
Self-Stabilizing, Cost-Effective, and Fast-Convergent
Structured Overlay Maintenance

Yu Chen
Microsoft Research Asia
ychen@microsoft.com

Wei Chen
Microsoft Research Asia

weic@microsoft.com

Abstract

In this paper we study the self stabilization of structured overlay maintenance in decentralized peer-
to-peer (P2P) systems. Our study addresses a number of limitations of existing overlay maintenance
protocols, such as the reliance on a continuously available bootstrap system, the assumption of a known
system stabilization time, and the need to maintain large local membership lists. In particular, we present
a precise specification for self-stabilizing overlay maintenance protocols, with additional requirement on
messaging and local state costs. All properties of the specification are desired by applications, while
together they prohibit protocols with the limitations existed in previous proposals. We then provide a
complete protocol with proof showing that it satisfies the specification. Finally, we show how to improve
our self-stabilizing protocol to significantly reduce topology convergence time.

Keywords: structured overlay, self stabilization, peer-to-peer, fault tolerance

MSR-TR-2006-56

MSR-TR-2006-56 1

1 Introduction
Since their introduction in [18, 20, 23, 24], structured overlays have been used as an important substrate
for many peer-to-peer applications such as P2P storage [6, 9, 13, 21] and P2P multicast [4]. In a structured
peer-to-peer overlay, each node maintains a partial list of other nodes in the system, and these partial lists
together form an overlay topology that satisfies certain structural properties (e.g., a ring). Various system
conditions, such as node joins and leaves, message delays and network partitions, affect overlay topology, so
overlay topology should adjust itself appropriately to maintain structural properties. Topology maintenance
is crucial to the correctness and the performance of applications built on top of the overlay.

Most structured overlays are based on a logical key space, and they can be conceptually divided into two
components: leafset tables and finger tables.1 The leafset table of a node keeps its logical neighbors in the
key space, while the finger table keeps relatively faraway nodes in the key space to enable fast routing along
the overlay topology. The leafset tables are the key for maintaining a correct overlay topology since finger
tables can be constructed efficiently from the correct leafset tables. Therefore, in this paper we focus on
leafset maintenance. In particular, we focus on one-dimensional circular key space and the ring-like leafset
topology in this space, similar to many studies such as [20] and [23].

Leafset maintenance is a continuously running protocol that needs to deal with various system condi-
tions. One important criterion for leafset maintenance is self stabilization, a criterion frequently used in
studying robust and fault-tolerant distributed protocols [7]. Informally, a leafset maintenance protocol is
self-stabilizing if it is able to stabilize the leafset tables to the correct configuration after the underlying
system stabilizes (but without knowing about system stabilization), no matter how adverse the system con-
ditions were before system stabilization. Besides self stabilization, the protocol should also be cost-effective
because it is always running, and should stabilize the leafset fast to reduce transient periods with incorrect
topologies.

Existing studies on overlay maintenance have various limitations. Some investigate system level im-
provements without formal proofs on protocol guarantees [19, 3, 10]; some provide formal proofs to their
protocols but do not address fault tolerance and self stabilization [14]; and some propose one-shot proto-
cols for fast overlay construction under known system stabilization conditions without considering adverse
effects before system stabilization [1]. Among the studies of self-stabilizing protocols, some rely on a con-
tinuously available bootstrap system to actively participate in the self stabilization process [8, 22]; some
incur a significant amount of cost by maintaining a large membership list [12, 16]; and some only provides
a special case for self stabilization [2].

In this paper, we present a self-stabilizing protocol that removes the limitations in existing protocols.
In particular, we first provide a precise specification for self-stabilizing leafset maintenance protocols with
cost effectiveness requirements. All properties of the specification are desired by applications, while to-
gether they prohibit protocols with the above limitations. We then provide a complete protocol with proof
showing that it satisfies the specification. Finally, we show how to improve our self-stabilizing protocol to
significantly reduce the topology convergence time. We now explain our contributions in more detail.

Our study is based on a symmetric system model in which any node may join and leave the system
or crash, and there is no special group of nodes that is always available to act as a bootstrap system. For
studying self stabilization, we assume the system eventually stabilizes. But the protocol does not know
the system stabilization time, so it cannot easily nullify the impact of system conditions before system
stabilization.

Based on the system model, we provide a set of properties as a rigorous specification of self-stabilizing
1The term leafset is originally used in Pastry [20] while the term finger is originally used in Chord [23].

MSR-TR-2006-56 2

leafset maintenance protocol. One important property is Connectivity Preservation: If the underlying system
stabilizes and the topology is still connected, the maintenance protocol should not break the connectivity of
the topology while it evolves the topology towards the correct configuration. In addition to self-stabilizing
properties, we explicitly put requirements on cost effectiveness: The messaging and local state costs on a
node should only be related to the size of its leafset table, which is independent of the size of the system.

To deal with topology partitions caused by network partitions, we define a simple add(contacts) in-
terface, through which an application can add new contact nodes into a leafset to heal topology partitions.
Our specification makes it clear that after the underlying system stabilizes, the add(contacts) interface only
needs to be invoked once at one node to bridge the partitioned topology. Afterwards, the protocol should
continue to preserve connectivity and stabilize the topology by itself without further help. Hence, the re-
liance on an outside mechanism such as a bootstrap system is kept at the minimum.

Our specification prohibits protocols that either rely on a continuously available bootstrap system, or
maintain large local membership lists that is related to the size of the system, or assume that the system
stabilization condition is known. Therefore, it only permits protocols that remove these limitations existed
in previous protocols.

Next, we present a decentralized self-stabilizing protocol. To be cost-effective, the protocol needs to
remove extra entries in leafsets, but such removals may break topology connectivity, especially when there
are concurrent removals. We employ several mechanisms to deal with various concurrency issues, some of
which handle concurrent removals to nullify potential adverse impacts by system conditions before system
stabilization, while others avoid subtle livelock scenarios that would prevent the progress of the stabilization
process. We have a complete proof to show that the protocol satisfies our specification, and thus is both
self-stabilizing and cost-effective.

Finally, we provide new mechanisms to improve the convergence speed of the topology. These mech-
anisms utilize finger tables, and deal with topologies that are difficult to converge and are not addressed
by previous studies. Through simulations and analysis, we show that our fast convergence mechanisms
can shorten the convergence time from O(N) to O(log N), where N is the number of online nodes in the
system.

The rest of the paper is organized as follows. Section 2 discusses the related work. The system model
and the protocol specification are described in Sections 3 and 4. Section 5 provides the details of our self-
stabilizing protocol and the proof of its correctness. Section 6 describes our improvements to achieve fast
convergence. We conclude the paper in Section 7.

2 Related Work
Many existing structured P2P overlay proposals mention that each node should have a leafset table. How-
ever, those such as Pastry [20], CAN [18], and SkipNet [11] only provide brief descriptions on what a
correct leafset table looks like and how to fix it when the leafset table becomes incorrect due to system
churns. These proposals assume that there is a correct leafset table on each node to begin with, then give
methods to repair the leafset tables in response to various system events. Bamboo DHT [19] and the latest
Pastry improvements [3, 10] adopt practical mechanisms to improve overlay maintenance and routing cor-
rectness in a dynamic environment. These mechanisms are system level improvements, while there are no
proofs or formal studies on protocol guarantees, such as connectivity preservation and self stabilization.

In [2], Balakrishnan et. al. point out the topology maintenance issues of the original Chord [23] and
propose an “idealize” process to adjust the immediate successor of each node to improve topology mainte-
nance. This approach is essentially a self-stabilizing method, but it restricts itself to immediate successor
data structure. Therefore, it is only a special case of our protocol, is less robust, and is difficult to accommo-

MSR-TR-2006-56 3

date partition healing, which requires to maintain multiple links together to bridge partitioned components.
Some recent overlay maintenance protocols, such as T-Man [12] and TChord [16], address self sta-

bilization. However, they focus on creating an overlay with desired topology without considering global
membership changes due to system churns. They require to keep a large membership list on each node, so
the cost increases significantly when the system is large or the membership changes over time.

Authors of [8] and [22] also propose self-stabilizing overlay maintenance protocols. But their protocols
and proofs depend on the existence of a continuously available bootstrap system. In [8], the bootstrap
system needs to handle all join and repair requests, and needs to issue periodic broadcast messages for self
stabilization purpose; while in [22] each node must periodically initiate lookups to the bootstrap system.
These protocols impose significant load and availability requirement on the bootstrap system. In contrast,
our protocol only needs an outside mechanism such as a bootstrap system when the topology is partitioned,
and it only needs the bootstrap system once after system stabilization. Therefore, the load and availability
requirements on the bootstrap system is minimized.

Authors of Ranch [14] provide an overlay maintenance protocol with formal proof of correctness. How-
ever, they do not consider fault tolerance: all nodes leaves are “active leave”, in which case all nodes invoke
a special leave protocol before getting offline. They also do not show the self stabilization feature of their
protocol. We believe silent failures must be considered in a wide area peer-to-peer environment, and we
explicitly address this in our system model, our specification, and our protocol.

The above topology maintenance studies do not address the fast convergence issue for the special topolo-
gies that are difficult to converge, which are considered in this paper. In [1], Angluin et. al. proposed
a method for fast construction of an overlay network by a tree merging process. Their protocol is not a
self-stabilizing overlay maintenance protocol, because they assume that overlay construction is executed
when the underlying system is known to have stabilized and they do not consider adverse impacts of system
conditions before system stabilization.

In [5], the authors provide formal specifications for weakly and strongly consistent key-based routing
protocols in peer-to-peer systems, and they focus on strong consistency. The self-stabilizing maintenance
protocol presented in this paper can be used to support weakly consistent key-based routing.

3 System Model
We consider a distributed peer-to-peer system consisting of nodes (peers) from the set Σ = {x1, x2, . . . , }.
Each node has a unique numerical ID drawn from a one-dimensional circular key space K. We use x to
represent both a node x ∈ Σ and its ID in K. For convenience, we set K = [0, 1), all real numbers
between 0 and 1. We define the following distances in key space K: For all x, y ∈ K, (a) the clockwise
distance d+(x, y) is y − x when y ≥ x and 1 + y − x when y < x; (b) the counter-clockwise distance
d−(x, y) = d+(y, x), and (c) the circular distance,d(x, y) = min(d+(x, y), d−(x, y)).

Throughout the paper, we use continuous global time to describe system and protocol behavior, but
individual nodes do not have access to global time.

Nodes may join and leave the system or crash at any time. We treat node leave and crash as the same
type of event, that is, a node disappears from the system without notifying other nodes in the system. We
define a membership pattern Π as a function from time t to a finite subset of Σ, such that Π(t) refers to all
of the online nodes at time t. Nodes not in Π(t) are considered offline.

Each node has access to a local clock. The local clocks are not synchronized, but for simplicity we
assume that the drifts among local clocks are negligible (our protocol is still correct when we adjust timers
to accommodate bounded drifts among local clocks). A node can set a timer to be expired at a later time,
and it can cancel a pending timer or reset it with different values.

MSR-TR-2006-56 4

Every node in the system executes protocols by taking steps triggered by events, which include input
events invoked by applications, message receipt events, and timer expiration events. In each step, a node
may change its local state, set/cancel/reset some timers, and send out a finite number of messages. We
assume that the time to execute a step is negligible, but a node may fail during the execution of a step. For
any finite time interval, only a finite number of steps are executed by nodes in the system.

Nodes communicate with one another by sending and receiving messages through channels. The chan-
nels cannot create or duplicate messages, but they may delay or drop messages. We say that a message sent
from node x to node y is ∆-timely if the time elapsed from x sending m to y receiving m is at most ∆.

