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ABSTRACT 
A primary challenge to building reliable and secure computer 
systems is managing the persistent state of the system:  all the 
executable files, configuration settings and other data that govern 
how a system functions.  The difficulty comes from the sheer 
volume of this persistent state, the frequency of changes to it, and 
the variety of workloads and requirements that require 
customization of persistent state.  The cost of not managing a 
system‘s persistent state effectively is high:  configuration errors 
are the leading cause of downtime at Internet services, 
troubleshooting configuration problems is a leading component of 
total cost of ownership in corporate environments, and malware—
effectively, unwanted persistent state—is a serious privacy and 
security concern on personal computers. 

In this paper, we analyze how computer systems dynamically 
interact with files and configuration settings in an attempt to gain 
insights into the problem of persistent state management.  We 
analyze over 3648 machine days of these persistent state 
interactions, collected over an 8 month period from 193 
machines.  These machines are under real workloads and include 
Internet servers, corporate desktops, and home machines.  We 
characterize the scope and magnitude of the persistent state 
management problem today, measuring not only the gross 
characteristics of persistent state, but also analyzing how it is used 
by applications, and when administrators and users modify it.  We 
find that monitoring persistent state interactions provides 
important visibility and show how it can be used as a foundation 
for building better persistent state management tools. 

1. Introduction 
Misconfigurations and other persistent state (PS) problems are 
among the primary causes of failures and security vulnerabilities 
across a surprising variety of systems, from individual desktop 
machines to large-scale Internet services.  One large MSN service 
found that, in their 7000 machine system, 70% of their non-
reboot-curable problems were related to PS corruptions, while 
only 30% were hardware failures.  In [13], Oppenheimer et al. 
find that configuration errors are the largest category of operator 
mistakes that lead to downtime in Internet services.  Studies of 
wide-area networks show that misconfigurations cause 3 out of 4 
BGP routing announcements, and are also a significant cause of 
extra load on DNS root servers [13,4]. Our own analysis of call 
logs from a large software company‘s internal help desk, 
responsible for managing corporate desktops, found that a 
plurality of their calls (28%) were PS related.1  Furthermore, most 

                                                                 
1 The other calls were related to hardware problems (17%), 
software bugs (15%), design problems (6%), ―how to‖ calls 
(9%) and unclassified calls (12%). 

reported security compromises are against known 
vulnerabilities—administrators are wary of patching these 
vulnerabilities because they do not know the state of their systems 
and thus cannot predict the impact of a change [2,16,22]. 

PS management is the process of maintaining the ―correctness‖ of 
critical program files and settings to avoid the misconfigurations 
and inconsistencies that cause these reliability and security 
problems.  Managing the PS of computer systems poses many 
challenges.  First is the sheer volume of data.  Today, the unit of 
state management is individual files or registry entries.  A typical 
Windows machine contains on average 70,000 files and 200,000 
configuration settings [5,24].  Understanding the roles of these 
files and settings and their inter-dependencies requires a 
practically unattainable breadth of knowledge.  The second 
challenge is the rate of change.  Our traces indicate that the 
average Windows computer makes over 1 million changes to files 
(e.g., file creations, writes and deletions) and 30,000 changes to 
configuration settings daily.  While many of these changes are to 
temporary files and user data, we found that each machine saw 
critical security updates, software upgrades, and new application 
installations occurred, on average, once every 5 days.  To 
effectively manage computer systems‘ PS, we have to track and 
evaluate the impact of these changes.  The third challenge to PS 
management is that ―correctness‖ is ever changing.  Security 
patches, software upgrades and changing user requirements mean 
that the critical PS on a system must be updated frequently.  
Moreover, different systems, having different workloads, 
requirements and hardware configurations, will require different 
PS—there is no single ―golden‖ version. 

The first step to improving PS management is gaining a better 
understanding and characterization of how computer systems 
interact with their PS—how and when this state is created, read, 
written and deleted by the programs and users of a computer 
system.  To this end, we collected over 3648 machine days of 
these PS interactions over an 8 month period from 193 machines 
operating under real workloads in a variety of environments, 
including Internet services, corporate desktops, experimental lab 
machines and home machines.  In Section 3, we find that there is 
significant variation in how state is used and managed across our 
monitored environments, implying that ―one-size fits all‖ 
approaches to PS management may not be appropriate.  While our 
analysis is limited to Windows machines,many of the observations 
we make have a strong relationship with user workload and 
administrator behavior and thus may apply well to other systems 
with similar workloads and administrative polices. 

