
Solving Sparse Linear Constraints

Shuvendu K. Lahiri Madanlal Musuvathi

April 19, 2006

Technical Report
MSR-TR-2006-47

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052



This page intentionally left blank.



Solving Sparse Linear Constraints

Shuvendu K. Lahiri and Madanlal Musuvathi

Microsoft Research
{shuvendu,madanm}@microsoft.com

Abstract. Linear arithmetic decision procedures form an important
part of theorem provers for program verification. In most verification
benchmarks, the linear arithmetic constraints are dominated by simple
difference constraints of the form x ≤ y + c. Sparse linear arithmetic
(SLA) denotes a set of linear arithmetic constraints with a very few
non-difference constraints. In this paper, we propose an efficient decision
procedure for SLA constraints, by combining a solver for difference con-
straints with a solver for general linear constraints. For SLA constraints,
the space and time complexity of the resulting algorithm is dominated
solely by the complexity for solving the difference constraints. The deci-
sion procedure generates models for satisfiable formulas. We show how
this combination can be extended to generate implied equalities. We
instantiate this framework with an equality generating Simplex as the
linear arithmetic solver, and present preliminary experimental evaluation
of our implementation on a set of linear arithmetic benchmarks.

1 Introduction

Many program analysis and verification techniques involve checking the satis-
fiability of formulas containing linear arithmetic constraints. These constraints
appear naturally when reasoning about integer variables and array operations
in programs. As such, there is a practical need to develop solvers that effectively
check the satisfiability of linear arithmetic constraints.

It has been observed [20] that many of the arithmetic constraints that arise
in verification or program analysis comprise mostly of difference constraints.
These constraints are of the form x ≤ y + c, where x and y are variables and
c is a constant. Although efficient polynomial algorithms exist for checking the
satisfiability of such constraints, these algorithms cannot be directly used if non-
difference constraints, albeit few, are present in the input. In practice, this makes
it hard to exploit the efficiency of difference constraints in arithmetic solvers.

Motivated by this problem, we propose a mechanism for solving general lin-
ear arithmetic constraints that exploits the presence of difference constraints in
the input. We define a set of linear arithmetic constraints as sparse linear arith-
metic(SLA) constraints, when the fraction of non-difference constraints is very
small compared to the fraction of difference constraints.

The main contribution of this paper is a framework for solving linear arith-
metic constraints that combines a solver for difference constraints with a general



linear arithmetic constraint solver. The former analyzes the difference constraints
in the input while the latter processes only the non-difference constraints. These
solvers then share relevant facts to check the satisfiability of the input con-
straints. When used to solve SLA constraints, the time and space complexity of
our combination solver is determined solely by the complexity of the difference
constraint solver. As a result, our algorithm retains the efficiency of the difference
constraint solvers with the completeness of a linear arithmetic solver. Addition-
ally, the combined solver can also generate models (satisfying assignments) for
satisfiable formulas.

The second key contribution of this paper is an efficient algorithm for gen-
erating the set of implied variable equalities from the combined solver. Gener-
ating such equalities is essential when our solver is used in the Nelson-Oppen
combination framework [18]. We show that for rationals, the difference and the
non-difference solvers only need to exchange equalities with offsets (of the form
x = y + c) over the shared variables to generate all the implied equalities.

We provide an instantiation of the framework by combining a solver for dif-
ference constraints based on negative cycle detection algorithms, and a solver
for general linear arithmetic constraints based on Simplex [6]. We show that we
can modify the Simplex implementation in Simplify [7] (that already generates
all implied equalities of the form x = y) to generate implied equalities of the
form x = y+c without incurring any more overhead. Finally, we provide prelim-
inary experimental results on a set of linear arithmetic benchmarks of varying
complexity.

The rest of the paper is organized as follows: In Section 2, we describe the
background work including solvers for difference logic. In Section 3, we formally
describe the SLA constraints and provide a decision procedure. We extend the
decision procedure to generate implied equalities in Section 4.1, and provide a
concrete implementation with Simplex in Section 4.2. We present the results in
Section 5. In Section 6, we present the related work.

2 Background

For a given theory T , a decision procedure for T checks if a formula φ in the
theory is satisfiable, i.e. it is possible to assign values to the symbols in φ that
are consistent with T , such that φ evaluates to true.

Decision procedures, nowadays, do not operate in isolation, but form a part
of a more complex system that can decide formulas involving symbols shared
across multiple theories. In such a setting, a decision procedure has to support
the following operations efficiently: (i) Satisfiability Checking: Checking if a for-
mula φ is satisfiable in the theory. (ii) Model Generation: If a formula in the
theory is satisfiable, find values for the symbols that appear in the theory that
makes it satisfiable. This is crucial for applications that use theorem provers for
test-case generation. (iii) Equality Generation: The Nelson-Oppen framework for
combining decision procedures [18] requires that each theory (at least) produces
the set of equalities over variables that are implied by the constraints. (iv) Proof



Generation: Proof generation can be used to certify the output of a theorem
prover [17]. Proofs are also used to construct conflict clauses efficiently in a lazy
SAT-based theorem proving architecture [8].

2.1 Linear Arithmetic

Linear arithmetic is the first-order theory where atomic formulas (also called
linear constraints) are of the form

∑
i ai.xi ./ c, where xi is a variable from the

set X, each of ai and c is a constant and ./∈ {≤, <, =}. When the variables in X
range over integers Z, and each of the constants ai and c is a integer constant, we
refer to the theory as integer linear arithmetic. Otherwise, if the variables and
the constants range over rationals Q, we refer to it as simply linear arithmetic.

An assignment ρ maps each variable in X to either an integer or a ra-
tional value, depending on the underlying theory. A set of linear constraints
{li|li .=

∑
j ai,j .xj ./ ci} is satisfiable, if there is an assignment ρ such that

each li evaluates to true. Otherwise, the set of linear constraints is said to be
unsatisfiable.

Given two assignments ρA and ρB over set of variables A and B respectively
(A and B need not be disjoint), we define the resulting assignment ρ

.= ρA ◦ ρB

obtained by composing ρA and ρB as follows for any x ∈ A ∪B:

ρA ◦ ρB(x) =
{

ρA(x) if x ∈ A
ρB(x) otherwise

Deciding the satisfiability of a set of integer linear arithmetic constraints is
NP-complete [19]. For the rational counterpart, there exists polynomial algo-
rithms for deciding satisfiability [13]. However, in spite of the polynomial com-
plexity, these algorithms have large overhead that make them infeasible on large
problems. Instead, Simplex [6] algorithm (that has worst-case exponential com-
plexity) has been found to be efficient for most practical problems. We will
describe more about the workings of Simplex in Section 4.2.

2.2 Difference Constraints and Negative Cycle Detection

A particularly useful fragment of linear arithmetic is the theory of difference
constraints, where the atomic formulas are of the form x1 − x2 ./ c. Constraints
of the forms x ./ c are converted to the above form by introducing a special vertex
xorig to denote the origin, and expressing the constraint as x − xorig ./ c. The
resultant system of difference constraints is equisatisfiable with the original set
of constraints. Moreover, if ρ satisfies the resultant set of difference constraints,
then a satisfying assignment ρ′ to the original set of constraints (that include
x ./ c constraints) can be obtained by simply assigning ρ′(x) .= ρ(x)− ρ(xorig),
for each variable. A set of difference constraints (both over integers and rationals)
can be decided in polynomial time using negative cycle detection algorithms.

