and analysis platform is maturing.  So, these 
preliminary research goals will likely expand and be refined 
as we get more data and experience.    

5.2 Mote Durability 

To ensure reliable data collection over the long term, both the 
motes and sensors must perform well under harsh conditions. 
In our case moisture is the biggest threat. Prior to deployment 
we performed a ‘bathtub test’ (enclosures submerged 
underwater for 24 hours) and a ‘freezer test’ (enclosures 
locked in a block of ice and subsequently thawed). These 
tests caused some boxes to collect moisture (0.3-0.5 ml.) This 
problem was ameliorated by placing silica desiccant beads in 
the boxes.  The motes operated normally even though they 
were buried under the snow during the winter (see Figure 10). 
We found that enclosures became less waterproof after they 
were opened a few times in the field to update the mote 
software or replace batteries. In the future, we will avoid 
opening the boxes by using over-the-air reprogramming, 
higher capacity batteries, and more aggressive duty cycling. 
We will pay even more attention to waterproofing the 
enclosure including the cabling and the antenna holes. 

 

 
 

Figure 10. The motes in winter with silica beads. 

 
Figure 9. Soil moisture in January 2006 reported by three motes. Each point represents a six- hour averages. Bars on the 
bottom indicate daily precipitation events in the area. Highest column (Jan 18) corresponds to 18 mm rain.  
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Not every sensor worked smoothly and some 
measurements were lost. For instance mote 60 did not 
properly record date for about a week in January (see 
Figure 8). This was probably due to a loose connection. 
However, we are confident that differences among 
individual sensors reflect real spatiotemporal 
heterogeneity. This information should allow soil 
ecologists to better predict better where and when 
microbial and invertebrate activity occurs. This activity is 
tightly coupled with biogeochemical processes such as 

soil respiration which is an important poorly understood 
component of the global carbon cycle. Continuous in situ 
soil monitoring will improve our estimates of soil biota’s 
contributions to these large scale processes. 

5.3. Mote Energy Consumption 

As mentioned before, we power the motes using 
inexpensive AA Alkaline batteries with an approximate 
capacity of 2.2Ah. Given the energy budget provided by 
the batteries, we can derive a first order approximation of 
mote lifetime by measuring the power consumed by each 
of the mote's subsystems. We measure the mote's current 
draw by measuring the voltage differential across a 10Ω 
resistor placed in series with the device. 

Radio is the largest among all energy consumers on the 
device. Figure (11a) depicts the voltage drop on the 
resistor during a reporting interval (i.e., when the radio is 
turned on to send the mote's status reports). This interval 
lasts 1.9 seconds and 6 status reports are sent in total. 
Since the radio is turned off during the remaining 118 

seconds of the two minute duty cyclel, the average current 
used by the radio is approximately 0.36 mA3. 

Figure 11b illustrates the power consumed during the 
sampling of the sensors connected to the mote. During this 
time the mote samples 5 sensors: soil temperature, soil 
moisture, enclosure temperature, photo sensor and battery 
voltage.  Each sample is taken by turning the sensor 
component on, waiting for 10 ms, obtaining a sample from 
the ADC, and then turning the sensor off. The next sensor is 
sampled 125 ms later. After all samples have been collected, 
the mote writes them in its local flash. The whole operation 
finishes in 0.79 seconds and the average current consumption 
during this period is 0.64 mA.  Since sensor samples are 
taken every 60 seconds, the overall average current used by 
the sensors is 0.008 mA. Assuming that current draw is 
virtually zero when both the radio and the MCU are powered 

                                                 
3 Current consumed by the rest of the mote's subsystems (i.e., the 

CPU consumes 10µA in sleep mode) is minimal compared to that 
used by the radio. 

  
  
Figure 11. Current draw measurements for the MICAz mote. (a) The average current draw during the 1.9 seconds of radio 
activity is 22.922 mA. Considering that the radio is turned off during the remaining 118 seconds of the duty cycle, the 
average current drawn by the process is ~0.36 mA. (b) The average current draw during the 0.79 seconds of activity is 0.64 
mA. Considering 60 seconds between successive rounds, the average current drawn by this process is 0.008 mA. 