While existing methods for managing PS are based on static 
analysis of the state itself (e.g., malware scanners) or a priori 
descriptions of actions taken on the state (e.g., installation 
manifests), we find that analyzing the state and actions together, 
as PS interactions, provides a more complete foundation for 
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managing PS.  In Section 4, we characterize how processes use 
and share state. In Section 5, we present two case studies to show 
how monitoring PS interactions can improve PS management. 

Finally, in Section 6, we explore how PS interactions can be 
naturally grouped into coarse-grained bursts of activity.  We find 
that this grouping reduces the volume of events that must be 
recorded and analyzed by O(103).  Moreover, most of these 
activity bursts are repeated events and the amount of new activity 
is low—70% of applications generate no more than 5 previously 
unseen bursts each day. 

2. Methodology 
In this section, we describe our instrumentation package for 
monitoring and collecting PS interactions.  We also describe the 
machines and environments from which we collected our traces.  
Throughout this paper, we use PS to refer to both the file system 
and the Windows Registry.  PS entries refer to files and folders as 
well as their registry equivalents.  A PS interaction is any kind of 
access, such as a read or write, to an entry. 

2.1 Trace Collection 
To collect our traces of PS interactions, we built a black box 
instrumentation tool for the Windows operating system.  It 
consists of (1) a kernel mode driver that intercepts all PS 
interactions with the file system and the Windows Registry, along 
with process creation and binary load activity; and (2) a user 
mode daemon that manages the trace files and uploads them to a 
central server.  Neither the kernel mode driver nor the user mode 
daemon requires any changes to the core operating system or the 
applications running atop it. 

The kernel mode driver operates in real-time and, for each 
interaction, records the current timestamp, process ID, thread ID, 
user ID, interaction type (read, write, etc.), and hashes of data 
values where applicable.  For accesses to the file system, the 
driver records the path and filename, whether the access is to a 
file or a directory and, if applicable, the number of bytes read or 
written.  For accesses to the registry, the driver records the name 
and location of the registry entry as well as the data it contains.  
The driver sits above the file system cache, but below the memory 
mapping manager.  We also record process tree information, 
noting when a process spawns another.  The daily logs for a 
machine range in size from 348MB to 1.4GB, depending on the 
system‘s workload. Idle machines generated 30MB of logs daily. 

Once the user mode daemon on a monitored machine has 
uploaded a set of collected observations of state interactions to a 
central machine (or machines), these log files are processed and 
inserted into a database.  Processing log files involves correlating 
registry and file activity with the applications making the request.  
In addition, we canonicalize some machine-specific differences in 
the fully qualified name of files and registry settings to improve 
cross-machine comparison.  For example, the Windows file 
manager is C:\WINDOWS\explorer.exe on some systems, 
but D:\WINNT\explorer.exe on others. Our processing will 
canonicalize both instances to WINDIR\explorer.exe. 

To date, our data collector has been tested and deployed reliably 
on over 300 Windows 2000, Windows XP, and Windows 2003 
machines.  The performance overhead imposed by this monitoring 
is not noticeable for common user tasks.  At a large commercial 

web site, pre-production testing of our data collector was done in 
a lab setup of 4 identical servers, 1 running our data collector, 
each receiving a copy of the current live production load. 
Measurements were made of volume and latency of workload 
transactions along with memory, network, CPU, and I/O 
overhead. The performance impact of our data collector was 
minimal, with less than 1% CPU overhead measured, and no 
measurable degradation in transaction rate or latency.  

2.2 Monitored machines 
For our experiments, we installed the data collector software and 
monitored over 193 machines.  In total, we have collected 3648 
machine days of PS interactions over an 8 month period from 
March to November, 2005.  Our deployment of the data collector 
was gradual, so many machines were not monitored for the full 
period.  We monitored machines from a variety of environments, 
as summarized in Table 1, with different applications, workloads, 
and management policies. 