Given a graph G(V, E), the problem of determining if G has a cycle C, such
that sum of the edges along the cycle is negative, is called the negative cycle



detection problem. Various algorithms can be used to determine the existence of
negative cycles in a graph [4]. Negative cycle detection (NCD) algorithms have
two properties:

1. The algorithm determines if there is a negative cycle in the graph. In this
case, the algorithm produces a particular negative cycle as a witness.

2. If there are no negative cycles, then the algorithm generates a feasible so-
lution δ : V → Q, such that for every (u, v) ∈ E, δ(v) ≤ δ(u) + w(u, v).
Moreover, if all the weights w(u, v) ∈ Z for any (u, v) ∈ E, then δ assigns
integral values to all vertices.

For example, the Bellman-Ford [3, 9] algorithm for single-source shortest path
in a graph can be used to detect negative cycles in a graph. If the graph contains
n vertices and m edges, the Bellman-Ford algorithm can determine in O(n.m)
time and O(n+m) space, if there is a negative cycle in G, and a feasible solution
otherwise.

In this paper, we assume that we use one such NCD algorithm. We will
define the complexity O(NCD) as the complexity of the NCD algorithm under
consideration. This allows us to leverage all the advances in NCD algorithms in
recent years [4], which have complexity better than the Bellman-Ford algorithm.

3 Sparse Linear Arithmetic (SLA) Constraints

Pratt [20] observed that most queries that arise in software verification are dom-
inated by difference constraints. Recently, more evidence has been presented
strengthening the hypothesis [23], where the authors found more than 95% of
the linear arithmetic constraints were restricted to difference constraints for a
set of program verification benchmarks. Hence, it is crucial to construct decision
procedures for linear arithmetic that can exploit the sparse nature of general
linear constraints.

Let φ
.=

∧
i

(∑
j ai,j .xj ≤ ci

)
be the conjunction of a set of (integer or ra-

tional) linear arithmetic constraints over a set of variables X . Let us partition
the set of constraints in φ into the set of difference constraints φD and the non-
difference constraints φL, such that φ = φD ∧ φL. Let D be the set of variables
that appear in φD, L be the set of variables that appear in φL, and let Q be
the set of variables in D ∩ L. We assume that the variable xorig to denote the
origin, always belong to D , and any x ./ c constraint has been converted to
x ./ xorig + c.

We define a set of constraints φ to be sparse linear arithmetic (SLA) con-
straints, if the fraction |L|/|D | ¿ 1. Observe this also implies that |Q |/|D | ¿ 1.
Our goal is to devise an efficient decision procedure for SLA constraints, such
that the complexity is polynomial in D but (possibly) exponential only over L.
This would be particularly appealing for solving integer linear constraints, where
the complexity of the decision problem is NP-complete. For rational linear arith-
metic, the procedure will still retain its polynomial complexity, but will improve



the robustness on practical benchmarks by mitigating the effect of the general
linear arithmetic solver.

In this section, we describe one such decision procedure for SLA constraints.
In Section 4, we show how to generate implied equalities between variable pairs
from such a decision procedure and describe its integration with Simplex, for
rational linear arithmetic.

3.1 Checking Satisfiability of SLA

We provide an algorithm for checking the satisfiability of a set of SLA con-
straints that has polynomial complexity in the size of the difference constraints.
Moreover, the space complexity of the algorithm is almost linear in the size of
the difference constraints. Finally, assuming we have a decision procedure for
integer linear arithmetic that generates satisfying assignments, the algorithm
can generate an integer solution when the input SLA formula is satisfiable over
integers.

Let φ be a set of linear arithmetic constraints as before, and let Q be the set of
variables common to the difference constraints φD and non-difference constraints
φL. The algorithm (SLA-SAT) is simple, and operates in four steps:

1. Check the satisfiability of φD using a negative cycle detection algorithm.
2. If φD is unsatisfiable, return unsatisfiable. Else, let SP(x , y) be the length

of the shortest path from the (vertices corresponding to) variable x to y in
the graph induced by φD. Generate the set of difference constraints

φQ
.=

∧
{y − x ≤ d | x ∈ Q , y ∈ Q ,SP(x , y) = d}, (1)

over Q .
3. Check the satisfiability of φL ∧ φQ using a linear arithmetic decision proce-

dure. If φL ∧ φQ is unsatisfiable, then return unsatisfiable. Else, let ρL be a
satisfying assignment for φL ∧ φQ over L.

4. Generate a satisfying assignment ρD to the formula φD ∧
∧

x∈Q (x = ρL(x)),
using a negative cycle detection algorithm. Return ρX

.= ρD ◦ ρL as a satis-
fying assignment for φ.

It is easy to see that the algorithm is sound. This is because we report unsatis-
fiable only when a set of constraints implied by φ is detected to be unsatisfiable.
To show that the algorithm is complete (for both integer and rational arith-
metic), we show that if φD and φQ∧φL are each satisfiable, then φ is satisfiable.
This is achieved by showing that a satisfying assignment ρL for φL ∧ φQ can be
extended to an assignment ρX for φ, such that φ is satisfiable.

Lemma 1. If the assignment ρL over L satisfies φL ∧ φQ, then the assignment
ρX over X satisfies φ.

Proof of the lemma can be found in Section B.1 in the Appendix. Since a model
for φQ can be extended to be a model for φD, Lemma 1 also shows another
useful fact, which we will utilize later:



Corollary 1. Let P .= D \ Q be the set of variables local to φD. Then φQ ⇔
(∃P : φD).

The corollary says that φQ is the result of quantifier elimination of the vari-
ables D \ Q local to φD. Hence, for any constraint ψ over Q , φD ⇒ ψ if and
only if φQ ⇒ ψ. We will make use of this fact throughout the paper.

Theorem 1. The algorithm SLA-SAT is a decision procedure for (integer and
rational) linear arithmetic. Moreover, it also generates a satisfying assignment
when the constraints are satisfiable.

Complexity of SLA-SAT: Given m difference constraints over n variables, we
denote NCD(n,m) as the complexity of the negative cycle detection algorithm.
The space complexity for NCD(n,m) is O(n + m), and the upper bound of the
time complexity is O(n.m), although many algorithms have a much better com-
plexity [4]. Similarly, with m constraints over n variables, we denote LAP(n,m)
as the complexity of the linear arithmetic procedure under consideration. For ex-
ample, if we use Simplex as the (rational) linear arithmetic decision procedure,
then the space complexity for LAP(n,m) is O(n.m) and the time complexity
is polynomial in n and m in practice. Finally, for a set of constraints ψ, let |ψ|
denote the the number of constraints in ψ.

Let us try to analyze the complexity of the procedure SLA-SAT described in
the previous section. Step 1 takes NCD(|D |, |φD|) time and space complexity.
Step 2 requires generating shortest paths between every pair of variables x ∈ Q
and y ∈ Q . This can be obtained by using a variant of Johnson’s algorithm for
generating all-pair-shortest-paths [5] for a graph. For a graph with n nodes and
m vertices, this algorithm has linear space complexity of O(n+m). Assuming we
have already performed a negative cycle detection algorithm, the time complexity
of the algorithm is only O(n2. log(n)).