For the purpose of studying self stabilization, we assume that the system eventually stabilizes. In par-
ticular, there is an unknown time t0 and a known constant ∆ such that (a) the set of online nodes Π(t) for
all t ≥ t0 does not change, and (b) all messages sent at or after time t0 between online nodes are ∆-timely.2

We denote sset(Π) to be the finite set of stable nodes after time t0, i.e., sset(Π) = Π(t0). Note that in our
model we do not assume that there is a known group of nodes that are always online or always in the stable
set sset(Π).

4 Self-Stabilization in Leafset Maintenance
We now define what we mean by self stabilization for a leafset maintenance protocol. Our specification
always refers to an arbitrary execution of the protocol with an arbitrary membership pattern Π.

First, we define the function leafset(x, set) as follows. We have a fixed constant L ≥ 1, which infor-
mally means that the leafset of a node should have L closest nodes on each side of it in the circular space.
Given a finite subset set ⊆ Σ and a node x, If |set \{x}| < 2L, then leafset(x, set) = set \{x}. Otherwise,
sort set \ {x} as (a) {x+1, x+2, . . .} such that d+(x, x+1) < d+(x, x+2) < . . ., and (b) {x−1, x−2, . . .}
such that d−(x, x−1) < d−(x, x−2) < . . ., then, we have leafset(x, set) = {x+1, x+2, . . . , x+L} ∪
{x−1, x−2, . . . , x−L}.

In the leafset maintenance protocol, each node x maintains a variable neighbors , the value of which is a
finite subset of Σ. Informally, x.neighbors should eventually stabilize on the correct leafset of x, meaning
x.neighbors = leafset(x, sset(Π)), in which case the final topology resembles a ring structure.

Each node also has an interface function add(contacts), where contacts are a finite subset of Σ. This
function is used to bridge partitioned components. In particular, it can be used in the following situations:
(a) adding initial contacts when the system is initially bootstrapped; (b) introducing contact nodes when a
new node joins the system; and (c) introducing nodes in other partitioned components after the overlay is
partitioned (perhaps due to transient network partitions).

To formalize our requirements, we first need to address the connectivity of the leafset topology. Let
x.neighborst be the value of neighbors on x at time t after node x takes a step at time t (if there is a
step). The leafset topology at time t is a directed graph Gt = 〈Π(t), E(t)〉, where E(t) = {〈x, y〉|x, y ∈
Π(t) ∧ y ∈ x.neighborst}. We say that Gt is strongly connected if there is a directed path between any
pair of nodes in Π(t), and Gt is weakly connected (or simply connected) if there is an undirected path (when
treating edges in G(t) as undirected) between any pair of nodes in Π(t). Gt is disconnected if it is not
weakly connected.

Leafset stabilization requires the protocol to keep topology connectivity eventually, but many adverse
conditions before system stabilization time t0 may have lingering effects to connectivity even after t0. Thus
we need to define a time after which it is reasonable to require the protocol to nullify the adverse impacts
of system conditions before t0. We first define time t′0 ≥ t0 such that all messages sent before t0 are either

2If the constant ∆ is unknown, our protocol can gradually increase the timeout value such that it still eventually stabilizes the
system topology.

MSR-TR-2006-56 5

lost or received before time t′0, and all timers started before t0 have expired or been canceled/reset before
t′0. Such a time t′0 must exist because there are only a finite number of messages sent and a finite number of
timers started before t0. After t′0, system conditions before t0 will not directly affect the protocol behavior.
We add a ∆ beyond t′0 so that indirect effects carried by messages sent before t′0 are already shown before
time t′0 + ∆, and we require that after t′0 + ∆ the protocol should have the ability to nullify the indirect
effects of system conditions before t0. This is specified as the following property.

• Connectivity Preservation: If for some time t ≥ t′0 + ∆, Gt is weakly connected, then for all time
t′ > t, Gt′ is weakly connected.

Connectivity Preservation is a key property of our protocol, but it is not explicitly addressed or enforced
by previous protocols in a purely peer-to-peer environment. With the connectivity issue addressed, we now
define the requirement for self stabilization. We say that a leafset maintenance protocol is self-stabilizing if
it satisfies the following properties.

• Leafset Stabilization: If for some time t ≥ t′0 + ∆, Gt is weakly connected, then there exist a time
t′ > t, such that for all t′′ ≥ t′ and all x ∈ sset(Π), leafset(x, x.neighborst′′) = leafset(x, sset(Π)).

• Partition Healing: Suppose that there is a time t ≥ t′0 + ∆ such that Gt is partitioned into k dis-
connected components, and we have k nodes in Gt, x1, x2, . . . , xk, such that they are in k different
components. If there is an invocation of add({x2, x3, . . . , xk}) on x1 at time t′ > t, then there is a
time t′′ > t′ such that Gt′′ is weakly connected.

• Leafset Cleanup: If there is a time t after which no add() is invoked at any node in the system, then
there is a time t′ such that for all time t′′ ≥ t′ and all x ∈ sset(Π), leafset(x, x.neighborst′′) =
x.neighborst′′ .

The Leafset Stabilization property requires that after system stabilization the leafset table on every node
eventually contains the correct leafset entries, as long as the topology is connected at some time after t′0+∆.
Note that the Leafset Stabilization property should holds no matter if there are invocations of add() after
the topology is weakly connected. Leafset Stabilization includes the aspect of Connectivity Preservation, so
we do not include Connectivity Preservation in our specification. The Partition Healing property requires
that, if the topology is partitioned, the application only needs to invoke the add() interface once to heal the
partition. Then Leafset Stabilization guarantees to further stabilize the topology without any more help. The
Leafset Cleanup property requires that eventually the leafset maintenance protocol should only maintain the
actual leafset entries.

Besides self stabilization, the leafset maintenance protocol should also be cost-effective in terms of
both messaging costs and local state costs in the stable period. The messaging cost is defined in terms of
a detection-repair cycle, as defined below. In the steady state when the system and the leafset topology
stabilize, a detection-repair cycle is the length of the worst-case period from the time when a new crash
occurs to the time when the system detects the failure and repairs the leafset tables back to the steady state.
Measuring messaging costs based on one detection-repair cycle is appropriate for assessing and comparing
messaging costs among the leafset maintenance protocols, because a protocol may choose to artificially slow
down or speed up the pace of sending messages, but it correspondingly increases or decreases the detection
time and repair time. The requirement on local state and messaging cost is reflected by the following
property.

• Cost Effectiveness: If there is a time t after which no add() is invoked at any node in the system, then
in the steady state when the system and the leafset topology stabilize, the size of the local state on
each node is O(Poly(L)), and the total size of all messages sent by each node in one detection-repair
cycle is O(Poly(L)), where Poly(L) is a polynomial of L.

MSR-TR-2006-56 6

On node x:
1 Data structure:
2 neighbors: set of nodes intended for leafset entries, initially ∅.
3 add(contacts)
4 foreach y ∈ contacts
5 send PING-CONTACT to y

6 Upon receipt of PING-CONTACT from y:
7 send PONG-CONTACT to y

8 Upon receipt of PONG-CONTACT from y:
9 neighbors ← neighbors ∪ {y}
10 Repeat periodically with interval Ip:
11 foreach y ∈ neighbors , send PING-ALIVE to y

12 Upon receipt of PING-ALIVE from a node y:
13 send PONG-ALIVE to y

14 Repeat periodically with interval Ic:
15 foreach y ∈ neighbors
16 if not received PONG-{CONTACT, ALIVE, INVITE, REPLACE} from y in the past Tc time units
17 then neighbors ← neighbors \ {y}

Figure 1: Self-stabilizing leafset maintenance protocol, Part I: Add new contacts and check liveness.

The Cost Effectiveness property requires that eventually the communication and local state costs on each
node is only related to the size of the leafset table, not to the total number of online nodes in the system.
The consideration of both self stabilization and cost effectiveness is important to applications, but it makes
the protocol design more challenging. We show in the next section how to satisfy both requirements with
our leafset maintenance protocol.

5 Self-Stabilizing Leafset Maintenance Protocol
5.1 Protocol description
Our leafset maintenance protocol consists of five sub-protocols: (a) the add() protocol to add new contacts
supplied by the application (Fig. 1, lines 3–9); (b) the liveness-checking protocol to check the liveness of
nodes in the leafset (Fig. 1, lines 10–17); (c) the invite protocol to invite closer nodes into leafset (Fig. 2);
(d) the replacement protocol to replace faraway nodes that should not be in the leafset with closer nodes
(Fig. 3); 3 and (e) the deloopy protocol to detect and resolve a special incorrect topology called loopy
topology (Fig. 5). The replacement protocol (Fig. 3) is our key contribution, so we focus our attention on
this sub-protocol while briefly explaining other sub-protocols. Even though each sub-protocol has its own
functionality, they have to work together to provide the desired self-stabilizing and cost-effective features
specified in the previous section.

All these sub-protocols use a periodic ping-pong messaging structure. For ease of understanding, each
type of ping-pong message is sent independently. In actual implementations, one can unify all periodic
ping-pong messages together for efficiency.

On each node, the protocol maintains a neighbors set as required by the specification. The protocol
3 Technically, the faraway nodes for a node x are those in x.neighbors \ leafset(x, x.neighbors). Whenever necessary, we use

x.var to denote the variable var on x.

MSR-TR-2006-56 7

On node x:
18 Data structure:
19 cand : candidate nodes for neighbors , initially ∅.
20 Repeat periodically:
21 foreach y ∈ neighbors , send PING-ASK-INV to y

22 Upon receipt of PING-ASK-INV from a node y:
23 view ← leafset(y,neighbors)
24 send (PONG-ASK-INV, view) to y
25 cand ← cand ∪ {y}
26 Upon receipt of (PONG-ASK-INV, view) from y
27 cand ← cand ∪ view
28 Repeat periodically /* invite closer nodes */
29 foreach y ∈ cand \ neighbors
30 if y ∈ leafset(x, cand ∪ neighbors) then
31 send PING-INVITE to y
32 cand ← ∅
33 Upon receipt of PING-INVITE from y:
34 send PONG-INVITE to y

35 Upon receipt of PONG-INVITE from y:
36 if y ∈ leafset(x,neighbors ∪ {y}) \ neighbors
37 then neighbors ← neighbors ∪ {y}

Figure 2: Self-stabilizing leafset maintenance protocol, Part II: Invite closer nodes in the key space.

keeps an invariant that a node y is added into x.neighbors only after x receives a pong message directly
from y. The add(contacts) protocol (Fig. 1, lines 3–9) uses a ping-pong message loop to add nodes in
contacts to x.neighbors . The liveness-checking protocol (Fig. 1, lines 10–17) uses periodic ping-pong
messages to detect node departures and remove a node from neighbors if not receiving any pong messages
from the node for a time period Tc.

The invite protocol (Fig. 2) uses a variable cand to store candidate nodes to be invited into the neighbors
set. The candidate nodes are discovered by exchanging local leafset views through the PING-ASK-INV and
PONG-ASK-INV messages. Once node x discovers some new candidates, it uses the periodic PING-INVITE

and PONG-INVITE message loop to invite these candidates into x.neighbors . The invite is successful when
the candidate y sends back the PONG-INVITE message to x and x verifies that y is indeed qualified to be in
x’s leafset (lines 36–37). The invite protocols is in principle similar to other leafset maintenance protocols
(e.g. [23, 19, 12, 22]).

The replacement protocol (Fig. 3) is responsible of removing faraway nodes from the neighbors sets to
keep neighbors sets small. This protocol is our key contribution to provide cost-effective and self-stabilizing
leafset maintenance and the key differentiator with other protocols. When removing the faraway nodes, we
need to ensure both safety (Connectivity Preservation) and liveness (Leafset Cleanup and Leafset Stabiliza-
tion), in the presence of concurrent replacements and other system events.