Internet server environment: We worked with a MSN to 
instrument 76 of their machines, across 5 different services with 
different workloads and management styles.  Svc1 is a CPU-
bound system with heavy disk workload. Svc2 is a critical back-
end system with high workload and is ―intensely managed.‖ The 
main distinction of Svc3 is that it is administered under a ―follow 
the sun model,‖ with 3 operations teams around the world 
monitoring the system. Svc4 is a large storage service for external 
users.  Svc5 is web notifications publish/subscribe system.  All 
services are managed by the same operations organization, but 
different engineering teams. 
Lab environment: We monitored laboratory machines in our 
research facility, used for various data collection, analysis and 
simulation experiments.  These machines are managed by our 
research labs‘ own IT staff.  Software patches are automatically 
installed as needed through Windows‘ auto-update facility. 
Corporate desktop environment: We also monitored corporate 
desktops and laptops, used by researchers and engineers, primarily 
for activities such as software development and word processing.  
These machines are managed jointly by users, who can install and 
uninstall software, and by the corporate IT department, which 
installs critical patches as needed and manages security-critical 
settings, such as firewall and web browser configuration. 
Home environment:  We monitored home machines, used for 
entertainment and work-related activities by researchers, 
engineers and their families.  These machines are not actively 

Table 1 Summary information about our collected traces 

Environment 
Number of 
Machines 

Total Observed 
Machine-Days  

Internet service machines 76 841 

Research lab machines 72 1703 

Corporate desktops 35 849 

Home machines 7 169 

Idle machines 3 86 

Total 193 3648 
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managed by professionals, though they may be configured to 
accept critical Windows updates automatically. 
As a control, we also collected traces from 3 idle systems, running 
within virtual machines.  The first idle machine had no network 
access.  The second had network access; and the third idle 
machine had network access as well as Windows‘ auto-update 
functionality enabled.  After our initial setup of these idle 
machines, we placed no user workload on them. 

For some of our analyses, we categorize the processes running on 
a system into one of three broad functionalities: (1) an OS-level 
process, or a surrogate process such as cmd.exe, svchost.exe, 
cscript.exe, which primarily spawn other programs; 
(2) an installation program or a management tool, such as a 
configuration panel or antivirus program; (3) a workload 
application such as a word processor on a home machine or a web 
service on a server. We categorized processes based on our own 
knowledge of its functionality as well as information gleaned from 
the Internet. 

When we analyze our traces to find daily statistics, such as the 
volume of activity per day, we exclude machine-days that do not 
cover a whole 24 hours, such as days with extended periods where 
a machine or our monitoring was turned off.   

3. Characterizing PS 
In this section, we quantify the three challenges of PS 
management, and explore how the state is used by the software 
and users on the system. 

3.1 Scale 
The first challenge to managing PS is the volume of data and 
volume of interactions with the data.  Previous studies of file 
system contents [5,17,21] and the Windows registry [22,24] have 
noted that modern computer systems contain 70k files and 
approximately 200k registry settings.  We examined file system 
and registry snapshots from 33 of our monitored machines, and 
found them to be consistent with prior findings.  We do not 
further review the volume of data here. 

In addition to the volume of data, the volume of PS interactions 
also challenges efforts to manage PS.  The existing I/O load 
influences when we might be willing to add extra load on the 
system to manage state.  Figure 1 presents a one week sample of 
activity for a representative home machine, corporate laptop, 
corporate desktop, Svc2 machine, and Svc5 machine. The 
variation of interactions from day to day matches our intuition of 
each machine‘s workload: home machines are busiest on the 
weekend, the corporate laptop and desktop machines vary 
significantly from day to day, while the servers workloads are 
stable from day-to-day.  Perhaps not surprisingly, our corporate 
desktops load did not drop over the weekends. 
Figure 2 shows the average number of daily interactions across all 
our traces.  Here, we see that Svc1 has the highest workload and 
variability of the servers—the other server environments have 
very stable workloads.   The lab machines, especially the lab 
machines 60-78 show high variability in the number of 
interactions per day.  Desktop and home machines have a high 
variability both across machines and from day-to-day on a single 
machine. 
Table 2 presents the average volume of daily interactions, divided 
by the category of application generating the interaction and type 
of activity.  One surprising result is that existing state 
management applications, such as hardware configuration tools 
and antivirus scanners, generate 38%-98% of the interactions 
across our environments. We examine this observation in detail in 
Section 4.1.  Overall, we see that server machines generate 
considerably more interactions than desktop, home, and lab 
machines. 
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Figure 1 Week long samples of interactions from a home 
machine, two corporate desktops, Svc2, and Svc5. 