Instead of generating all-pair-shortest-paths for every pair of vertices using
Johnson’s algorithm, we adapt the algorithm to compute the shortest paths only
for vertices in Q, the set of shared variables. This makes the time complexity of
Step 2 of the algorithm O(|Q|.|D|. log(|D|)). The space complexity of this step
is O(|φQ|) which is bounded by O(|Q|2).

The complexity of Step 3 is LAP(|L|, |φQ| + |φL|). Finally, Step 4 incurs
another NCD(|D |, |φD|) complexity, since at most |Q | constraints are added as
x = ρL(x) constraints to φD.

4 Equality Generation for SLA

In this section, we consider the problem of generating equalities between vari-
ables implied by the constraint φ. Equality generation is useful for combining
the linear arithmetic decision procedure with other decision procedures in the
Nelson-Oppen combination framework. In Section 4.1, we describe the require-
ments from the difference and the non-difference decision procedures in SLA-SAT



to generate all equalities implied by φ. In Section 4.2, we describe how to instan-
tiate the framework when combining a negative cycle detection algorithm (as
the decision procedure for difference constraints) with Simplex (as the decision
procedure for non-difference constraints).

4.1 Equality generation from SLA-SAT

In this section, we extend the basic SLA-SAT algorithm to generate all the
equalities between pairs of variables, implied by the input formula φ. We will
describe the procedure in an abstract fashion, without providing an implemen-
tation of the individual steps. The algorithm described in this section has only
been proved complete for the case when the variables are interpreted over Q; we
are currently working on the case of Z.

Throughout this section, we assume that φ is satisfiable. We carry the nota-
tions (e.g. φD, φL etc.) from Section 3. The key steps of the procedure are:

1. Assuming φD is satisfiable, generate φQ and solve φQ ∧ φL using linear
arithmetic decision procedure.

2. Generate the set of equalities (with offsets) implied by φQ ∧ φL

E1
.= {x = y + c | x ∈ L, y ∈ L, and (φQ ∧ φL) ⇒ x = y + c}, (2)

from the linear arithmetic decision procedure.
3. Let E2 ⊆ E1 be the set of equalities over the variables in Q :

E2
.= {x = y + c | x ∈ Q , y ∈ Q , x = y + c ∈ E1 }, (3)

4. Generate all the implied equalities (with offset) from E2 (interpreted as a
formula by conjoining all the equalities in E2) and φD:

E3
.= {x = y + c | x ∈ D , y ∈ D , (φD ∧ E2) ⇒ x = y + c}, (4)

5. Finally, the set of equalities implied by E1 and E3 is the set of equalities
implied by φ:

E .= {x = y | x ∈ X , y ∈ X , (E1 ∧ E3) ⇒ x = y} (5)

Before proving the correctness of the equality generating algorithm (Theo-
rem 2), we first state and prove a few intermediate lemmas.

For a set of linear arithmetic constraints A
.= {e1, . . . , en}, we define a linear

combination of A to be a summation
∑

ej∈A cj .ej , such that each cj ∈ Q and
non-negative.

Lemma 2. Let φA and φB be two sets of linear arithmetic constraints over
variables in A and B respectively. If u is a linear arithmetic term over A \ B
and v is a linear arithmetic term over B such that φA ∧φB ⇒ u ./ v, then there
exists a term t over A ∩B such that

1. φA ⇒ u ./ t, and



2. φB ⇒ t ./ v,

where ./ is either ≤ or ≥.

Proof can be found in Section B.2 in the Appendix.
For the set of satisfiable difference constraints φD

.= {e1, . . . , en}, we say a
linear combination

∑
ej∈φD

cj .ej contains a cycle (respectively a path from x to
y) if there exists a subset of constraints in φD with positive coefficients (i.e.
cj > 0) in the derivation, such that they form a cycle (respectively a path from
x to y) in the graph induced by φD.

Lemma 3. For any term t over D, if φD ⇒ t ≤ 0, then there exists a linear
derivation of t ≤ 0 that does not contain any cycles.

The proof can be found in Section B.3 of Appendix.

Lemma 4 (Difference-Bounds Lemma). Let x, y ∈ D \Q, t be a term over
Q, and φD a set of difference constraints.

1. If φD ⇒ x ./ t, then there exists terms u1, u2, . . . , un such that all of the
following are true
(a) Each ui is of the form xi + ci for a variable xi ∈ Q and a constant ci,
(b) φD ⇒ ∧

i x ./ ui, and
(c) φD ⇒ 1/n.

∑
i ui ./ t

2. If φD ⇒ x− y ./ t, then there exists terms u1, u2, . . . , un such that all of the
following are true
(a) Each ui is either of the form ci or xi − yi + ci for variables xi, yi ∈ Q

and a constant ci,
(b) φD ⇒ ∧

i x− y ./ ui, and
(c) φD ⇒ 1/n.

∑
i ui ./ t

where ./ is one of ≤ or ≥.

The detailed proof of this lemma can be found Section B.4 in the Appendix.
The proof makes use of a novel trick to split a linear combination of difference
constraints to yield the desired results.

Lemma 5 (Sandwich Lemma). Let l1, l2, . . . lm and u1, u2, . . . un be terms
such that

∧
i,j li ≤ uj. Let lavg = 1/m.

∑
i li and uavg = 1/n.

∑
j uj be the

respective average of these terms. If l and u are terms such that l ≤ lavg and
uavg ≤ u, then

l = u ⇒
∧

i,j

li = uj = l

Proof can be found in Section B.5 in Appendix.
Now, we can prove the correctness of the equality propagation algorithm.

Theorem 2. For two variables x ∈ X and y ∈ X , φ ⇒ x = y if and only if
x = y ∈ E.



Proof. Case 1: The easiest case to handle is the case when both x, y ∈ L. Thus,
(∃D \ L : φ) = φQ ∧ φL ⇒ x = y. Therefore, the equality x = y is present in E1

and thus in E.
Case 2: Consider the case when one of the variables, say, x ∈ D \ L while

y ∈ L. We have φ ⇒ x ≤ y ∧x ≥ y. Applying Lemma 2 twice, there exists terms
t, t′ ∈ Q such

φD ⇒ x ≤ t ∧ x ≥ t′ (6)
φL ⇒ t ≤ y ∧ t′ ≥ y (7)

However, φD ∧ φL ⇒ x = y = t = t′. As t, t′ ∈ Q , we have

φQ ∧ φL ⇒ t = t′ = y (8)

Using Lemma 4.1 twice on Equation 6, there exists terms u1, . . . , um and terms
l1, . . . , ln all of the form v + c for a variable v ∈ Q and a constant c such that

φD ⇒
(∧

i

x ≤ ui ∧ 1/m.
∑

i

ui ≤ t

)
∧


∧

j

x ≥ lj ∧ 1/n.
∑

j

lj ≥ t′




As the terms ui and lj are terms over Q , we have

φQ ⇒

∧

i,j

lj ≤ ui


 ∧

(
1/m.

∑

i

ui ≤ t

)
∧


1/n.

∑

j

lj ≥ t′




Using Lemma 5 and Equation 8, we have

φQ ∧ φL ⇒
∧

i,j

lj = ui = t = t′ = y

All of the above equalities belong to E1. Moreover, the equalities between lj and
ui are present in E2. Thus, the equality x = lj = ui is present in E3. Thus x = y
is in E.