To ensure safety, we use a closer node to replace a faraway node instead of removing it directly. The
basic replacement flow consists of two ping-pong loops. Suppose a node x intends to remove a node z
since z is not in leafset(x, x.neighbors). Node x uses the PING-ASK-REPL and PONG-ASK-REPL loop
(lines 42–49) with node z to obtain a replacement node y, which is recorded by x in x.z.repl . Then x uses

MSR-TR-2006-56 8

On node x:
38 Data structure:
39 repl : for each z ∈ neighbors , z.repl is a node to replace z, initially ⊥.
40 round : current round number of the replacement round, initially 0
41 commit : for each z ∈ neighbors , z.commit is the minimum replacement round number that x can commit

to replace z, initially 0
42 Repeat periodically:
43 foreach z ∈ neighbors \ leafset(x,neighbors)
44 send PING-ASK-REPL to z

45 Upon receipt of PING-ASK-REPL from z:
46 y ← v such that v ∈ leafset(x,neighbors) and d(z, v) < d(z, x) and

d(z, v) = minu∈leafset(x,neighbors) d(z, u)
47 send (PONG-ASK-REPL, y) to z

48 Upon receipt of (PONG-ASK-REPL, y) from z
49 if z ∈ neighbors then z.repl ← y

50 Repeat periodically:
51 round ← round + 1
52 foreach z ∈ neighbors \ leafset(x,neighbors) and z.repl 6= ⊥
53 send (PING-REPLACE, z, round) to z.repl
54 Upon receipt of (PING-REPLACE, z, rnd) from y:
55 if z ∈ neighbors then
56 z.commit ← round + 1
57 send (PONG-REPLACE, z, rnd) to y

58 Upon receipt of (PONG-REPLACE, z, rnd) from y:
59 if z ∈ neighbors \ leafset(x,neighbors) and y = z.repl then
60 neighbors ← neighbors ∪ {y}
61 if z.commit ≤ rnd then
62 neighbors ← neighbors \ {z}
63 y.commit ← round + 1

Figure 3: Self-stabilizing leafset maintenance protocol, Part III: Replace faraway nodes.

the PING-REPLACE and PONG-REPLACE message loop to verify with y about the replacement (lines 50–63).
If y finds z in y.neighbors at the time it receives the PING-REPLACE message from x, it acknowledges x
with a PONG-REPLACE message. Only after receiving the PONG-REPLACE message from y, x may replace
z with y in x.neighbors . This method tries to ensure that after the removal of edge 〈x, z〉 from the overlay,
there is still a path from x to z via y.

The above method, however, cannot nullify the indirect effects of system conditions before time t0
when there are concurrent replacements, and thus the topology connectivity could still be jeopardized. For
example, in Fig. 4, x replaces z with y after time t′0 + ∆ when it receives the PONG-REPLACE message
sent by y after time t′0. In the meantime, there is a concurrent task in which y wants to replace z with
u. After sending the PONG-REPLACE message to x, y receives the PONG-REPLACE message from u so y
successfully replaces z with u. By definition of t′0, u must send the PONG-REPLACE message to y after
t0, but could be before t′0. However, because several recent PONG-ALIVE messages sent by z to u before
time t0 are lost, the liveness checking timer on u triggered right after sending the PONG-REPLACE message
causes u to incorrectly remove z from u.neighbors . Thus even though the replacement of z on x happens

MSR-TR-2006-56 9

x

y

u

z

t0'+∆t0't0

PONG-REPLACE

PONG-REPLACE

PONG-ALIVE

Check liveness

Figure 4: Concurrent replacement tasks introduce indirect effects of system conditions before t0 and break
topology connectivity.

after t′0 + ∆, the path from x to z is unavailable after the replacement, due to an indirect effect of system
conditions before t0. A similar danger exists when x tries to replace z and y concurrently.

We introduce variables round and commit to eliminate these dangerous concurrent replacements. Vari-
able round is a counter incremented every time a node sends out PING-REPLACE messages (line 51). The
value of round is piggybacked with the PING-REPLACE and PONG-REPLACE messages to indicate the re-
placement round of the current replacement task. For each z ∈ x.neighbors , variable z.commit records the
lowest replacement round that x can commit to replace z (enforced in line 61). When y verifies the replace-
ment of z for x, y sets z.commit on it to be round +1 (line 56), which disables any concurrent replacement
tasks of z on y. Similarly, when x replaces z with y, it also sets y.commit to round + 1 (line 63) to disable
any concurrent replacement tasks of y. As shown by our proof, the use of round and commit variables is
the core mechanism to satisfy the Connectivity Preservation property.

Next, we restrict the selection of replacement node y in order to guarantee the Leafset Cleanup property.
A node y can be a replacement of z for x only when y is closer to x than z and is in z’s leafset (line 46).
The distance constraint avoids circular replacement, while the leafset constraint guarantees that y can suc-
cessfully verifies the replacement. The later is true because our invite protocol guarantees that eventually
the leafsets are mutual, so z will be in y’s leafset. These two replacement selection constraints guarantee the
progress of the replacement tasks, and thus the Leafset Cleanup property.

The mechanisms introduced so far are not enough to guarantee the Leafset Stabilization property, how-
ever. During the proof of an earlier version of the protocol, we uncover the following subtle livelock scenario
in which the add() invocations interfere with leafset stabilization. Whenever node x wants to replace z with
y, the replacement is rejected because x just replaced another node u with z and therefore only committed
to replace z in a higher round. The rejections can keep happening if an application keeps invoking add({u})
on x at inopportune times such that the edge from x to u is kept being added back to the topology. The
inability for x to replace z with y is not an issue by itself. However, it is possible that there is a node v that
should be in x’s leafset, and the only way x learns about v is through z by the replacement protocol (the
invite protocol will not help if all nodes in z.neighbors are outside x’s leafset range). In this case, x cannot
replace z with y and thus will not learn about v, so the leafset stabilization will not occur.

To fix this problem, we break the replacement of z with y on node x into two phases. First, x can add
node y into x.neighbors (line 60), without checking the constraint of z.commit ≤ rnd . Next, x can remove

MSR-TR-2006-56 10

On node x:
64 Data structure:
65 succ: a derived variable, succ = x if neighbors = ∅

else succ = y ∈ neighbors such that d+(x, y) = min{d+(x, z) : z ∈ neighbors}
66 Repeat periodically:
67 if neighbors 6= ∅ and d+(x, 0) < d+(x, succ)
68 send (PING-DELOOPY, x) to succ
69 Upon receipt of (PING-DELOOPY, u) from y:
70 if x = u then return
71 if neighbors = ∅ or d+(x, 0) < d+(x, succ) then
72 cand ← cand ∪ {u}
73 send PONG-DELOOPY to u
74 else
75 send (PING-DELOOPY, u) to succ
76 Upon receipt of PONG-DELOOPY from y:
77 cand ← cand ∪ {y}

Figure 5: Self-stabilizing leafset maintenance protocol, Part IV: Loopy detection.

z only when the condition z.commit ≤ rnd holds (lines 61–62). With this change, x can still find closer
nodes through z even if x cannot replace z.

We also find another similar livelock scenario if the replacement node is selected from z’s neighbors set
rather than its leafset (leafset(z, z.neighbors)) in line 46. The discovery of these subtle and even counter-
intuitive livelock scenarios shows that a rigorous and complete proof helps us in discovering subtle concur-
rency issues that are otherwise difficult to discern.

With the sub-protocols explained so far, the topology may still not be correct, because it can be in a
special state called loopy state as defined in [2]. A node’s successor is the closest node in its neighbors
set according to the clockwise distance. A topology is in the loopy state if following the successor links
one may traverse the entire key space more than once before coming back to the starting point. We use
a deloopy protocol (Fig. 5) similar to the one in [2] to detect the loopy state and resolve it. The protocol
essentially initiates a PING-DELOOPY message along the successor links to see if the message makes a
complete traversal of the logical space before coming back to the initiator. If so, a loopy state is found, and
the protocol puts the two end nodes of this traversal into each other’s cand sets, so that the invite protocol
is triggered to resolve the loopy state.

5.2 Proof of correctness for the self-stabilizing protocol
Our proof always refers to a particular execution of the algorithm with a membership pattern Π.

For two different points x and y in the key spaceK, we denote the interval (x, y) as the interval from x to
y in the clockwise direction, excluding point x and y. That is, (x, y) = {z ∈ K : 0 < d+(x, z) < d+(x, y)}.

Let Ip and Ic be the intervals for a node to periodically send PING-ALIVE messages and check liveness
of nodes, and let Tc be the liveness timeout value, as shown in the protocol (Fig. 1).

Lemma 1 If Ic, Tc ≥ Ip + 2∆, then at or after time t′0, liveness checking protocol (lines 14–17) will not
remove any online nodes in sset(Π) from the neighbors set of any node.

Proof. Suppose, for a contradiction, that there exist nodes x, y ∈ sset(Π) and a time t ≥ t′0 such that

MSR-TR-2006-56 11

x removes y from x.neighbors at time t in the liveness checking protocol (lines 14–17). Without loss of
generality, we assume t is the first such time. From the algorithm (line 16), we know that x does not receive
any PONG-{CONTACT, ALIVE, INVITE, REPLACE} messages from y in the time period [t − Tc, t]. Since
Tc ≥ Ip + 2∆, the above is true for the period [t− (Ip + 2∆), t]. Note that the periodic timer for checking
liveness is scheduled at time t − Ic and expires at time t ≥ t′0. By the definition of t′0, t − Ic ≥ t0. Since
Ic > Ip + 2∆, we have t− (Ip + 2∆) ≥ t0.

We claim that y is in x.neighbors in the period [t − (Ip + 2∆), t]. To see that this is true, first, x
removes y from x.neighbors at time t when executing line 17, so y was in x.neighbors right before time
t. If y was not in x.neighbors in the entire period in [t − (Ip + 2∆), t], then y must be added back to
x.neighbors at some time in this period. However, according to the algorithm, a node y can be added to
x.neighbors only upon the receipt of a message PONG-CONTACT (line 9), or PONG-INVITE (line 37), or a
message PONG-REPLACE (line 60). Since we know that x does not receive any of these messages from y in
the time period [t− (Ip + 2∆), t], y must be in x.neighbors through the entire period [t− (Ip + 2∆), t].

Given the period [t−(Ip+2∆), t−2∆] with length Ip, x must send one PING-ALIVE message to y since
y ∈ x.neighbors in this time period. Since t− (Ip + 2∆) ≥ t0, this PING-ALIVE message is received by y
within ∆ time units. Upon the receipt of this PING-ALIVE message, y sends to x a PONG-ALIVE message,
which should be received by x within ∆ time units. Therefore, x should have received a PONG-ALIVE

message from y in the time period [t− (Ip + 2∆), t], which is a contradiction. 2

In the following descriptions, we assume that Ic, Tc ≥ Ip + 2∆.
Since the liveness checking protocol (Figure 1) will not remove any online nodes from the neighbors

set after time t′0, the removal of such nodes must be caused by the replacement protocol (Figure 3). With
the replacement protocol, if a node u wants to remove a node w from its neighbors set, it must find another
node v as the replacement, in order to preserve the connectivity from u to w. Lines 42–49 in Figure 3 shows
how u could find v. Then u sends a PING-REPLACE to v to ask for v’s approval for the replacement. If v
agrees with the replacement, v will send a PONG-REPLACE back to u, and u can replace w with v upon the
receipt of the approval.

We call the step that successfully executes lines 54–57 v’s verification of the replacement of w for node u,
and the step that successfully executes lines 58–63 u’s replacement of w with v. These two steps are the key
in the process for connectivity preservation. We define a replacement sequence as R = (u, v, w, tvf , trp), in
which u replaces w with v, with tvf and trp as the time points at which v’s verification and u’s replacement
of w occur, respectively.