Table 2 Summary of daily PS activity per machine across 
environments.  All units are in millions. 
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While millions of interactions occur every day on a typical 
machine, there are several factors that we can use to easily reduce 
the volume of events and state that we care about.  First, we see 
that read activity is consistently an order of magnitude (or more) 
greater than write activity across all environments, consistent with 
prior findings [2].  While read interactions are important when 
trying to debug or explain software behavior, we do not have to 
worry about these interactions corrupting PS. 
Furthermore, the number of distinct non-temporary files and 
registry entries read or written every day is much smaller than the 
total number of interactions, as shown in Figure 3—up to 2 orders 
of magnitude smaller. However, this is still a large number of 
entries: 10-15% of the 70k files and 5-10% of the 200k registry 
entries on a system are used on any given day.  Although server 
machines have more total interactions per day, Figure 3 shows 
that they use an order of magnitude fewer distinct PS entries 
compared to the desktop and home machines. Also note that, in 

terms of the number of distinct files, management activity is no 
longer dominant, indicating it is a very repetitive activity.. 

3.2 Update Frequency 
The second challenge to managing PS is that it changes so 
frequently.  The result is that it is difficult to track changes or 
distinguish between acceptable and problematic ones. 
By identifying specific intervals at which most entries are 
updated, we might be able to automatically flag unexpected 
changes for closer inspection.  To explore this potential, we 
measure the update frequency of the PS entries on our monitored 
machines.  We calculate the average time between modifications 
for each entry modified at least twice.  Figures 4 and 5 show that 
the update frequency distribution of files and registry settings 
ranges greatly, from 30 seconds to 3 weeks.  We also see that the 
volume of entries that change at a given frequency varies across 
environments by orders of magnitude.  Desktop, lab and servers 
have thousands of entries that change at a range of intervals, while 
home machines have hundreds.  It is worth noting that even our 
idle machines have tens of entries that are modified regularly, for 
example, to update internal OS data and cryptographic random 
seeds.  Overall, there does not appear to be a specific interval at 
which most entries are updated. 
Another method of identifying potentially problematic PS changes 
might be to identify a deviation from the normal rate of change for 
each entry.  Table 3 shows the regularity of PS updates by 
calculating the ratio of standard deviation to average for the time 
between successive updates to each distinct registry or file entry. 
We see that idle machine activity is quite regular, as we might 
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Figure 3 Number of distinct non-temp files and registry 

items read/written during 1 week of representative 
machine activity. 
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Figure 2 The median number of interactions per day for 
each machine. The vertical bars mark the 25th and 75th 

percentile of daily activity.  The gray/white bands group 
our environments. 
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Figure 4 The average number of files per machine with 

given update frequency, for each environment. 
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Figure 5 The average number of registry entries with a 

given update frequency, for each environment. 



 

 6 

expect.  Across environments, we find that files are updated more 
regularly than registry entries.  Investigation found regular 
updates to log files, temporary files created by applications‘ 
periodic auto-save feature, and memory mapped files.  Many of 
the irregular updates to registry entries are associated with the 
startup and shutdown of end-user applications, and are thus tied to 
human behavior, rather than regular computer behavior. These 
registry entries hold information such as recent window 
coordinates, the last run time, and other application-specific 
information.  Overall, it appears that monitoring the update 
frequency of entries is not a good indicator of potential problems 
because the false positives due to irregularly updated entries 
would be overwhelming. 

3.3 Variety of PS 
The third challenge to managing PS is that there is no single 
―correct‖ version of PS.  ―Correctness‖ varies across workloads 
and system configurations, as well as with the development of 
security patches, etc.  One way to measure the diversity of 
―correct‖ state is to measure the cardinality of configuration 
settings:  how many valid settings does a particular entry appear 
to have across machines?  If we see that a registry entry always 
has one of a small number of values, we might be able to develop 
consistency checks on it.  Alternatively, if we see that a registry 
entry always has a different value and changes frequently, we may 
assume that it is temporary or less important state. 