 

 
Figure 12. Battery voltage over time from Nov. 28, 
2005 to Apr. 19, 2006. The curves are plotted based 
on the periodic status reports sent by the motes in the 
deployment.  
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off, the average current drawn from the batteries is then 
0.368 mA. 

Figure 12 illustrates that battery voltage at the deployed 
motes decreased by approximately 0.4V after 70 days 
operation (0.2V per battery). Considering that the cutoff 
voltage of a single battery is 0.8V and using the linear 
discharge model to approximate remaining battery 
capacity, as suggested in [Energizer], the measured 
decrease corresponds to a consumption of 629mAh. This 
is very close to the 70·24·0.368 = 618mAh consumption 
computed using the average current drawn by the mote 
over seventy 24-hour periods. The difference is likely due 
to the power consumed during data downloads, a factor 
not included in our analysis. As shown in the following 
section, the radio is on for an additional one to two 
minutes during a download transaction. On the other 
hand, the radio is on for 22 minutes every day to send the 
periodic status reports. This comparison argues that power 
consumed during data transfers is not a significant factor 
when it comes to predicting mote lifetime. 

This calculation holds for even smaller scales: the voltage 
drop during one week is almost 0.02V (cf. Figure 13) 
corresponding to an expense of 62.8mAh using the linear 
battery model. For the same period, our average current 
model estimates energy consumption of 61.8mAh. The 
high accuracy of this model indicates that it can be used 
as a planning tool for estimating the lifetime of a mote. 

At the same time, there are inherent limitations to this 
approach, because temperature fluctuations affect the 

battery voltage. This effect is presented in Figure 13 in which 
the daily temperature cycle produces noticeable “waves” in 
voltage readings from motes deployed outdoors, while an 
identical mote within a building has a smooth and steady 
discharge slope. 

The operating voltage of the MICAz mote, based on its 
specification, is from 3.6V to 2.7V. However, we determined 
that motes can reliably operate down to 2.2V before the flash 
memory stops responding. We also found that the processors 
and radio operate down to 2.17-2.10V. The current batteries 
were installed at the end of November. The motes began to 
stop recording data in mid-April. As of mid-June only three 
of the ten motes are still reporting.  This increased lifetime is 
a consequence elevated initial voltages in some batteries and 
a non-linear in battery discharge, illustrated in Figure 13. 

5.4. Network Quality 

Our initial plan was to collect measurements from the motes 
through a PC, located at the 2nd floor in the Olin building next 
to our deployment site.  The same base station receives the 
periodic status reports sent by each of the motes. Table 1 
presents the number of such reports received over a period of 
5 months. Even in the case of motes 52, 58, and 59 that 
successfully transmitted the most reports, the loss rate was 
approximately 67%4.  Since the loss rate was so high, we 
decided not to use that base station to download collected 
measurements. Doing so would require excessive 
retransmissions, which would quickly deplete motes’ 
batteries. On the other hand, even with this high loss rate, 
periodic reports were used to remotely monitor the network's 
health [Olin]. 
 

 

  

                                                 
4 The base station was offline for small periods of time, but this 

accounts for at most 3000 packets, less that 0.5% of the total number 
of packets that should have been received. 

Table 1. Number of status messages received by the base 
station from Nov. 28 2005 to Apr. 14 2006. Each mote 
sent 588,645 reports during this period, which translates 
to delivery ratios ranging from 29% to 34%. 