Lemma 2 Suppose there are three replacement sequences R1 = (u, v, w, t1vf , t1rp), R2 = (u, r, v, t2vf , t2rp),
and R3 = (v, s, w, t3vf , t3rp) in the execution. Then we have

1). t2rp > t1rp implies t2vf > t1rp.
2). t3rp > t1vf implies t3vf > t1vf .

Proof. Proof of 1). At time t1rp, v is merged into u.neighbors (line 60) and v.commit on u is set to
u.round + 1 (line 63). At time t2rp, u replaces v with r (lines 60 and 62). According to the algorithm,
this implies that v.commit ≤ rnd at time t2rp, where rnd is the round number variable embedded in the
PONG-REPLACE message from r (line 61). Thus the corresponding PING-REPLACE message is sent at some
time t with u.round ≥ v.commit . This implies that u.round is increased comparing to its value at time
t1rp. Since u.round only monotonically increases, we have t ≥ t1rp. Because t is the time that u sends the
PING-REPLACE to r, and t2vf is the time that r receives that message, it must be true that t2vf > t. Therefore,
t2vf > t ≥ t1rp.

MSR-TR-2006-56 12

Proof of 2). At time t1vf , v verifies the replacement of w so w.commit on v is set to v.round + 1
(line 56). At a later time t3rp, v replaces w with s, which implies that the round number rnd embedded
in the PONG-REPLACE message from s to v satisfies w.commit ≤ rnd (line 61). This means that the
corresponding PING-REPLACE message with rnd is sent at a time t at or after time t1vf such that rnd
is greater than the value of v.round at time time t1vf . Since at time t3vf this PING-REPLACE message is
received at s, we have t3vf > t ≥ t1vf . 2

Lemma 3 For a replacement sequence R = (u, v, w, tvf , trp) with w ∈ sset(Π), if tvf ≥ t′0, then at any
time t ≥ tvf , there is a path from v to w in the directed graph Gt.

Proof. To prove the lemma, we prove the following statement by induction: For any replacement sequence
R = (u, v, w, tvf , trp) with w ∈ sset(Π) and tvf ≥ t′0, for any finite step sequence σ started at the step of
v’s verification of the replacement at time tvf , there is a path p = (v0 = v, v1, . . . , vm = w) from v to w in
the directed graph G, where G is derived from the neighbors sets of all online nodes after the step sequence
σ, and p and σ have the following property:

(*) For any edge 〈vi, vi+1〉 on the path, either vi verifies the replacement of vi+1 for some node x
(lines 54–57) in the step sequence σ, or vi replaces some node x with vi+1 (lines 58–63) in the
step sequence σ.

By our system model, there are only a finite number of steps that can occur in any finite time interval,
so the above statement will cover all time after tvf . We prove the above statement by an induction on the
number of steps k in the step sequence σ.

In the base case where k = 1, σ has one step, which is v’s verification of the replacement of w at time
tvf . According to the algorithm, right after this step we have w ∈ v.neighbors . Since tvf ≥ t′0, we have
v ∈ sset(Π). Since we also have w ∈ sset(Π), we know that edge 〈v, w〉 is in G where G is the directed
graph after v’s verification step. So the path we need is p = (v, w). The (*) property holds for p and σ,
since v verifies the replacement of w for node u in σ (the only step in σ).

We now suppose that the statement is true for less than k steps and we need to show it is also true for k
steps where k > 1. Let σ′ be the step sequence with k steps and σ be the prefix of σ with k − 1 steps. Let
sk be the k-th step in σ′. Let G be the graph after the sequence σ and G′ be the graph after sequence σ′. By
the induction hypothesis, there is a path p = (v0 = v, v1, . . . , vm = w) from v to w in G. By definition, all
nodes on the path are in sset(Π). If step sk does not affect path p, then we are done. If step sk does affect
path p, it could be one of the following two types: (a) sk is the removal of vi+1 from vi.neighbors when
vi executes the liveness checking protocol (lines 14–17) for some i < m; or (b) sk is the replacement of
vi+1 with some node z in vi.neighbors (lines 58–63), for some i < m. By Lemma 1, case (a) cannot occur
because all vi’s are in sset(Π), and all steps in σ′ occur at or after t′0. Therefore we only need to consider
case (b).

Let this replacement sequence be R1 = (vi, z, vi+1, t1, t
′
1). By the algorithm, step sk occurs when

vi receives a (PONG-REPLACE, vi+1, r) message from z, where r is a replacement round number. Ac-
cording to the algorithm, we know that before step sk, vi.vi+1.commit ≤ r (line 61), and after step sk,
vi.z.commit = vi.round + 1 (line 63). Since step sk is the replacement of vi+1 with z in vi.neighbors ,
there is a corresponding step before sk at which z verifies the replacement of vi+1 for vi. Let this step be s.

We claim that step s must be in σ′ but it is not the first step in σ′. To show the claim, we use the induction
hypothesis. By the (*) property of the induction hypothesis, in σ either vi verifies the replacement of vi+1

for some node x or vi replaces some node x with vi+1. In the first case, vi verifies the replacement of vi+1

MSR-TR-2006-56 13

for some node x in σ. Let this step be s′. Because sk is after s′, we can apply Lemma 2 2) and conclude that
step s is after s′, so s is in σ′ but not the first one in σ′. In the second case, vi replaces some node x with
vi+1 in σ. Let this step be s′. Because sk is after s′, we can apply Lemma 2 1) and conclude that step s is
after s′, so s is in σ′ but not the first one in σ′.

Now let σ1 be the suffix of σ′ started with the step s. The length of σ1 is less than k. By the definition
of the first step s in σ1, z receives the (PING-REPLACE, vi+1, r) message from vi at step s. This implies that
during the entire execution of σ1, we have vi.round ≥ r.

For the replacement sequence R1 = (vi, z, vi+1, t1, t
′
1), we can apply induction hypothesis on σ1 and

know that there is a path p1 from z to vi+1 in G′, and the (*) property holds for p1 and σ1.
We now claim that 〈vi, vi+1〉 is not on path p1. To show this claim, suppose, for a contradiction, that

〈vi, vi+1〉 is on the path p1. By the (*) property, there are two cases. In the first case, vi verifies the
replacement of vi+1 for some node x in σ1. Suppose this step is s′′, which must be after s and before
sk. By the algorithm, after s′′ we have vi.vi+1.commit = vi.round + 1. Since vi.round ≥ r during σ1,
we have vi.vi+1.commit ≥ r + 1, which contradicts to our earlier conclusion that vi.vi+1.commit ≤ r
before sk. In the second case, vi replaces some node x with vi+1 in σ1. By the algorithm, after this step
vi.vi+1.commit = vi.round + 1. Thus vi.vi+1.commit ≥ r + 1 during σ1, again contradicting with our
conclusion that vi.vi+1.commit ≤ r before sk.

With the claim that 〈vi, vi+1〉 is not on path p1, we can see that 〈vi, vi+1〉 is removed from G′, but instead
we have 〈vi, z〉, and a path p1 from z to vi+1 in G′. Thus, there is still a path from vi to vi+1, and we can
use this path to replace 〈vi, vi+1〉 in path p, such that in G′ we still have a path p′ from v to w.

Finally, we need to show that path p′ and step sequence σ′ satisfy the (*) property. We only need to show
edge 〈vi, z〉 for the property, since all other edges are either from path p or path p1, and by the induction
hypothesis, they satisfy the (*) property. For edge 〈vi, z〉, we know that vi replaces vi+1 with z in step sk,
the last step of σ′. So the (*) property holds for edge 〈vi, z〉. We now finish the induction step. 2

Corollary 4 If a node u replaces node w ∈ sset(Π) with node v at time t ≥ t′0 + ∆, then there is still a
path from u to w in Gt after the replacement.

Proof. If u replaces w with v at time t ≥ t′0 + ∆, then v verifies this replacement at or after time t′0. The
corollary then follows directly from Lemma 3. 2

Lemma 5 (Connectivity Preservation) If for some time t ≥ t′0 + ∆, Gt is weakly connected, then for all
time t′ > t, Gt′ is weakly connected.

Proof. After time t′0 + ∆, some edge in Gt′0+∆ may be removed in Gt only by some replacement steps in
the replacement protocol (part III) or node removal steps in the liveness checking protocol (part I). Lemma 1
shows that no edges in Gt′ for any t′ ≥ t′0+∆ can be removed by the liveness checking protocol. Corollary 4
shows that after time t′0 + ∆, any replacement that removes an edge 〈u,w〉 with w ∈ sset(Π) still keeps a
path from u to w. Therefore, all replacements keep connectivity, and thus Gt′ for all time t′ > t ≥ t′0 + ∆
is still weakly connected if Gt is weakly connected. 2.

Lemma 6 (Partition Healing) Suppose that there is a time t ≥ t′0 + ∆ such that Gt is partitioned into
k disconnected components, and we have k nodes in Gt, x1, x2, . . . , xk, such that they are in k different
components. If there is an invocation of add({x2, x3, . . . , xk}) on x1 at time t′ > t, then there is a time
t′′ > t′ such that Gt′′ is weakly connected.

MSR-TR-2006-56 14

Proof. Let the k disconnected components of Gt be P1, P2, . . . , Pk. By Corollary 4 and a similar argument
as in the proof of Lemma 5, we know that Pi will keep to be connected after time t for all i = 1, 2, . . . , k.
During the invocation of add({x2, x3, . . . , xk}) on x1 at time t′ > t, x1 sends a PING-CONTACT message to
nodes x2, x3, . . . , xk. By the definition of Gt, these nodes are online, so they receives the PING-CONTACT

message from x1 and reply with PONG-CONTACT messages to x1. When x1 receives these messages, it
add xi into x1.neighbors (line 9), and thus component P1 and Pi become connected. Therefore, when x1

receives all the PONG-CONTACT messages at time t′′ > t′, graph Gt′′ is weakly connected. 2

Lemma 7 Let t1 = t′0 + Tc + Ic. We have ∀t > t1, ∀x ∈ sset(Π), x.neighborst ⊆ sset(Π).

Proof. After t′0, all the messages sent from nodes that are not in sset(Π) have been delivered. For any node
x, y is added into x.neighbors only if x receives any of the PONG-CONTACT, PONG-ALIVE, PONG-INVITE,
or PONG-REPLACE messages from y directly. So our algorithm will not add any offline nodes into the
neighbors set of any online nodes after t′0.

Let y ∈ x.neighborst′0
for arbitrary nodes x ∈ sset(Π) and y 6∈ sset(Π). At any time after t′0 + Tc,

it must be the case that x has not received any messages from y for more than Tc time. During the time
interval [t′0 + Tc, t

′
0 + Tc + Ic], the check freshness timer must have expired at least once, which triggers the

logic in the Part I of our protocol to remove y. So after t′0 + Tc + Ic, y 6∈ x.neighbors . 2

From now on, Let t1 be as defined in Lemma 7.
In the following lemmas, for any node x, we denote x.neighbors both {x+1, x+2, . . .} and as

{x−1, x−2, . . .}, such that d+(x, x+i) < d+(x, x+(i+1)) and d−(x, x−i) < d−(x, x−(i+1)), for all
i = 1, 2,

Lemma 8 ∃t2 ≥ t1,∀t, t′ > t2, ∀x ∈ sset(Π), leafset(x, x.neighborst) = leafset(x, x.neighborst′)

Proof. To prove the lemma, we define the following derived variables for each node x ∈ sset(Π).

x.R+ =

{
L− |s.neighbors| if |x.neighbors| < L
d+(x, x+L) otherwise

x.R− =

{
L− |s.neighbors| if |x.neighbors| < L
d−(x, x−L) otherwise

Let x.sum = x.R+ + x.R−.
According to Lemmata 1 and 7, the replacement protocol is the only one that will remove nodes from

x.neighbors after t1 for any x ∈ sset(Π). Because the replacement protocol only removes nodes that are
not in leafset(x, x.neighbors) (line 59), the value of x.sum will not change due to the replacement.