Table 4 shows the cardinality for all registry entries we have seen 
accessed for each environment. We see that 97.7% of idle 
machine registry state has cardinality 1, not surprising given that 
there is no user activity and minimal differentiation between 
machines. We manually inspected all of the 153 (1.6%) registry 
entries, across the idle machines with cardinality between 2 and 5, 
and found that these entries were related to installation differences 

(e.g., network settings) or were one of a small number of settings 
involving locally generated unique IDs.  We see also that home 
machines at 96.9% and server machines at 95% also have very 
high degree of cardinality 1 entries.  Interestingly desktop and lab 
machines have 10% fewer cardinality 1 entries, and 10% more 
cardinality 5 or fewer entries. This reflects that these systems are 
configured slightly differently, in many cases due to OS and 
application installation that differs from the default locations and 
settings.  As we compare entries across all our environments, we 
find that the number of registry entries with a cardinality of 1 
quickly decreases, indicating, not surprisingly, that the system‘s 
environment and workload has a large influence on its specific 
configuration.  However, most of the entries still have low 
cardinality.  While it would not be a complete solution, this raises 
the possibility of identifying consistency checks on many entries. 

4. Process Interaction with PS 
In this section, we analyze how processes use the PS on a system, 
and the implications for PS management. 

4.1 Running Processes 
Before we analyze how processes use state, let us first look at 
what processes are running on our monitored machines.  Figure 6 
presents the number of distinct processes per day for each of our 
machines.  As expected, idle machines have the fewest number of 
processes run per day (15-17).  The corporate desktop 
environments show the highest variability, with some machines 
running over 100 different processes on a given day.  The server 
environments show variability across services but show similar 
behavior within a single service.  Looking at how often each of 
these processes is run per day, we find that 85% are run between 1 
and 5 times per day across all our environments.  We found that a 
small number of processes were running over 100 times every day 
on lab, desktop, and server machines.  Upon inspection, we found 
that these were related to the workload of the system, such as 
build processes on developer desktops, and command line 
administrative tools on servers. 
We found that a few processes in each environment account for a 
significant portion, sometimes a majority, of PS interactions. On 
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Figure 6 The median number of distinct processes run per 
day for each machine.  The vertical bars mark the 25th and 

75th percentiles. The gray/white bands group our 
environments. 

Table 3 Percentage of file and registry entries with change 
frequency standard deviation / average ratio <1. 

Environ
ment 

File Registry 

Desktop 55.9% 17.6% 

Home 43.6% 38.4% 

Idle 98.0% 97.4% 

Server 63.6% 16.3% 

 

Table 4 Summary of registry cardinality by environment 
showing the percentage with cardinality 1, 2-5, or >5. 

Environment 1 2-5 >5 

Idle 97.7% 1.6% 0.7% 

Home 96.9% 2.7% 0.4% 

Server 95.0% 3.4% 1.6% 

Desktop 88.8% 10.4% 0.8% 

Lab 87.7% 11.7% 0.6% 

All machines 60.4% 27.0% 12.6% 
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Svc2, Svc3, Svc4, and Svc5, one management process, 
‗cqmghost.exe,‘ was responsible for 88-96% of daily interactions.  
This process enumerates all of the daemons installed on a system 
every 2 seconds.  The only busier process is one found on Svc1: a 
server-side web application that reads the computer name from the 
registry approximately 19M times a day.  On desktops we found 
that two management processes each accounted for 10% of daily 
interactions.  The first process provides dynamic configuration 
support for a laptop modem and reads the same registry entry up 
to 400k times per day.  The second is an enterprise management 
agent which scans the machine, generates log files, and installs 
patches.  User workload accounted for the rest of the interactions 
on desktop and home machines. 