Case 3: The final case involves the case when x, y are both in D \L. The proof
is similar to Case 2. We have φ ⇒ x − y ≤ 0 ∧ x − y ≥ 0. Applying Lemma 2
twice, there exists terms t, t′ ∈ Q such

φD ⇒ x− y ≤ t ∧ x− y ≥ t′ (9)
φL ⇒ t ≤ 0 ∧ t′ ≥ 0 (10)

However, φD ∧ φL ⇒ x− y = 0 = t = t′. As t, t′ ∈ Q , we have

φQ ∧ φL ⇒ t = t′ = 0 (11)

Using Lemma 4.2 twice on Equation 9, there exists terms u1, . . . , um and terms
l1, . . . , ln all of the form u − v + c for variables u, v ∈ Q and a constant c such
that

φD ⇒
(∧

i

x− y ≤ ui ∧ 1/m.
∑

i

ui ≤ t

)
∧


∧

j

x− y ≥ lj ∧ 1/n.
∑

j

lj ≥ t′






As the terms ui and lj are terms over Q , we have

φQ ⇒

∧

i,j

lj ≤ ui


 ∧

(
1/m.

∑

i

ui ≤ t

)
∧


1/n.

∑

j

lj ≥ t′




Using Lemma 5 and Equation 11, we have

φQ ∧ φL ⇒
∧

i,j

lj = ui = t = t′ = 0

All of the above equalities belong to E1. Moreover, the equalities betwen lj and
ui are present in E2. Thus, the equality x = lj = ui is present in E3. Thus x = y
is in E.

4.2 Equality generation with NCD and Simplex

In this section, we describe an instantiation of the SLA framework, where we use
the Simplex algorithm for solving general linear arithmetic constraints. The Sim-
plex algorithm [6] (although has a worst case exponential complexity) remains
one of the most practical methods for solving linear arithemtic constraints, when
the variables are interpreted over rationals. Although Simplex is incomplete for
integers, various heuristics have been devised to solve most integer queries in
practice [7].

The main contribution of this section is to show how to generate all equalities
with offsets between a pair of variables, i.e. all the x = y + c equalities implied
by a set of linear constraints. The implementation of Simplex in Simplify [7]
can generate all possible x = y equalities implied by a set of constraints. We
show that the same Simplex implementation also allows generating all x = y +
c, without any additional overhead. Readers familiar with the work can see
that Lemma 4 in Section 8 of [7], almost immediately generalizes to give us
the desired result. For lack of space, we only present enough description to
state the generalization of the lemma; a more complete description is present
in the Appendix. We refer the readers to Section 8 in [7] for complete details
the Simplex implementation in Simplify. Finally, we also mention how to derive
x = y + c equalties from a set of difference constraints using NCD algorithms.

Simplex Tableau. A Simplex tableau is used to represent a set of linear
arithmetic constraints. Each linear inequality is first converted to linear equality
by the introduction of a slack variable. The Simplex tableau is a two-dimnesional
matrix that consists of the following:

– Natural numbers n and m for the number of rows and columns for tableau
respectively, and a column dcol, where 0 ≤ dcol ≤ m,

– The identifiers for the rows y [0], . . . , y [n] and the identifiers for these columns
x [1], . . . , x [m], where each row or column identifier corresponds to a variable
in the constraints, including the slack variables. The column 0 corresponds
to the constant column. We use u, u1 etc. to range over the row and column
identifiers.



– A two dimenstional array of rational numbers a[0, 0], . . . , a[n, m].
– A subset of identifiers in y [0], . . . , y [n], x [1], . . . , x [m] also have a sign ≥.
– The y [0] of the Simplex tableau is a special row Zero to denote the value 0,

and has 0 in all columns.

Each row in the tableau represents a row constraint of the form:

y [i] = a[i, 0] + Σ1≤j≤ma[i, j].x [j] (12)

For any identifier u with a sign ≥, the sign constraint represents u ≥ 0. Such
an identifier u is said to be restricted. Finally, for all 1 ≤ j ≤ dcol , x [j] = 0,
represents the dead column constraints.

A feasible tableau is one where the solution obtained by setting each of the
column variables x [j] to 0 and setting each of the y [i] to a[i, 0], satisfies all the
constraints. A set of constraints is satisfiable iff such a feasible tableau exists. We
will not go into the details of finding the feasible tableau, as it is a well-known
method [6, 7].

Equality Generation from Simplex Tableau. To generate equalities im-
plied by the set of constraints, the tableau has to be constrained further in
addition to being feasible. Two variables (row or column) u1 and u2 are defined
to be manifestly equal in the tableau, if and only if either (i) both u1 and u2 are
row variables and their rows are identical except for the dead columns, or (ii)
both u1 and u2 are dead columns, or (iii) u1 is a row variable y [i] and u2 is a
column variable x [j] and a[i, j] = 1 is the only non-zero entry for row i outside
the dead columns, or (iv) one of u1 or u2 is dead column variable, and the other
is a row variable whose all non dead column entries are 0.

A tableau is minimal if and only if every row or column variable u is either
manifestly equal to Zero or has a positive value in some solution. The Simplex
implementation in Simplify [7] provides a procedure for obtaining a minimal
tableau for a set of constraints. It is outside the scope of this work to describe
the details of the algorithm. We now state the generalization of Lemma 2 (Section
8.2 [7]) that allows us to extend equality generation to include offsets:

Lemma 6 (Generalization of Lemma 2 in Section 8.2 [7]). For any two
variables u1 and u2 in a feasible and minimal tableau, the set of constraints
imply u1 = u2 + c, where c is a rational constant, if and only if at least one of
the following conditions hold:

1. u1 and u2 are manifestly equal (in this case c = 0), or
2. both u1 and u2 are row variables y [i] and y [j] respectively, and apart from the

dead columns only differ in the constant column, such that a[i, 0] = a[j, 0]+c,
or

3. u1 is a row variable y [i], u2 is a column variable x [j], and the only non-zero
entries in row i are a[i, 0] = c and a[i, j] = 1.

Proof can be found in Section B.6 of Appenidx. Therefore, obtaining the
minimal tableau is sufficient to derive even x = y + c facts from Simplex. This
is noteworthy because the Simplex implementation does not incur any more
overhead in generating these more general equalities than simple x = y equalities.



Inferring Equalities from NCD. The algorithm for SLA equality generation
described in Section 4.1 requires generating equalities of the form x = y+c from
the NCD component of SLA. Lemma 2 in [15] provides such an algorithm. The
lemma is provided here.

Lemma 7 (Lemma 2 in [15]). An edge e in Gφ representing y ≤ x + c, ei

can be strengthened to represent y = x + c (called an equality-edge), if and only
if e lies in a cycle of weight zero.

Hence, using Lemma 6, Theorem 2 and Lemma 7, we obtain a complete
equality generating decision procedure over rationals.

Theorem 3. The SLA implementation by combining NCD and Simplex is an
equality generating decision procedure for linear arithmetic over rationals.

5 Implementation and Results

In this section, we describe our implementation of the SLA algorithm in the
Zap [1] theorem prover and report preliminary results from our experiments.
The implementation uses the Bellman-Ford algorithm as the NCD algorithm
and the Simplex implementation (described in Section 4.2) for the non-difference
constraints. We are currently working on the implementation of the proof gen-
eration from the SLA algorithm, to integrate it into the lazy proof-generating
theorem prover framework [2, 8]. Hence, we are currently unable to evaluate our
algorithm on more realistic benchmarks (such as the SMT-LIB benchmarks [25]),
where we need the proofs to generate conflict clauses to reason about the Boolean
structure in the formula. Instead, we evaluate on a set of randomly generated
linear arithmetic benchmarks.