Therefore, after t1, the change of x.sum is only caused by the additions of nodes into x.neighbors . It
is easy to verify that when nodes are added into x.neighbors , variables x.R+ and x.R− either remain the
same or decrease, and thus x.sum either remains the same or decreases. Moreover, x.sum remains the same
if and only if leafset(x, x.neighbors) remains the same.

Since sset(Π) is a finite set, and by Lemma 7 after t1 x.neighbors ⊆ sset(Π), there are only a finite
number of possible values of x.sum after t1. So there exist a time t2,x > t1 after which x.sum does not
change. So after t2,x, leafset(x, x.neighbors) remains the same. Let t2 = max{t2,x : x ∈ sset(Π)}, and
the lemma holds. 2

From now on, let t2 be as defined in Lemma 8.

MSR-TR-2006-56 15

Corollary 9 After time t2, the invite protocol (Part II) will not add any node into the neighbors set of any
online node in line 37.

Proof. It is clear that every execution of line 37 that adds a node y into x.neighbors changes the leafset of
node x, so following Lemma 8, no online nodes executes line 37 to add another node into x.neighbors after
time t2. 2

Lemma 10 ∀t > t2, y ∈ leafset(x, x.neighborst) if and only if x ∈ leafset(y, y.neighborst).

Proof. Suppose ∃x, y ∈ sset(Π),∃t > t2, y ∈ leafset(x, x.neighborst) but x 6∈ leafset(y, y.neighborst).
According to Lemma 8, leafset(x, x.neighborst) and leafset(y, y.neighborst) will not change any more
after t2. So we can use leafset(x, x.neighbors) and leafset(y, y.neighbors) to refer to x and y’s leafset after
time t2. Since y ∈ leafset(x, x.neighbors), x will send PING-ASK-INV to y sometime after t (line 21).
When y receives this message at some time t′ > t, y adds x into y.cand (line 25).

Consider y’s leafset leafset(y, y.neighbors), and it is represented as {y−1, y−2, . . .}. If
|leafset(y, y.neighbors)| < L or d−(y, x) < d−(y, y−L), then x 6∈ y.neighbors , because otherwise x is
in leafset(y, y.neighbors). In this case, at the next time after t′ when y invites closer nodes (lines 28–32),
we have x ∈ y.cand \ y.neighbors and x ∈ leafset(y, y.cand ∪ y.neighbors), so y sends a PING-INVITE

message to x (line 31). Node x will respond to y with a PONG-INVITE message. When y receives
this PONG-INVITE, we have x ∈ leafset(y, y.neighbors ∪ {x}), so y adds x into y.neighbors , and thus
leafset(y, y.neighbors) now include x, contradicting to Lemma 8 stating that no leafset changes after time
t2. Therefore, we know that |leafset(y, y.neighbors)| ≥ L and d−(y, x) > d−(y, y−L). By a symmetric
argument on {y+1, y+2, . . .}, we also know that d+(y, x) > d+(y, y+L).

Hence, we now have 2L different nodes {y−1, y−2, . . . , y−L} and {y+1, y+2, . . . , y+L} such that for all
i ∈ {1, 2, . . . , L}, d−(y, y−i) < d−(y, x) and d+(y, y+i) < d+(y, x). Since y ∈ leafset(x, x.neighbors),
there exists some j ∈ {1, 2, . . . , L} such that y = x−j or y = x+j . Without loss of generality, suppose
y = x+j . Let the interval I = (x, y). We have that there are less than L nodes in x.neighbors in interval I
since y = x+j , but there are at least L nodes {y−1, y−2, . . . , y−L} in y.neighbors in interval I .

Therefore, when y receives the PING-ASK-INV message from x at time t′, the view that y calculates
for x in line 23, which is leafset(x, y.neighbors), includes at least L nodes in interval I . Therefore there
exists at least one node z ∈ view \ x.neighbors . Node y sends this view to x (line 24). When x receives
the view, it add it into x.cand (line 27). Next time when x invites closer nodes (lines 28–32), we have
z ∈ x.cand \ x.neighbors and z ∈ leafset(x, x.cand ∪ x.neighbors), because y ∈ leafset(x, x.neighbors)
and d+(x, z) < d+(x, y). So x sends a PING-INVITE message to z (line 31). Since z ∈ y.neighbors , by
Lemma 7, z ∈ sset(Π). Therefore, z receives the PING-INVITE message from x and sends a PONG-INVITE

message back to x. When x receives this PONG-INVITE message from z, it adds z into x.neighbors (line 37),
unless z is already in x.neighbors . In either case, the leafset of x changes, contradicting to Lemma 8. 2

We define two helper functions succ(x, set) and pred(x, set) as the following. When set \ {x} is
empty, succ(x, set) = pred(x, set) = x. When set \ {x} is not empty, succ(x, set) is the node y ∈
set \ {x} such that d+(x, y) = min{d+(x, v) : v ∈ set \ {x}}, and pred(x, set) is the node z ∈ set \ {x}
such that d−(x, z) = min{d−(x, v) : v ∈ set \ {x}}. We also define two derived variables x.succ
(the successor of x) and x.pred (the predecessor of x) for node x, x.succ = succ(x, x.neighbors) and
x.pred = pred(x, x.neighbors).

Given a topology graph Gt at time t, we say that the graph is loopy if it satisfies the following conditions:
(a) there exists a node v0 such that d+(v0, 0) < d+(v0, v0.succt); and (b) on the sequence v0, v1, v2, . . . with
vi+1 = vi.succt, there exists a node vj 6= v0 such that d+(vj , 0) < d+(vj , vj .succt).

MSR-TR-2006-56 16

Lemma 11 For all time t > t2, Gt is not loopy. Moreover, there exists time t′ > t2 such that no node sends
PONG-DELOOPY message (line 73) after time t′.

Proof. Suppose, for a contradiction, that at time t > t2 graph Gt is loopy. By Lemma 8 we know that after
time t2 the leafset of every node remains unchanged, and therefore, the successor of every node remains
unchanged. We can use x.succ to represent x.succt for all time t > t2. If Gt is loopy, there exists a node
v0 such that d+(v0, 0) < d+(v0, v0.succ), and on the sequence v0, v1, v2, . . . with vi+1 = vi.succt, there
exists a node vj 6= v0 such that d+(vj , 0) < d+(vj , vj .succ). Without loss of generality, let vj be the first
node in the sequence that has the property. According to the deloopy protocol (Part IV), node v0 will send a
(PING-DELOOPY, v0) message to v0.succ (line 68). By Lemma 7, every node vi on the sequence is online,
so every node vi relay the (PING-DELOOPY, v0) message to vi.succ (line 75), until the message reaches
vj . On vj , the loopy detection condition on line 71 is true, so vj adds v0 into vj .cand (line 72) and send
a PONG-DELOOPY message back to v0 (line 73). When v0 receives this message, it adds vj into v0.cand
(line 77).

By the condition d+(v0, 0) < d+(v0, v0.succ) and d+(vj , 0) < d+(vj , vj .succ), it is straightforward to
see that either v0 is in the interval (vj , vj .succ), or vj is in the interval (v0, v0.succ). If v0 is in the interval
(vj , vj .succ), then we know that v0 6∈ vj .neighbors and v0 ∈ leafset(vj , vj .neighbors ∪ {v0}). Since v0 is
added into vj .cand , v0 will send a PING-INVITE to v0 (line 31), which will lead to the addition of v0 into
vj’s leafset, contradicting to Lemma 8 stating that the leafset of any node will not change after t2. If vj is in
the interval (v0, v0.succ), similarly we can show that vj will be added into v0’s leafset, again a contradiction.
Therefore, Gt is not loopy for all time t > t2.

Since Gt is not loopy for all time t > t2, any (PING-DELOOPY, x) message sent by x in line 68 after
time t2 will not trigger loopy detection, i.e., it will not trigger some node y to send PONG-DELOOPY to x.
Since all messages sent before time t2 eventually disappear from the system, there is a time t′ after which
no node sends PONG-DELOOPY message. 2

Lemma 12 Suppose that there is a time t > t2 and two nodes x, z ∈ sset(Π) such that z ∈ x.neighborst \
leafset(x, x.neighborst).
1). There exist a time t′ > t and a node y ∈ leafset(z, z.neighborst) such that d(x, y) < d(x, z) and
y ∈ x.neighborst′ .
2). Suppose further that node x and z are such that d(x, z) = max{d(u, w) : w ∈ u.neighborst \
leafset(u, u.neighborst), u, w ∈ sset(Π)}, and there is no invocation of add() at or after time t − 2∆.
Then there is a time t′ > t and a node y ∈ leafset(z, z.neighborst) such that d(x, y) < (x, z) and x
replaces z with y at time t′.

Proof. By Lemma 8, the leafset of every node does not change after time t2, so we just use
leafset(v, v.neighbors) to represent the leafset of v after time t2.

We prove (1) first. Suppose, for a contradiction, that at time t > t2 we have x, z ∈ sset(Π) such that
z ∈ x.neighborst \ leafset(x, x.neighborst), but for all time t′ > t and all y ∈ leafset(z, z.neighborst)
such that d(x, y) < d(x, z), we have y 6∈ x.neighborst′ . Note that, this means that z is not replaced by x
after time t in line 62. Because if x replaces z with a node y, then y is a replacement provided by z, which
means y ∈ leafset(z, z.neighbors) and d(x, y) < d(x, z). According to line 60, y is added to x.neighbors
before z is replaced. Since no such y is found after time t, we know that z is never replaced.

By Lemmata 1 and 7, after time t2 only the replacement protocol can remove a node from a neighbors
set. Thus we know that z is always in x.neighbors after time t. Since the leafset of x does not change after
time t2, z is always in x.neighbors \ leafset(x, x.neighbors) after time t.

MSR-TR-2006-56 17

By Lemma 10, we know that x 6∈ leafset(z, z.neighbors), because otherwise z ∈
leafset(x, x.neighbors). Then leafset(z, z.neighbors) must have 2L nodes. Otherwise, z.neighborst′ is
the same as leafset(z, z.neighbors) with less than 2L nodes for all time t′ ≥ t. In this case, x cannot be in
z.neighborst′ . Since z is always in x.neighbors , x will send a PING-ASK-INV message z, and z will add x
to z.cand after receiving the message (line 25). Then later z will send x a PING-INVITE and eventually x
will be added into z.neighbors and thus changes leafset(z, z.neighbors), contradicting to Lemma 8.

Because z is always in x.neighbors \ leafset(x, x.neighbors) after time t, x periodically send
PING-ASK-REPL messages to z, and z will try to find a replacement in leafset(z, z.neighbors) (line 46).
Among the 2L nodes in leafset(z, z.neighbors), there must be some node v that satisfies d(x, v) < d(x, z).
In fact, it is easy to verify that if d(x, z) = d+(x, z), then there are L nodes in the interval (x, z) satisfying
the above condition, and if d(x, z) = d−(x, z), there are L nodes in the interval (z, x) satisfying the above
condition. This means that z will be able to find a proper replacement y and sends (PONG-ASK-REPL, y)
back to x. Because y is selected deterministically from leafset(z, z.neighbors), z will always provide the
same y to x after t2. When x receives this message, it sets x.z.repl to y.

Then x will send (PING-REPLACE, z, rnd) to y (line 53). By Lemma 10, y ∈ leafset(z, z.neighbors)
implies that z ∈ leafset(y, y.neighbors). So when y receives the (PING-REPLACE, z, rnd) from x, y sends
(PONG-REPLACE, z, rnd) back to x (line 57). When x receives this message from x at a time t′ > t,
we know that z ∈ x.neighborst′ \ leafset(x, x.neighbors) and y = x.z.repl . Therefore, the condition
in line 59 holds and x adds y into x.neighbors (line 60). Since we have d(x, y) < d(x, z) and y ∈
leafset(z, z.neighbors), Part (1) of the lemma holds.