MoteID Reports Received 

51 189,978 

52 197,216 

53 188,804 

54 182,343 

55 187,647 

56 187,939 

57 191,190 

58 197,520 

59 197,414 

60 168,776 

 
Figure 13. Voltage over time for two different periods: 
winter (left) and spring (right).,  Bottom graph shows 
daily voltage cycles due to outside temperature, while 
lower curve is voltage of an indoor mote at nearly 
constant temperature. 
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The data was collected by 250 downloads between Nov. 
28, 2005 and Apr. 20, 2006. A few of them used the fixed 
base station but most used a laptop located in various 
positions near the sensor patch to improve signal 
reception. Figure 14 presents two examples of data 
downloads performed from the fixed base station: one 
with low loss rate and another in which more losses were 
sustained. The top row illustrates the packet identifiers 
over time while the bottom one shows Link Quality 
Indicator (LQI) information. During the Bulk Phase of the 
transfer (Section 2.1.) the good download lost only 6 out 
of 5438 packets (0.1%) while the bad one lost 689 out of 
11811 packets (5.8%). As a result, the Send-and-Wait 
phase during which all the lost packets are retransmitted 
is more pronounced, with some packets retransmitted 
twice. Another interesting observation from Figure 14 has 
to do with the predictive value of received LQI. It is 
evident that the high quality link has consistently good 
LQI, while the corresponding LQI of the lossy link 
displays high variability. As other have proposed, this 
suggests that LQI could be used to select low-loss links 
([Cerpa2005]).. 

 

6. Discussion and Concluding Remarks 

Our primary goal was to demonstrate through an end-to-
end data collection prototype that wireless sensor systems 
could be used in soil monitoring. Even though we did not 
attempt to meet all the high-level requirements outlined in 
Section 2.1, building the system proved to be harder than 
what we expected. While some of our observations have 
been repeated in the literature (e.g., [Szewczyk2004]), 
some of them are new.  

We learned, as previously reported, that reprogramming is 
essential for sensor deployments.  In our case, we 

discovered two major software faults after the system was 
initially deployed. The first bug was related to putting the 
MCU to sleep mode, while the second one was related to 
occasional errors when writing to the mote's flash memory. In 
both cases, we had to retrieve the motes and reprogram them 
in the lab. Had we used a tool such as Deluge, we would be 
able to reprogram the motes in the field, decreasing the length 
of the measurement outage [Deluge]. 

Contrary to the hype, sensor motes are still expensive. We 
estimated the cost per mote including the main unit, sensor 
board, custom sensors, enclosure, and the time required to 
implement, debug and maintain the software to be around 
$1,000, equivalent to the price of a mid-range PC! 
Calibrating each of the sensors costs more than the sensors 
themselves -- and is not a task for novices.  While equipment 
costs will eventually be reduced through economies of scale, 
there is clearly a need for standardized connectors for 
external sensors and in general a need to minimize the 
amount of custom hardware necessary to deploy a sensor 
system. Unfortunately, sensor and mote vendors seem to want 
proprietary interfaces that limit our ability to add 3rd party 
sensors. We hope future motes use standard connectors. 

We also found that low-level programming is a necessary and 
challenging task when building sensor systems for new 
applications. Not only did we have to write low-level device 
drivers for the soil temperature and moisture sensors, but also 
for power control, as well as for calibration procedures. 
Moreover, using acquisitional processors such as TinyDB 
[Madden2003] was not an option in our case given the 
requirement to collect all the data. 

Finally, we identified a need for system design and 
deployment tools that instruct scientists where to place 
gateways and sensor relay points that can help transport 
collected measurements back to an Internet-connected base 
station [Burns2006]. These tools will replace the current trial-
and-error, labor-intensive process of manual topology 
adjustments that disturbs the deployment area.  

A wireless sensor network is only the first component in an 
end-to-end system that transforms raw measurements to 
scientifically significant data and results. This end-to-end 
system includes calibration, interfaces with external data 
sources (e.g., weather data), databases, Web Services 
interfaces, analysis, and visualization tools. 

While the sensor network community has focused its 
attention on routing algorithms, self-organization, and in-
network processing among other things, environmental 
monitoring applications5 require a different emphasis: reliable 
delivery of the majority (if not all) of the data and metadata, 
high quality measurements, data storage, analysis, and 
visualization, and reliable operation over long deployment 

                                                 
5 Sometimes derided as academically dull applications, a 

characterization with which the ecologist in our team does not agree.    

Figure 14. Two examples of download transactions 
showing packets (top) and Link Quality (bottom). The 
left example has low loss rate, the right is lossy.  
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cycles. We believe that focusing on these problems will 
lead to interesting new avenues in sensor network 
research. 
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