We report preliminary results comparing our algorithm with two different im-
plementations for solving linear arithmetic constraints: (i) Simplify-Simplex: the
linear arithmetic solver in the Simplify [7] theorem prover, and (ii) Zap-UTVPI:
an implementation of Unit Two Variable Per Inequality (UTVPI) decision pro-
cedure [10, 12] in Zap. 1 Even though Zap-UTVPI is not complete for general
linear arithmetic, we chose this implementation to compare a transitive closure
based decision procedure (as used by Sheini and Sakallah [24]) to a one based
on NCD algorithms.

We generated the random benchmarks as follows. For different values for the
total number of variables lying between 100 and 1000, we generated benchmarks
with the number of constraints varying from half to five times the number of
variables. To measure the effect of the sparseness of the constraints, we varied the
ratio of non-difference constraints to difference constraints from 2% to 50%. For
each difference constraint we picked the two variables at random. For each non-
difference constraint we randomly picked 2 to 5 variables and chose a random
coefficient between −2 and 2. We ensured that the set of benchmarks when run
1 UTVPI constraints are of the form a.x + b.y ≤ c, where a and b ∈ {−1, 0, 1} and c

is an integer constant.



Execution Times (secs)

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

SLA

S
im

p
lif

y

Execution Times (secs)

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

SLA

U
T

V
P

I

Fig. 1. Comparison of SLA with (a) Simplify-Simplex and (b) Zap-UTVPI on a set of
randomly generated benchmarks.

on the SLA implementation involved all of the following: instances where the
difference constraints alone were unsatisfiable, instances where the non-difference
constraints alone were unsatisfiable, instances that required both difference and
non-difference reasoning, and finally instances that were satisfiable.

Figure 1 (a) shows the comparison of the execution times of the SLA algo-
rithm against Simplify-Simplex. In the graph, we indicate both the runs that
took greater than 200 seconds and runs that incurred a crash due to an integer-
overflow exception, as timeouts with 200 seconds. The overflow exception hap-
pens in Simplex (both in Simplify and Zap) due to the use of machine integers
to represent large coefficients in the tableau. The following observations are ev-
ident from this graph. On those instances for which Simplify finished within a
second, the SLA algorithm also finished within a second, but performed worse
than Simplify. This is a result of the constant overhead Zap (implemented in
C#) incurs loading the virtual machine of the C# language on every run. On
the other hand, SLA solved instances within seconds for which Simplify required
orders of magnitude longer time or timed out at 200 seconds. To our surprise,
Simplify incurred an integer-overflow exception on many benchmarks for which
pure difference reasoning was sufficient to prove the unsatisfiability of the query.
The SLA implementation did incur an integer-overflow on certain instances for
which Simplify completed successfully. This could be due to the fact that our
Simplex implementation is not as optimized as the one in Simplify as we have
not implemented the many pivot heuristics of Simplify.

Figure 1 (b) shows the execution time of the UTVPI decision procedure on
these benchmarks. SLA performs better than the UTVPI decision procedure on
a greater proportion of the instances. The transitive-closure based algorithm for
the UTVPI decision procedure has a quadratic space complexity, resulting in
orders of magnitude slowdown. There are instances, however, where the SLA
algorithm results in an integer-overflow for which the UTVPI algorithm termi-
nates. (Note, the UTVPI algorithm is incomplete for general linear arithmetic.)
This suggests a possibility of combining the linear-space UTVPI algorithm [14]
with a general linear arithmetic solver, along the lines of SLA. While this is an
interesting problem for future work, we are unsure about its value in practice.



6 Related Work

Checking the satisfiability of a set of linear arithmetic constraints over integers
in NP-complete [19]. Various algorithms based on branch-and-bound heuris-
tics are implemented in various integer linear programming (ILP) solvers like
LP SOLVE [16] and commercial tools like CPLEX [11] to solve this fragment.
These algorithms have a worst-case exponential time complexity. Even for the
relaxation of the linear arithmetic problem over rationals (where polynomial
time decision procedures exists [13]), most practical solvers use Simplex [6] al-
gorithm that has a worst-case exponential complexity. Gomory cuts [22] can
be used to extend Simplex over integers although the algorithm might require
exponential space in the worst case. Ruess and Shankar [21] provide one such
implementation. Their algorithm also generates equalities over variables. How-
ever, unlike our approach, their algorithm does not try to exploit the sparsity in
linear arithmetic constraints, and the asymptotic complexity for solving sparse
linear arithmetic constraints is still exponential.

Recently attempts have been made to exploit the sparsity in linear arithmetic
constraints mostly dominated by difference logic queries. Seshia and Bryant [23]
demonstrate that although one might incur a linear blowup for translating a
Boolean formula over linear arithmetic constraints (over integers) to an equisat-
isfiable propositional formula, formulas with only a small number of non-differnce
constraints can be converted using a logarithmic blowup. This approach how-
ever does not help towards improving the complexity of solving a set of linear
arithmetic constraints.

The closest approach to ours is the approach of Sheini and Sakallah [24],
where they provide a decision procedure for integer linear arithmetic by combin-
ing a decision procedure for UTVPI constraints and a general linear arithmetic
solver (CPLEX [11] in their case). Their algorithm relies on computing a tran-
sitive closure for the UTVPI constraints that incurs cubic time and quadratic
space complexity, independent of the sparsity of the constraints. In contrast, our
decision procedure retains the efficiency of the NCD algorithms thereby making
our procedure robust even for non sparse linear arithmetic benchmarks. This is
well demonstrated by our experimental results (Figure 1 (b)). Moreover, their
combination does not generate models for satisfiable formulas. Finally, their al-
gorithm does not provide a way to generate implied equalities that are crucial
for a Nelson-Oppen framework.

References

1. T. Ball, S. K. Lahiri, and M. Musuvathi. Zap: Automated theorem proving for
software analysis. In Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR 2005), LNCS 3835, pages 2–22, 2005.

2. C. W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-order
formulas by incremental translation to SAT. In CAV 02: Computer-Aided Verifi-
cation, LNCS 2404, pages 236–249, 2002.

3. R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.



4. B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. In
European Symposium on Algorithms, pages 349–363, 1996.

5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

6. G. Dantzig. Linear programming and extensions. Princeton University Press,
Princeton NJ, 1963.

7. D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical report, HPL-2003-148, 2003.

8. C. Flanagan, R. Joshi, X. Ou, and J. Saxe. Theorem proving using lazy proof
explication. In CAV 03: Computer-Aided Verification, LNCS 2725, pages 355–367,
2003.

9. L. R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. 1962.
10. W. Harvey and P. J. Stuckey. A unit two variable per inequality integer constraint

solver for constraint logic programming. In Proceedings of the 20th Australasian
Computer Science Conference (ACSC ’97), pages 102–111, 1997.

11. ILOG CPLEX. Available at http://ilog.com/products/cplex.
12. J. Jaffar, M. J. Maher, P. J. Stuckey, and H. C. Yap. Beyond finite domains. In

PPCP 94: Principles and Practice of Constraint Programming, LNCS 874, pages
86–94, 1994.

13. Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–396, 1984.

14. S. K. Lahiri and M. Musuvathi. An efficient decision procedure for UTVPI con-
straints. In FroCos 05: Frontiers of Combining Systems, LNCS 3717, pages 168–
183, 2005.

15. S. K. Lahiri and M. Musuvathi. An Efficient Nelson-Oppen Decision Procedure
for Difference Constraints over Rationals. Workshop on Pragmatics of Decision
Procedures in Automated Reasoning (PDPAR 2005), 144(2):27—41, 2005.

16. LP SOLVE. Available at http://groups.yahoo.com/group/lp solve/.
17. G. C. Necula and P. Lee. Proof generation in the touchstone theorem prover. In

Conference on Automated Deduction, LNCS 1831, pages 25–44, 2000.
18. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):245–
257, 1979.

19. C. H. Papadimitriou. On the complexity of integer programming. J. ACM,
28(4):765–768, 1981.

20. V. Pratt. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, Mass., September 1977.

21. H. Rueß and N. Shankar. Solving linear arithmetic constraints. Technical Report
CSL-SRI-04-01, SRI International, January 2004.

22. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
23. S. A. Seshia and R. E. Bryant. Deciding quantifier-free Presburger formulas using

parameterized solution bounds. In LICS 04: Logic in Computer Science, pages
100–109, July 2004.

24. H. M. Sheini and K. A. Sakallah. A scalable method for solving satisfiability of
integer linear arithmetic logic. In Theory and Applications of Satisfiability Testing
(SAT 2005), LNCS 3569, pages 241–256, 2005.

25. SMT-LIB: The Satisfiability Modulo Theories Library.
26. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.

In CADE 05: Conference on Automated Deduction, LNCS 3632, pages 353–368,
2005.



A Graph formalisms

Let G(V, E) be a directed graph with vertices V and edges E. For each edge
e ∈ E, we denote s(e), d(e) and w(e) to be the source, destination and the
weight of the edge. A path P in G is a sequence of edges [e1, . . . , en] such that
d(ei) = s(ei+1), for all 1 ≤ i ≤ n− 1. For a path P

.= [e1, . . . , en], s(P ) denotes
s(e1), d(P ) denotes d(en) and w(P ) denotes the sum of the weights on the edges
in the path, i.e.

∑
1≤i≤n w(ei). A cycle C is a sequence of edges [e1, . . . , en] where

s(e1) = d(en). We use u ; v in E to denote that there is a path from u to v
through edges in E.

B Proofs of theorems and lemmas

B.1 Proof of Lemma 1

Proof. First, observe that for any variable x ∈ Q , ρD(x) = ρL(x), since ρD

has to satisfy
∧

x∈Q (x = ρL(x)). Hence, if we can show that in Step 4, φD ∧∧
x∈Q (x = ρL(x)) is satisfiable, then ρX satisfies φD and φL.

Let us assume that ψ
.=

[
φD ∧∧

x∈Q (x = ρL(x))
]

is unsatisfiable. Consider
the graph Gψ(V,E) induced by the formula ψ (as described in Section 2): First,
we add an edge for each constraint in φD. Secondly, each constraint x = ρL(x)
is broken up into a pair of constraints x−xorig ≤ ρL(x) and xorig −x ≤ −ρL(x),
and then the corresponding edges are added to the graph. Let T ⊆ E be the
set of edges in Gψ resulting from the addition of edges for all the x = ρL(x)
constraints.

Since ψ is unsatisfiable, there has to be a (simple) cycle C with nega-
tive weight in the graph. Moreover, we know that φD is satisfiable. Therefore,
the negative cycle contains at least one edge from T . Since C is a simple cy-
cle, at most two edges from T can be present in C. Let the edges in C be
[(xorig , x1), (x1, x2), . . . , (xk, xorig)]. Let w1, w2, . . . , wk+1 be the weights of these
edges in C, such that

∑
i wi∈[1,k+1] < 0.

Let us first assume that C contains exactly one edge t ∈ T , such that either
(xorig , x1) or (xk, xorig) belong to T . Consider the two subcases:

1. Let (xk, xorig) ∈ T , representing the constraint xorig − xk ≤ wk+1. This
means that the constraint xorig −xk = wk+1, or otherwise ρL(xk) = −wk+1,
is present in ψ. Since C forms a negative cycle,

∑
i wi∈[1,k] < −wk+1. There-

fore, there is a path from xorig to xk in Gψ (without any T edges) with a
weight less that −wk+1. This implies that the constraint xk−xorig < −wk+1,
or equivalently xk < −wk+1 was implied by φD, and therefore was implied
by φQ. Since ρL satisfies φQ, this leads to a contradiction.

2. Let (xorig , x1) ∈ T , meaning that ρL(x1) = w1. By a reasoning similar to
the previous subcase, we can show that the graph Gψ (without any T edges)
implies the constraint x1 > w1, which leads to a contradiction.



Now consider the case when both (xorig , x1) and (xk, xorig) belong to T .
This means that ρL(x1) = w1, and ρL(xk) = −wk+1. However, C implies that
there is a path from x1 to xk of length

∑
i wi∈[2,k] < −w1 − wk+1, implying

xk − x1 < −w1 − wk+1. This contradicts with the assignment ρL, since φQ

should imply xk − x1 < −w1 − wk+1.
This completes the proof.

B.2 Proof of Lemma 2

Proof. This lemma is a variation of the lemma that appears in [26]. Accordingly,
the proof is similar. Let us consider the case when ./ is ≤ (the reasoning is
the same for ≥). Let φA

.= {e1, . . . , en} and φB
.= {e′1, . . . , e′m} be the set of

constraints. As φA ∧ φB ⇒ u ≤ v, there exists a set of non-negative constants
{c1, . . . , cn, c′1, . . . , c

′
m} such that

u ≤ v ≡
∑

ej∈φA

cj .ej +
∑

e′j∈φB

c′j .e
′
j (13)

Since the set of constraints in φA and φB only share variables over A∩B, it
is easy to see that

∑
ej∈φA

cj .ej ≡ (u− t ≤ 0) and
∑

e′j∈φB
c′j .e

′
j ≡ (−v + t ≤ 0),

where t is a linear term over A ∩B. Therefore φA ⇒ u ≤ t and φB ⇒ t ≤ v.

B.3 Proof of Lemma 3

Proof. Let us assume that the derivation of t ≤ 0 from φD contains A
.=

{e′1, . . . , e′m} ⊆ φD, that appear with non-zero coefficients c′1, . . . , c
′
m respec-

tively, and [e′1, . . . , e
′
m] forms a cycle in the graph induced by φD.

Since φD is satisfiable, we know that any cycle in the graph has a non-negative
weight. Therefore,

∑
ej∈A c′j .e

′
j ≡ 0 ≤ d, for some d ≥ 0. Hence, we can derive

t ≤ 0, by reducing the coefficients of each e′j ∈ A by the minimum c′j in this set
and adding the constraint 0 ≤ 1 with the same coefficient. We can repeat this
process until we do not have any cycles in the derivations.