We now prove Part (2). We continue the proof in Part (1) with the added assumption that d(x, z) =
max{d(u,w) : w ∈ u.neighborst \ leafset(u, u.neighborst)}, and there is no invocation of add() after time
t. Under these conditions and x’s repeatedly attempts to replace z, we show that at some time the condition
in line 61 will become true and thus the replacement will succeed eventually.

If the condition in line 61 is not true, then after x sends out the (PING-REPLACE, z, rnd) to y, either x
verifies the replacement of z for another node u (line 56), or x replaces another node u with z (line 63).

For the first case, we consider y.z.repl for all y such that z ∈ y.leafset \ leafset(y, y.neighbors).
Because every y periodically refreshes y.z.repl by sending PING-ASK-REPL to z and z always returns
nodes in its own leafset, there exist a time τ after which x 6= y.z.repl for all y. So after τ , nobody will
send (PING-REPLACE, z, rnd) to x, and x will never verify the replacement of z after τ + ∆. Therefore,
x.z.commit will not increase due to the verifications of z for some other nodes after τ + ∆.

For the second case, it implies d(x, z) < d(x, u) and u ∈ x.neighborst′ \ leafset(x, x.neighbors) for
some time t′ > t. According to the choice of x and z, we conclude that u cannot be in x.neighborst.
Therefore u is added after time t but before time t′. From Corollary 9, no nodes are added into x.neighbors
after time t2 by the invite protocol. By our condition, no add() is invoked at or after time t − 2∆ so no
node is added into x.neighbors at or after time t due to the receipt of PONG-CONTACT message. So the only
place that x can add u into x.neighbors after time t is in the replacement protocol (line 60). If so, it means
there is yet another node v such that d(x, u) < d(x, v) and v ∈ x.neighborst′′ \ leafset(x, x.neighbors) and
t < t′′ < t′. However, we know that v cannot be in x.neighborst either, so v is added into x.neighbors after
time t. We cannot repeat this argument forever since there are only a finite number of nodes, so we reach
a contradiction. Therefore, after t x.z.commit will not increase due to x’s own replacement of some other
nodes.

Since x.z.commit stops increase after max(τ + ∆, t), we can always find a time t′′ ≥ max(τ + ∆, t)
at which x.round ≥ x.z.commit and x sends PING-REPLACE to a node y ∈ leafset(z, z.neighborst′′) and
d(x, y) < d(x, z). After x gets the corresponding PONG-REPLACE from y, the condition in line 61 must be

MSR-TR-2006-56 18

true and x replaces z with y. 2

Lemma 13 (Leafset Cleanup) If there is a time t after which no add() is invoked at any node in the system,
then there is a time t′ such that for all time t′′ ≥ t′ and all x ∈ sset(Π), leafset(x, x.neighborst′′) =
x.neighborst′′ .

Proof. Let t′1 be max(t2, t + 2∆). Given any time τ , we define a metric m(τ) = max{d(x, z) :
z ∈ x.neighborsτ \ leafset(x, x.neighborsτ), x, z ∈ sset(Π)} if there exists x and z such that z ∈
x.neighborsτ \ leafset(x, x.neighborsτ), otherwise m(τ) = 0. We show that after time t′1, m(τ) is non-
increasing as τ increases and eventually it becomes 0.

First, we notice that m(τ) only changes when some neighbors set changes. After time t2, we know that
no node is added into any sink set due to the invocation of add(), no node is added by the invite protocol
(Corollary 9), and no node is removed by the liveness check protocol (Lemmata 1 and 7). Therefore, a
node may only be added or removed by the replacement protocol. If a node y is added into x.neighbors
by the replacement protocol in line 60 at a time τ , there must be a node z such that z ∈ x.neighborsτ \
leafset(x, x.neighborsτ) (line 59) and d(x, y) < d(x, z) (line 46). Hence this step of adding y will not affect
metric m(τ). The removal of a node cannot increase m(τ), therefore after time t′1, m(τ) is non-increasing.

If at a time τ > t′1 we have m(τ) > 0, let x and z be the nodes such that z ∈ x.neighborsτ \
leafset(x, x.neighborsτ) and d(x, z) = m(τ). By Lemma 12 2), there is a time τ ′ > τ such that x replaces
z with a node y with d(x, y) < d(x, z). If there are multiple such pairs of x and z with d(x, z) = m(τ),
they will all be replaced by Lemma 12 2). Therefore, there is a time τ ′ > τ such that m(τ ′) < m(τ). Since
there are finite nodes in sset(Π), metric m(τ) can only take finitely many values, therefore eventually m(τ)
will become 0 at some time t′ and stays as 0 afterwards. When this occurs, we know that for every node
x ∈ sset(Π), x.neighborst′′ = leafset(x, x.neighborst′′) for all time t′′ > t′. 2

We sort a node x’s neighbors set as the following:
x.neighbors+ = {x+1, x+2, . . .} s.t. d+(x, x+i) < d+(x, x+(i+1)), i = 1, 2, . . .
x.neighbors− = {x−1, x−2, . . .} s.t. d−(x, x−i) < d−(x, x−(i+1)), i = 1, 2, . . .

Lemma 14 1). ∀t, t′ > t2, x.succt = x.succt′ and x.pred t = x.pred t′ .
2). ∀t > t2, x.succt = y is equivalent to y.pred t = x.
3). Suppose x.neighborst 6= ∅. ∀t > t2, ∀x ∈ sset(Π), consider the nodes {x+1, x+2, . . . , x+M} in
x.neighbors+ and {x−1, x−2, . . . , x−M} in x.neighbors− with M = min(L, |x.neighbors|). We have
x+i.succt = x+(i+1) ∧ x−i.pred t = x−(i+1), 1 ≤ i ≤ M − 1.

Proof.
Proof of 1). It is immediate from Lemma 8 and the fact that x.succt and x.pred t is only determined by

leafset(x, x.neighborst).
Proof of 2). The statement is trivially true when x.neighborst = ∅, so we consider x.neighborst 6= ∅.

From x.succt = y, we know that y ∈ leafset(x, x.neighborst). By Lemma 10 it must be true that x ∈
leafset(y, y.neighborst). Suppose y.pred t = z 6= x, it must be true that d−(y, z) < d−(y, x). According to
the definition of distance function d− and d+, we know that d+(x, z) < d+(x, y).

Since leafset(x, x.neighbors) never change, x will send PING-ASK-INV message to y later, accord-
ing to our protocol part II. Upon the receipt of x’s PING-ASK-INV message, y calculates the view as
leafset(x, y.neighbors). This implies that y will put a node u ∈ y.neighbors with d+(x, u) ≤ d+(x, z)
in the view variable in the acknowledged PONG-ASK-INV to x, thus allowing u to enter x.cand . Since

MSR-TR-2006-56 19

d+(x, u) < d+(x, y), next time when x invites closer nodes (lines 28–32), x must send a PING-INVITE

to some node v such that d+(x, v) ≤ d+(x, u) < d+(x, y) and v is online. Node v will reply
with a PONG-INVITE to x, and when x receives this message, x adds v into its neighbors set since
v ∈ leafset(x, x.neighbors ∪ {v}), unless v is already in x.neighbors by that time. In either case, it
contradicts to Lemma 8 saying that the leafset never changes. Therefore, we have y.pred t = x.

We can also prove that y.pred t = x implies x.succt = y in a similar way.
Proof of 3). First we prove x+i.succt = x+(i+1), 1 ≤ i ≤ M − 1. Suppose this is not true. There must

exists a j (1 ≤ j ≤ M − 1), such that x+j .succt = z 6= x+(j+1).
Suppose d+(x+j , z) > d+(x+j , x+(j+1)). Because x+j ∈ leafset(x, x.neighborst) implies

x ∈ leafset(x+j , x+j .neighborst) and leafset(x+j , x+j .neighbors) never changes, x+j will send
PING-ASK-INV message to x some time after t, according to our protocol part II. Upon the receipt of
the PING-ASK-INV message, x will put x+(j+1) (or some other nodes in the interval (x+j , z)) in the view
variable in the PONG-ASK-INV message as the reply. Using a similar reasoning in the proof of 2), we know
that the leafset of x+j changes, a contradiction.

Suppose d+(x+j , z) < d+(x+j , x+(j+1)). Because x+j ∈ leafset(x, x.neighborst) and
leafset(x, x.neighbors) never changes, x will send PING-ASK-INV message to x+j some time after t, ac-
cording to our protocol part II. Upon the receipt of the PING-ASK-INV message, x+j will put z in the view
variable in the PONG-ASK-INV message as the reply, leading to the change of leafset(x, x.neighbors), again
a contradiction.

So it must be true that x+i.succt = x+(i+1), 1 ≤ i ≤ M − 1. x−i.pred t = x−(i+1), 1 ≤ i ≤ M − 1
could be proved in the similar way. 2

After time t2, since the leafset does not change, x.succ and x.pred do not change either, so we just use
them to represent their values at any time after time t2. After time t2, given any node x ∈ sset(Π), let closed
sequence ρ(x) = (x = x0, x1, . . . , xk) such that xi.succ = xi+1 for all i = 0, 1, . . . , k − 1, xi = xj iff.
i = j, and xk.succ = xj for some j = 0, 1, . . . , k. We say that ρ(x) is a closed loop if xk.succ = x0 = x.
For convenience, we also use ρ(x) to represent the set of nodes in the sequence.

Corollary 15 For any node x ∈ sset(Π), ρ(x) exists, is unique, and is a closed loop. Moreover, for all
y ∈ ρ(x), leafset(y, y.neighborst) ⊆ ρ(x) for all time t > t2.

Proof. Closed sequence ρ(x) exists because sset(Π) is a finite set. It is unique because the x.succ variable
has a unique value. Suppose xk.succ = xj 6= x0 with 0 < j ≤ k. If xk.succ = xk, xk.neighbors \ {xk}
must be empty according to the definition of helper function succ. However, by Lemma 14 2) we have
xk.pred = xk−1 6= xk, which means that xk.neighbors \ {xk} is not empty. This is contradictory. If
xk.succ = xj(j < k), then according to Lemma 14 2), xk = xj .pred . Since by definition we also have
xj−1 = xj .pred , so xj−1 = xk, still a contradiction. Therefore, xk.succ = x0 and ρ(x) is a closed loop.
By Lemma 14 3), it is straightforward to see that for all y ∈ ρ(x), leafset(y, y.neighborst) ⊆ ρ(x) for all
time t > t2. 2

Lemma 16 If for some time t ≥ t′0 + ∆, Gt is weakly connected, then after time t2, for any node x ∈
sset(Π), ρ(x) = sset(Π).

Proof. Suppose, for a contradiction that there exists x, z ∈ sset(Π) such that z ∈ sset(Π) \ ρ(x). By
Lemma 5, the topology is always connected after time t. Thus, for a time t′ > max(t, t2), Gt′ is connected.
So there is a path from x to z when treating edges in Gt′ as undirected. Along the path, we can find node x0

and z0 such that x0 ∈ ρ(x) and z0 6∈ ρ(x), and either 〈x0, z0〉 is in Gt′ or 〈z0, x0〉 is in Gt′ .

MSR-TR-2006-56 20

Consider the first case where 〈x0, z0〉 is in Gt′ . By Corollary 15, z0 ∈ x0.neighborst′ \
leafset(x0, x0.neighborst′). By Lemma 12 1), there is a time τ0 > t′ and a node y0 ∈
leafset(z0, z0.neighborst′) such that d(x0, y0) < d(x0, z0) and y0 ∈ x0.neighborsτ0 . By Corol-
lary 15, we know that y 6∈ ρ(x). Otherwise since y ∈ ρ(x) leads to leafset(y0, y0.neighborsτo

) ⊆
ρ(x), and z0 ∈ leafset(y0, y0.neighborsτ0) by Lemma 10, z0 ∈ ρ(x), a contradiction. Since
leafset(x0, x0.neighborsτ0) ⊆ ρ(x), we also have y0 6∈ leafset(x0, x0.neighborsτ0). Thus we find a
node y0 such that y0 ∈ x0.neighborsτ0 \ leafset(x0, x0.neighborsτ0) and d(x0, y0) < d(x0, z0). We
can continue applying Lemma 12 1) to find nodes y1, y2, . . . and time points τ1, τ2, . . . such that yi ∈
x0.neighborsτi

\ leafset(x0, x0.neighborsτi
), d(x0, yi+1) < d(x0, yi), and τi < τi+1. However, since there

are only a finite number of nodes in sset(Π), this process cannot continue indefinitely, a contradiction.
Consider the second case where 〈z0, x0〉 is in Gt′ . In this case, we consider the closed loop ρ(z0). We

have x0 6∈ ρ(z0), otherwise it means ρ(x) = ρ(x0) = ρ(z0) and thus z0 ∈ ρ(x). Then we can apply the
same argument as in case 1 with the roles of x0 and z0 reversed and reaches a contradiction. Therefore the
lemma holds. 2

Lemma 17 If for some time t ≥ t′0 + ∆, Gt is weakly connected, then for all time t′ > t2 and all x ∈
sset(Π), x.succt′ = succ(x, sset(Π)).

Proof. We consider the time after t2 when the leafset on every node does not change. In this case, we omit
the subscript in x.succ.

We only consider the cases that sset(Π) 6= ∅. If sset(Π) = {x}, according to Lemma 7, x.neighbors
becomes empty after t1. So x.succ = x and succ(x, sset(Π)) = x, the lemma holds. Now consider the
case that |sset(Π)| > 1. Suppose, for a contradiction, that there is some node x ∈ sset(Π) such that
x.succ 6= succ(x, sset(Π)) = y.

Consider the closed loop ρ(x). By Lemma 16, ρ(x) = sset(π), so |ρ(x)| > 1, and y ∈ ρ(x). We claim
that for any leafset topology Gt containing the above closed loop ρ(x), Gt must be loopy, which contradicts
to Lemma 11, and thus the lemma holds.

To prove the claim, we use the following properties of the circular space K. For u, v ∈ K and u 6= v,
we use the notion [u, v) to denote the interval (u, v) ∪ {u}. It is obvious that w ∈ [u, v) is equivalent to
d+(u,w) < d+(u, v). Moreover, it is also straightforward to verify that 0 ∈ [u, v) is equivalent to u = 0
or v < u. With this, we know that given a sequence u0, u1, . . . , uk where all nodes in the sequence are
different, if 0 ∈ [u0, uk), then 0 ∈ [ui, ui+1) for some i ∈ {0, 1, . . . , k − 1}. This is because, if some
ui = 0, then 0 ∈ [ui, ui+1); if no ui is 0, then uk < u0, which means there must exist ui+1 < ui, which
implies 0 ∈ [ui, ui+1).

Let z = x.succ. Since y = succ(x, sset(Π)) and x.neighbors ⊆ sset(Π), we have d+(x, y) <
d+(x, z), i.e. y ∈ [x, z). We now consider the following two possible cases. In the first case, we have
0 ∈ [x, y). It is easy to verify that in this case 0 ∈ [x, z) and 0 ∈ [z, y). Thus in the sequence from z to y
in ρ(x), there is a node u such that 0 ∈ [u, u.succ). Since all nodes in the sequence from z to y is different
from x, we find two nodes x and u in ρ(x) such that 0 ∈ [x, x.succ) and 0 ∈ [u, u.succ). By definition this
means that any leafset topology containing ρ(x) is loopy.

In the second case, 0 ∈ [y, x). Thus in the sequence from y to x in ρ(x) (but excluding x) we have
a node u such that 0 ∈ [u, u.succ). Now consider the interval [x, z). If 0 ∈ [x, z), we already find two
different nodes x and u such that 0 ∈ [x, x.succ) and 0 ∈ [u, u.succ), which means the leafset topology
containing ρ(x) is loopy. If 0 6∈ [x, z), then we have 0 ∈ [z, x). Together with 0 ∈ [y, x) and y ∈ [x, z), it is
easy to verify that 0 ∈ [z, y). Thus in the sequence from z to y in ρ(x) (but excluding y) we have a node v
such that 0 ∈ [v, v.succ). The sequence from z to y excluding y has no overlap with the sequence from y to

MSR-TR-2006-56 21

x, so u 6= v. Therefore we again find two nodes u and v such that 0 ∈ [u, u.succ) and 0 ∈ [v, v.succ), which
implies that the leafset topology containing ρ(x) is loopy. In all cases, we reach a contradiction. Therefore,
the lemma holds. 2

Lemma 18 (Leafset Stabilization) If for some time t ≥ t′0 + ∆, Gt is weakly connected, then there exist a
time t′ > t, such that for all t′′ ≥ t′ and all x ∈ sset(Π), leafset(x, x.neighborst′′) = leafset(x, sset(Π)).

Proof. After time t2, there is no leafset change, and thus we omit the subscript in x.succ and
leafset(x, x.neighbors). It is sufficient to show that for all time after t2 and for all x ∈ sset(Π),
leafset(x, x.neighbors) = leafset(x, sset(Π).

By Lemma 17, for all x ∈ sset(Π), x.succ = succ(x, sset(Π)). According to the definition of succ and
pred, we know that succ(x, sset(Π)) = y is equivalent to pred(y, sset(Π)) = x. According to Lemma 14
1) and 2), we also have x.pred = pred(x, sset(Π)).

Now consider {x+1, x+2, . . . , x+M} in x.neighbors+, and {x−1, x−2, . . . , x−M} in x.neighbors−

with M = min(L, |x.neighbors|), for an arbitrary node x ∈ sset(Π). By Lemma 14 3) we have
x+1 = x.succ = succ(x, sset(Π)) and x+(i+1) = x+i.succ = succ(x+i, sset(Π)), x−1 = x.pred =
pred(x, sset(Π)) and x−(i+1) = x−i.pred = pred(x−i, sset(Π)), for all i = 1, 2, . . . , M − 1. This directly
implies that succ(x+i, sset(Π)) ∈ leafset(x, sset(Π)) and pred(x−i, sset(Π)) ∈ leafset(x, sset(Π)), for all
i = 1, 2, . . . , M − 1. Thus we have leafset(x, x.neighbors) ⊆ leafset(x, sset(Π)).

If |leafset(x, x.neighbors)| < |leafset(x, sset(Π))|, then leafset(x, x.neighbors) = x.neighbors , and
since ρ(x) = sset(Π), there must be some node y ∈ ρ(x) such that y 6∈ x.neighbors . Let y be the first such
one following the sequence ρ(x), i.e., y = z.succ while z ∈ x.neighbors . In this case the invite protocol
(part II) will cause z to introduce new nodes to x and thus x’s leafset will add new nodes in.

Therefore we have |leafset(x, x.neighbors)| = |leafset(x, sset(Π))|. In this case, if
leafset(x, sset(Π)) 6⊆ leafset(x, x.neighbors), there exists a node y ∈ leafset(x, sset(Π)) \
leafset(x, x.neighbors). So either there exists a x+j such that y ∈ (x+j , x+(j+1)) for some j =
1, 2, . . . , M − 1, or there exists a x−j such that y ∈ (x−j , x−(j+1)) for some j = 1, 2, . . . , M − 1. In the
first case, we have x+j .succ = x+(j+1) 6= succ(x+j , sset(Π)), contradicting to Lemma 17. In the second
case, we have x−(j+1).succ = x−j 6= succ(x−(j+1), sset(Π)), again contradicting to Lemma 17. Therefore
leafset(x, sset(Π)) ⊆ leafset(x, x.neighbors), and thus leafset(x, sset(Π)) = leafset(x, x.neighbors). 2

Theorem 1 When Ic, Tc ≥ Ip + 2∆, the leafset maintenance protocol provided in Fig. 1, 2, 3, and 5 is
self-stabilizing. In particular it satisfies the Leafset Stabilization, Partition Healing, and Leafset Cleanup
properties.
Proof. The theorem follows from Lemmata 6, 13, and 18. 2

Theorem 2 When Ic, Tc ≥ Ip+2∆, the leafset maintenance protocol provided in Fig. 1, 2, 3, and 5 satisfies
the Cost Effectiveness property. In particular, in the steady state the size of local state on each node is O(L)
and the total size of messages sent by each node in one detection-repair cycle is O(L2).
Proof (Sketch). In the steady state when both the system and the leafset topology are stabilized, each node
only maintains at most 2L nodes in its neighbors set, at most 4L nodes in its cand set, and for each node y
in the neighbors set y.repl is a single node. Thus the size of the local state is O(L).

Considering the messaging cost, each node (a) periodically sends at most 2L PING-ALIVE messages
with at most 2L PONG-ALIVE responses; (b) periodically sends at most 2L PING-ASK-INV messages with
at most 2L PONG-ASK-INV messages, each of which contains at most 2L nodes. The deloopy protocol

MSR-TR-2006-56 22

sends at most N messages in one deloopy period among all nodes where N is the number of online nodes in
the steady state. So each node only sends out one message on average in one deloopy period. Nodes will not
send PING-CONTACT, PONG-CONTACT, PING-INVITE, PONG-INVITE, PING-ASK-REPL, PONG-ASK-REPL,
PING-REPLACE, PONG-REPLACE, and PONG-DELOOPY messages in the steady state. Therefore, in a con-
stant period of time the total size of all messages one node sends is at most O(L2).

We now consider the length of the detection-repair cycle. In the worst case, a node sends our a
PONG-ALIVE message to all nodes in its neighbors set and then crashes immediately at time t, the
PONG-ALIVE message takes ∆ to arrive at all nodes, and this message makes others not detecting the failure
for another Tc time units. Right before time t + ∆ + Tc, all nodes checked the liveness once, so it takes
another Ic to do the next check. Thus by time t+∆+Tc+Ic, all processes detect the failure and removed the
crashed node from their neighbors . Then these nodes need to add new nodes back via the invite protocol.
Let Ia be the interval of sending periodic PING-ASK-INV messages. Then it may take another Ia to send
PING-ASK-INV out, which takes another 2∆ to collect views back. Let Ii be the interval of sending periodic
PING-INVITE messages. It then takes another Ii to send out PING-INVITE, and takes another 2∆ to receive
PONG-INVITE, by which the leafset should be repaired. Therefore, in the worst case, the detection-repair
cycle takes ∆+Tc + Ic time for detection, and takes Ia + Ii +4∆ for repair. Therefore, the detection-repair
cycle is constant. Since each node only sends out O(L2) messages in a constant period, the total messaging
cost on each node in one detection-repair cycle is O(L2). 2

6 Improvement for Fast Convergence
In this section, we describe several optimizations to our self-stabilizing protocol to significantly speed up
the stabilization process.

Leafset topology stabilization consists of two periods. The first period starts at the system stabilization
time t0 and ends when all neighbors sets on all nodes contain the correct leafset members, and it corre-
sponds to the Leafset Stabilization property. The second period starts at the end of the first period and ends
when all neighbors sets only contain leafset members (provided there are no more add() invocations), and
it corresponds to the Leafset Cleanup property. We call the length of the first period convergence time and
the length of the second period cleanup time. Reducing the convergence time is important because it sig-
nificantly reduces the transition period where overlay routings may be incorrect, and it makes the topology
more robust under churn. Thus, we focus our discussion on reducing convergence time. Reducing cleanup
time is listed as one of our future work items.