B.4 Proof of Lemma 4

Proof. We will illustrate the proof for the cases when ./ is ≤, the case for ≥ is
similar. Let us first make two observations that will be used for proving both
parts of the lemma:

1. It is well known [22], that for a set of linear contraints ϕ
.= {e1, . . . , ek} over

Q, and a linear arithmetic constraint ψ, ϕ ⇒ ψ if and only if there exists a
set of non-negative constants {m1, . . . ,mk} in Q, such that

ψ ≡
∑
ei∈ϕ

mi.ei



This means that if ϕ ⇒ ψ, then there exists a set of non-negative integer
constants {n1, . . . , nk} and a non-negative constant n such that

n.ψ ≡
∑
ei∈ϕ

ni.ei

Let pi/qi be the rational representation of mi. The constant n is simply the
least common multiple of q1, . . . , qk, and each ni is n.pi/qi.

2. For the set of difference constraints φD
.= {e1, . . . , ek}, we can represent an

integer linear combination of the constraints
∑

ei∈φD
ni.ei (where each ni

is a non-negative constant in Z), as a multi-graph G, where there are ni

(possibly 0) copies of the edge corresponding to ei. For any vertex z ∈ D ,
the indegree(z ) is the number of edges of the form z−wi ≤ ci, where wi ∈ D ;
similarly, the outdegree(z ) is the number of edges of the form wi − z ≤ ci in
the graph.

Case 1: Now let us look at the proof of case 1 of the lemma. Let us assume
that φD ⇒ x ≤ t, for some x ∈ D \Q . Therefore there exists non-negative integer
constants {n1, . . . , nk} and n, such that


 ∑

ei∈φD

ni.ei


 ≡ (n.x− n.t ≤ 0) .

Now, let us look at the multigraph G induced by the linear combination∑
ei∈φD

ni.ei. It is not hard to see that the following statements are true for this
graph G:

– For any vertex z ∈ (D \Q) \ {x}, indegree(z ) = outdegree(z ).
– For the vertex x, indegree(x )− outdegree(x ) = n.
– Since φD is satisfiable and we have assumed that the derivation is irre-

dundant, we can assume (using Lemma 3) that there are no cycles in this
multigraph.

We will now describe a process of iteratively enumerating a set of n paths
from the graph G, where each path corresponds to a constraint x ≤ xi + ci,
where xi ∈ Q . After each path has been enumerated, the edges in the path are
removed from the graph. For each path, we start with an edge x ≤ z1 + d1 and
extend it until we reach a vertex in Q . This is possible since all the vertices
in (D \Q) \ {x} have equal indegree and outdegree, and there are no cycles.
Let the path enumerated have the sequence of edges x ≤ z1 + d1, z1 ≤ z2 +
d2, . . . zl ≤ xi + ci, where xi ∈ Q . Observe that the indegree and outdegrees
of the intermediate vertices {zi} remain equal even after the path has been
removed, and the measure indegree(x )− outdegree(x ) decreases by 1.

By repeating the above process n times, we obtain a set of n paths that
sum up to x ≤ xi + ci, for 1 ≤ i ≤ n, where xi ∈ Q . Let G′ be the final
graph obtained after removing the paths from G. Since the graph G represented
the sum n.x − n.t, and the n paths represent the sum n.x − ∑

i (xi + ci), the



constraints in the graph G′ represent the sum
∑

i (xi + ci)−n.t. Moreover since
each constraint is ≤ 0, the resultant constraints are ≤ 0.

Hence, we can split the linear combination
∑

ei∈φD
ni.ei into two linear com-

binations that represent (a) x ≤ xi + ci, for 1 ≤ i ≤ n, such that xi ∈ Q and (b)∑
i (xi + ci)−n.t ≤ 0 or 1/n.

∑
i (xi + ci) ≤ t. The terms xi + ci are the desired

uis in the case 1 of the Lemma.

Case 2: The second case is similar to the first case in many respect and uses
the same methodology to split the linear combination into two linear combina-
tions.

Let φD
.= {e1, . . . , ek}. Since φD ⇒ x − y ≤ t, there exists non-negative

integer constants {n1, . . . , nk} and n such that:

 ∑

ei∈φD

ni.ei


 ≡ (n.x− n.y − n.t ≤ 0) .

Once again, let us look at the graph G induced by the linear comination.
This graph now has the following properties:

– For the vertex x, indegree(x )− outdegree(x ) = n.
– For the vertex y, outdegree(y)− indegree(y) = n.
– For any other vertex z ∈ (D \Q) \ {x, y}, indegree(z ) = outdegree(z ).
– There are no cycles in the graph G.

We can now enumerate paths from x starting with edges of the form x ≤
zi + ci, until we either reach (i) a vertex xi ∈ Q or (ii) y. Similarly, we can
enumerate paths (ending at y) from y starting with edges of the form zi +ci ≤ y,
until we reach (i) a vertex yi ∈ Q or (ii) x.

Let us first enumerate the paths from y to x. Each of these paths represent
the constraint x − y ≤ ci for some constant ci representing the weight of the
path. Removal of these paths reduce the indegree(x ) − outdegree(x ) and the
outdegree(y)− indegree(y) measure by 1, keeping the indegree(z ) = outdegree(z )
for all other z ∈ D \Q . Let there be m such paths between y and x.

From the remainder graph, we can enumerate n−m paths representing x ≤
xi + c′i and yi + d′i ≤ y for 1 ≤ i ≤ n − m where {xi, yi} ⊆ Q . For each
1 ≤ i ≤ n−m, the sum of the constraints representing x ≤ xi+c′i and yi+d′i ≤ y
will yield the desired constraints x−y ≤ xi−yi+ci, where ci

.= (c′i+d′i). Therefore
φD imply x− y ≤ ui, where ui ∈ {ci, xi− yi + ci} for 1 ≤ i ≤ n. Moreover, since
the sum of the constraints removed from G sums upto n.x − n.y − ∑

i ui, the
sum of the remaining constraints in the graph would yield

∑
i ui − n.t ≤ 0, or

1/n.
∑

i ui ≤ t.

B.5 Proof of Lemma 5

Proof. Let l = u. To prove by contradiction, without loss of generality assume
l1 < u1. Thus, n.l1 <

∑
j uj and n.li ≤

∑
j uj for 1 < i ≤ m. Therefore,



n.
∑

i li < m.
∑

j uj , which implies that l < u, a contradiction. As a result,
li = uj for every i, j. Moreover, we have lavg = uavg = l1. Thus, l = l1 proving
the lemma.

B.6 Equality generation with NCD and Simplex (Detailed
Description)

In this section, we describe an instantiation of the SLA framework, where we use
the Simplex algorithm for solving general linear arithmetic constraints. The Sim-
plex algorithm [6] (although has a worst case exponential complexity) remains
one of the most practical methods for solving linear arithemtic constraints, when
the variables are interpreted over rationals. Although Simplex is incomplete for
integers, various heuristics have been devised to solve most integer queries in
practice [7].

The main contribution of this section is to show how to generate all equalities
with offsets between a pair of variables, i.e. all the x = y + c equalities implied
by a set of linear constraints. The implementation of Simplex in Simplify [7]
can generate all possible x = y equalities implied by a set of constraints. We
show that the same Simplex implementation also allows generating all x = y+c,
without any additional overhead. Readers familiar with the work can see that
Lemma 4 in Section 8 of [7], almost immediately generalizes to give us the
desired result. We present some details of the procedure to make this document
self-contained.

The rest of this section presents high level details and key lemmas from [7],
that will allow us to present the generation of x = y + c equalities from Simplex.
We first describe the Simplex tableau data structure, the invariants it represents,
and how to check for satisfiability of a set of linear constraints using Simplex. We
next describe the sufficient condition for generating x = y variable equalities from
a minimal tableau, and finally present the generalization to generate x = y + c
constraints from Simplex. The presentation of this section is a little informal;
for more rigorous treatment, we refer the reader to Section 8 of the following
work [7].

Simplex Tableau A Simplex tableau is used to represent a set of linear arith-
metic constraints. Each linear inequality is first converted to linear equality by
the introduction of a slack variable. The Simplex tableau is a two-dimnesional
matrix that consists of the following:

– Natural numbers n and m for the number of rows and columns for tableau
respectively, and a column dcol, where 0 ≤ dcol ≤ m,

– The identifiers for the rows y [0], . . . , y [n] and the identifiers for the columns
x [1], . . . , x [m], where each row or column identifier corresponds to a variable
in the constraints, including the slack variables. The column 0 corresponds
to the constant column. We use u, u1 etc. to range over the row and column
identifiers.

– A two dimenstional array of rational numbers a[0, 0], . . . , a[n, m].



– A subset of identifiers in y [0], . . . , y [n], x [1], . . . , x [m] also have a sign ≥.

Each row in the tableau represents a row constraint of the form:

y [i] = a[i, 0] + Σ1≤j≤ma[i, j] ∗ x [j] (14)

For any identifier u with a sign ≥, the sign constraint represents u ≥ 0. Such
an identifier u is said to be restricted. Finally, for all 1 ≤ j ≤ dcol , x [j] = 0,
represents the dead column constraints.

The set of solutions to the row constraints and the dead column constraints,
together termed as hyperplane constraints (i.e. ignoring the sign constraints) is
refered to as hyperplane solution set (HPlaneSoln) and the set of solutions con-
sidering all the three types of constraints (together called the tableau constraints)
is refered to as the tableau solution set (TablSoln).

Testing Consistency of Simplex Tableau For a tableau T , a row variable
y [i] is manifestly maximized if every non-zero entry a[i, j] for j > dcol , is negative
and lies in a column whose variable x [j] is restricted. It is not hard to see that if a
tableau is in a state where a restricted row variable y [i] is manifestly maximized,
but a[i, 0] < 0, then the set of constraints is infeasible. Such a tableau is called
infeasible.

The sample point of a tableau corresponds to the solution obtained by setting
each of the column variables x [j] to 0 and setting each of the y [i] to a[i, 0]. If
a set of constraints is satisfiable, then there exists a cofiguration of the tableau,
where the sample point satisfies belongs to TablSoln.

Assuming that we have a feasible tableau for a set of satisfiable constraints,
we only need to worry about reaching a feasible tableau after adding a new
constraint. If the sample point after adding the new constraint does not satisfy
all the sign constraints, then an operation called pivot can be repeatedly applied
until (a) the sample point satisfies all the sign constraints, or (b) the tableau
becomes infeasible (denotes unsatisfiability). The pivot operation swaps a row
and a column of the tableau, but preserves each of the constraints. This is the
high-level algorithm for checking the satisfiability of a set of constraints using
Simplex.

Equality Generation from Simplex Tableau A set of constraints is satis-
fiable if and only if there is a feasible tableau for the constraints. It is possible
to further infer some classes of affine equalities from the Simplex tableau. In
addition to being feasible, the tableau needs additional constraints to generate
certain classes of equalities.

Two variables (row or column) u1 and u2 are defined to be manifestly equal
in the tableau, if and only if either (i) both u1 and u2 are row variables and their
rows are identical except for the dead columns, or (ii) both u1 and u2 are dead
columns, or (iii) u1 is a row variable y [i] and u2 is a column variable x [j] and
a[i, j] = 1 is the only non-zero entry for row i outside the dead columns, or (iv)



one of u1 or u2 is dead column variable, and the other is a row variable whose
all non dead column entries are 0.

Let us first assume that the y [0] of the Simplex tableau is the special row
Zero to denote the value 0. This row is identically 0 in every configuration of
the tableau. Now, we define a tableau to be minimal if and only if every row or
column variable u is either manifestly equal to Zero or has a positive value in
some solution in TablSoln. The Simplex implementation in Simplify [7] provide
an implementation of obtaining a minimal tableau for a set of constraints. It is
outside the scope of this work to describe the details of the algorithm. The key
lemma that we exploit in this paper for minimal tableau is the following:

Lemma 8 (Lemma 3 in Section 8.2 [7]). For a feasible and minimal tableau,
and any affine function f over the row and column variables,

f = 0 over TablSoln ⇔ f = 0 over HPlaneSoln (15)

We now present the generalization of Lemma 2 (Section 8.2 [7]) that allows
us to extend equality generation to include offsets:

Lemma 9 (Generalization of Lemma 2 in Section 8.2 [7]). For any two
variables u1 and u2 in the tableau, the hyperplane constraints imply u1 = u2 +
c, where c is a rational constant, if and only if at least one of the following
conditions hold:

1. u1 and u2 are manifestly equal (in this case c = 0), or
2. both u1 and u2 are row variables y [i] and y [j] respectively, and apart from the

dead columns only differ in the constant column, such that a[i, 0] = a[j, 0]+c,
or

3. u1 is a row variable y [i], u2 is a (possibly dead) column variable x [j], and
the only non-zero entries in row i are a[i, 0] = c and a[i, j] = 1.

Proof. The key idea of the proof (same as [7]) is that each of the row or column
variable can be expressed as an affine combination over the live (non-dead)
column variables. For each row 0 ≤ i ≤ n:

y [i] = a[i, 0] + Σdcol<j≤ma[i, j] ∗ x [j]. (16)

Similarly, for each live column dcol < j ≤ m

x [j] = 0 + Σdcol<k≤mδj,k ∗ x [k]. (17)

where δj,k = 1 if j = k and 0 otherwise.
Finally, for any dead column in 0 ≤ j ≤ dcol

x [j] = 0 + Σdcol<k≤m0 ∗ x [k]. (18)

Since the variables in the live column are independent and can assume any
arbitrary values, two variables u1 and u2 differ by a constant c (including c = 0)



if and only if the coefficients of the live column variables are identical in the two
variables, and only the constant column differs by c. Note that the Lemma 2 in
Section 8.2 [7] is restricted to c = 0.

Therefore, obtaining the minimal tableau is sufficient to derive even x = y+c
facts from Simplex. This is noteworthy because the Simplex implementation does
not incur any more overhead in generating these more general equalities than
simple x = y equalities. The only additional work that has to be done is to
identify the pairs u1 and u2 that satisfy Lemma 9.

B.7 Inferring Equalities from NCD

The algorithm for SLA equality generation described in Section 4.1 requires
generating equalities of the form x = y + c from the NCD component of SLA.
Lemma 2 in [15] provides such an algorithm. The lemma is provided here.

Lemma 10 (Lemma 2 in [15]). An edge e in Gφ representing y ≤ x + c, ei

can be strengthened to represent y = x + c (called an equality-edge), if and only
if e lies in a cycle of weight zero.

Hence, using Lemma 10, Lemma 9 and Theorem 2, we obtain a complete
equality generating decision procedure over rationals.

Theorem 4. The SLA implementation by combining NCD and Simplex is an
equality generating decision procedure for linear arithmetic over rationals.