To reduce convergence time, we make use of finger tables, since they maintain faraway links so that a
node may learn about other nodes in its leafset faster through finger tables. Our first optimization is on the
invite protocol. In addition to provide neighbors set to other nodes as leafset candidates (line 23), a node
can also provide its finger table entries as candidates. We can adapt our proof easily and show that as long
as the finger tables do not contain offline entries eventually, our protocol is still correct. This optimization
is similar to ones used by other protocols.

There are several special classes of topologies in which the above optimization is not helpful. We
find that these special topologies are more difficult to converge than random topologies, but they are not
addressed by previous studies. We now propose a few additional optimizations that handle these cases.

6.1 Merging of the multi-ring topology
One special class of topologies is multi-ring topologies, in which several ring structures are connected by
a few cross-ring links (Fig. 6). Multi-ring topologies can be generated due to network partitions. After a
network partition, the topology may be broken into several disconnected components, all of which stabilize

MSR-TR-2006-56 23

x

u

z

y

Finger

Finger

v

Figure 6: Multi-ring topology.

into a ring structure. When the network recovers from the partition, the application or a bootstrap system
may add a few cross-ring links to connect the topology.

In Fig. 6, there are two separate rings and the only cross-ring link is from x to z (z is in x’s neighbors
set). The invite protocol will not be helpful for this topology when all candidates that z can provide to x are
outside x’s current leafset range. In this case, through the replacement protocol node x will eventually learn
a node in z’s ring that is within x’s leafset range, for example, node y in Fig. 6. We call two close nodes x
and y learning about each other the creation of the first healing point between the two separate rings. Once
the first healing point is created, the two rings will merge by the invite protocol along the two directions on
the rings. Let N be the number of online nodes in the multi-ring topology. With our current protocol, it
may take O(N) time to create the first healing point and take another O(N) time to merge the two rings.
To reduce the convergence time, we need to shorten both the period to create the first healing point and the
period to merge rings.

To speed up the creation of the first healing point, we allow node x to issue a special routing request
starting from z using x’s own ID as the routing key. With the help of fingers, the routing takes O(log N)
steps to reach the routing destination y. So within O(log N) time, x can learn about y, creating the first
healing point.

To speed up the ring merging process after the first healing point, we want to spawn more healing points
to merge the rings in parallel instead of merging in linear fashion along the two directions. To do so, we let
leafset neighbors exchange their finger tables. For example, as shown in Figure 6, suppose u is a finger of x
and v is a finger of y, and the first healing point is already created between nodes x and y. Through finger
table exchange between x and y, x learns about v. When x probes its finger u, x tells u about v since v is
close to u from x’s point of view. On receiving the probe message, u puts v in its cand set. If v is indeed in
u’s leafset range, v will be pulled into u.neighbors by the invite protocol. When this happens, a new healing
point between u and v is created. This process is carried out for all finger table entries in order to spawn as
many healing points as possible.

Although there is no guarantee that every round of leafset exchanges and finger probes at a healing point
generates new healing points, we anticipate that well distributed fingers (which is satisfied by most finger
protocols) will lead to exponentially fast creations of new healing points. Therefore, we conjecture that
the above fast convergence process will lead to O(log N) convergence time for multi-ring topologies and

MSR-TR-2006-56 24

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

1200

System scale

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e
(r

ou
nd

s)

2
4
8
16
32

Figure 7: Convergence time vs. system scale without fast convergence algorithm on multi-ring topologies.

10
3

10

15

20

25

30

35

40

45

System scale

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e
(r

ou
nd

s)

2
4
8
16
32

10
3

10

15

20

25

30

35

40

45

System scale

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e
(r

ou
nd

s)

2
4
8
16
32

(a) With Chord finger (b) With Symphony finger

Figure 8: Convergence time vs. system scale using fast convergence algorithm.

even other topologies. We verified the conjecture by simulations, while we plan to conduct a mathematical
analysis to prove it.

The simulations are conducted by running our protocol with an initial multi-ring topology in an envi-
ronment without node churns. Each multi-ring topology may be composed of 2, 4, 8, 16, and 32 rings.
For each type of the multi-ring topology, we generate 100 instances for each of the following system scale
(number of online nodes): 256, 512, 1024, 2048 and 4096, and take the average convergence time among
these instances. We set the intervals of all periodic ping-sending timers in our protocol to be equal, so that
we can use a single round number to measure the convergence time.

In Fig. 7, we show the convergence time before applying the fast convergence algorithm. The result
indicates that the convergence time of multi-ring topologies increases linearly with the system scale. In
Fig. 8, we show the convergence time on multi-ring topologies when the protocol uses the fast convergence
algorithm with two types of fingers: the Chord fingers [2] and the Symphony fingers [15]. With both types
of fingers, the convergence time is O(log N). Therefore, our simulation shows that our fast convergence
mechanisms reduces convergence time to O(log N).

We also conducted simulations with random initial topologies, and the results show that even with-
out the fast convergence algorithm random topologies converge in O(log N) time. This indicates that the
convergence of multi-ring topologies are indeed more difficult than random topologies.

MSR-TR-2006-56 25

6.2 Fast loopy detection
Another special case we want to deal with is the loopy topology. Our current deloopy protocol (Part IV) may
take O(N) time to find a deloopy point — two different nodes that are both immediately preceding point
0 in the key space. To speed up loopy detection, we would like to use finger tables to forward the deloopy
message faster. However, if a finger crosses point 0 in the key space, it may miss the deloopy point and
forward the deloopy message back to the initiator. Therefore, we propose to use a special finger structure
that we call perfect skip list, since it resembles a special centralized skip list data structure ([17]).

The finger table is a simple recursive structure. The i-th level finger on node x is calculated as fol-
lows: x.fingers[0] = x.succ, and x.fingers[i + 1] = (x.fingers[i]).fingers[i]. We also need to know
whether the i-th level finger crosses the point 0 in the key space. This is done by recursively cal-
culating a boolean variable crossed [i]: x.crossed [0] = (x.succ crossed 0), and x.crossed [i + 1] =
(x.crossed [i] or (x.fingers[i]).crossed [i]). If the topology is in the loopy state, the correct fingers and
crossed variables can be computed in parallel in O(log N) time.

The PING-DELOOPY messages are passed by a node along its highest level finger that does not cross
point 0. We proved that if the topology is loopy, the above mechanism will find the deloopy point in
O(log N) time. Once the deloopy point is found, we can use the parallel merging process described in
Section 6.1 to quickly converge the topology into a correct ring structure.

7 Conclusion and Future Work
In this paper, we propose a formal specification of self-stabilizing structured overlays, and introduce a
complete protocol that matches the specification. The protocol is able to preserve overlay connectivity in
a purely peer-to-peer manner while maintaining a small leafset, and it is able to converge any connected
topology to the correct configuration. We then consider the convergence speed of our protocol and provide
algorithms to achieve O(log N) convergence time. Our protocol removes the limitations existed in previous
protocols. Our future work includes theoretical analysis on our fast convergence algorithm, improvements
to reduce cleanup time, and generalizations of our results to other structured overlay topologies.

References
[1] D. Angluin, J. Aspnes, and J. Chen. Fast construction of overlay networks. In Proceedings of the

17th ACM Symposium on Parallelism in Algorithms and Architectures, Las Vegas, Nevada, USA, July
2005.

[2] H. Balakrishnan, D. Karger, and D. Liben-Nowell. Analysis of the evolution of peer-to-peer systems.
In Proceedings of the 21st ACM Symposium on Principles of Distributed Computing, Monterey, Cali-
fornia, USA, July 2002.

[3] M. Castro, M. Costa, and A. Rowstron. Performance and dependability of structured peer-to-peer
overlays. In Proceedings of the International Conference on Dependable Systems and Networks 2004,
Palazzo dei Congressi, Florence, Italy, June 2004.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE Journal on Selected Areas in Communications, 20(8),
Oct. 2002.

[5] W. Chen and X. Liu. Enforcing routing consistency in structured peer-to-peer overlays: Should we and
could we? In Proceedings of the 5th International Workshop on Peer-to-Peer Systems, Santa Babara,
California, USA, Feb. 2006.

MSR-TR-2006-56 26

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with
CFS. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, Chateau Lake
Louise, Banff, Canada, Oct. 2001.

[7] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
17(11):643–644, 1974.

[8] S. Dolev and R. I. Kat. Hypertree for self-stabilizing peer-to-peer systems. In Proceedings of the 3rd
IEEE International Symposium on Network Computing and Applications, 2004.

[9] P. Druschel and A. Rowstron. PAST: Persistent and anonymous storage in a peer-to-peer network-
ing enviroment. In Proceedings of the 8th USENIX Workshop on Hot Topics in Operation Systems,
Elmau/Oberbayern, Germany, May 2001.

[10] A. Haeberlen, J. Hoye, A. Mislove, and P. Druschel. Consistent key mapping in structured overlays.
Technical Report TR05-456, Rice Computer Science Department, Aug. 2005.

[11] N. J. A. Harvey, M. B. Jones, S. Saroin, M. Theimer, and A. Wolman. Skipnet: A scalable overlay
network with practical locality properties. In Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems, Seattle, Washington, USA, Mar. 2003.

[12] M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay topology management. In Proceedings
of the 3rd International Workshop on Engineering Self-Organising Applications, Utrecht, The Nether-
lands, July 2005.

[13] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale per-
sistent storage. In Proceedings of the 9th ACM Symposium on Architectural Support for Programming
Languages and Operating Systems, Cambridge, Massachusetts, USA, Nov. 2000.

[14] X. Li, J. Misra, and C. G. Plaxton. Active and concurrent topology maintenance. In Proceedings of the
18th International Symposium on Distributed Computing, Trippenhuis, Amsterdam, the Netherlands,
Oct. 2004.

[15] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a small world. In Pro-
ceedings of the 4th USENIX Symposium on Internet Technologies and Systems, Seattle, Washington,
USA, Mar. 2003.

[16] A. Montresor, M. Jelasity, and O. Babaoglu. Chord on demand. In Proceedings of the 5th IEEE
International Conference on Peer-to-Peer Computing, Konstanz, Germany, Aug. 2005.

[17] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In Workshop on Algorithms and Data
Structures, pages 437–449, 1989.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable net-
work. In Proceedings of the SIGCOMM’01 ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, San Deigo, California, Aug. 2001.

[19] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT. In Proceedings of the
USENIX Annual Technical Conference, Boston, Massachusetts, USA, June 2004.

MSR-TR-2006-56 27

[20] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of IFIP/ACM Middleware, Heidelberg, Germany, Nov. 2001.

[21] A. Rowstron and P. Druschel. Storage management and caching in past, a large-scale, persistent peer-
to-peer storage utility. In Proceedings of the 18th ACM Symposium on Operating Systems Principles,
Chateau Lake Louise, Banff, Canada, Oct. 2001.

[22] A. Shaker and D. S. Reeves. Self-stabilizing structured ring topology p2p systems. In Proceedings of
the 5th IEEE International Conference on Peer-to-Peer Computing, Konstanz, Germany, Aug. 2005.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings of the SIGCOMM’01 ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication, San Deigo,
California, USA, Aug. 2001.

[24] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A
resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communica-
tions, 22(1):41–53, Jan. 2004.

	Introduction
	Related Work
	System Model
	Self-Stabilization in Leafset Maintenance
	Self-Stabilizing Leafset Maintenance Protocol
	Protocol description
	Proof of correctness for the self-stabilizing protocol

	Improvement for Fast Convergence
	Merging of the multi-ring topology
	Fast loopy detection

	Conclusion and Future Work