4.2 Process state 
Monitoring the distinct PS entries used by running processes can 
help us with several state management problems:  when a process 
fails, knowing the entries it accesses narrows down the potential 
cause of the failure; knowing the processes that use every PS entry 
can help when evaluating the potential impact and risk of a 
software update; and finally, we might be able to take special care 
to secure or lock-down the state accessed by the most important 
processes on a system. 
Figure 7 shows the distribution of processes by the volume of 
distinct PS entries that they access.  We can see that application 
category does not appear to be correlated to the volume of data 
accessed.  Overall, 80% of processes access 500 entries or fewer, 
with a third using less than 100 entries. A very small percentage 
of processes access more than 3000 entries.  These processes 
include processes that access many entries because of their 
workload, such as state management tools, command shells, 
media players and compilers. 

4.3 Shared PS Entries 
PS entries that are shared across applications can be a serious 
source of problems.  First of all, if many applications are 
modifying and reading an entry, then there must be agreement on 
locking or transactional semantics to avoid consistency errors.  
Furthermore, the more processes write to an entry, the greater the 
opportunity for the entry to become corrupted. 
We found that all of the 1281 distinct processes we observed 
shared some file or registry entries with other processes.  Looking 

at the distinct canonicalized entries, we observed that over half 
(54.9%) of 3.6M files are shared by more than one process, 
whereas only 25.6% of 1.7M registry entries are shared.  An 
important special class of shared PS is the dynamically linked 
library (DLL).  Across all our environments, we found 2020 
distinct DLL files that had been used.  Of these, 717 were loaded 
for execution by multiple distinct processes.  This indicates that 
changes to many DLLs will impact multiple processes.   
Figure 8 shows the ratio of the number of readers to writers for 
shared state.  We see that most entries have exactly one reader and 
one writer.  When entries are shared, they tend to have many more 
readers than writers.  Very few files (0.6%) and very few registry 
entries (7.1%) are written to by more distinct processes than they 
are read from (a reader:writer ratio of 1:2 or higher).  
We observed that 76.6% of files and 94.2% of registry entries are 
read but never written to by processes.  To prevent accidental 
corruption, we might consider using access controls to prevent 
any writes to these files and entries.  Interestingly, we observed 
5235 registry entries and 263 files that were written to by multiple 
processes and never read.  Presumably, this implies that these 
entries are not important during normal operation. 
Given prior studies showing that most new files are deleted within 
seconds of creation [3,21], we might think that temporary entries 
also account for a significant portion of distinct file and registry 
entries.  However, we found that only 16.2% of accessed files and 
4.1% of accessed registry entries were temporary. We found that 
0.9% of temporary registry entries and 7.2% of temporary files 
were shared. Process problems caused by sharing temporary 
entries would be difficult to reproduce and troubleshoot. 

5. Case Studies in PS Monitoring 
We believe that monitoring PS interactions is a fundamental 
building block in PS management solutions.  In this section, we 
present two case studies that show how understanding PS 
interactions helps address PS management problems.  
The first case study investigates the problem of unwanted 
software (malware) running in the background on systems by 
attaching as a plug-in to the OS or applications.  The PS entries 
that control the dynamic loading and execution of these plug-ins 
are extensibility points (EPs). We analyze PS interactions to 
discover the extensibility points on a system, and quantify their 
importance in terms of system exposure.  Based on our analysis of 
EPs, we make recommendations for eliminating or securing 81% 
of them. 
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The second case study uses PS interaction monitoring to evaluate 
the software installers used to add, update, or remove applications 
on a system.  We were surprised that, on average, machines have a 
software installation every 5 days, and there appears to be no 
predictable pattern to these installs.  We also found that software 
installers do a poor job of declaring the PS entries they add to a 
system, and orphaned PS entries are often left behind on a system 
when software is uninstalled. These abandoned PS entries 
accumulate, potentially causing software decay and reliability 
problems.  Today, it often takes a system reinstallation to remove 
all of this abandoned state.  However, by auditing PS interactions 
we directly associate PS entries with the software installers and 
applications responsible for them. 

5.1 Managing Software Plug-ins 
In this section, we discover the hooks used by malware to ensure 
they are automatically run by their host system, and make 
recommendations for securing them. While malware could modify 
existing executable files on machines, this is not effective because 
detecting them is deterministic. The file malware modifies may be 
signed, software updates could overwrite it, or a management tool 
can be used to compare a files hash of the file with a known good 
value. Instead, malware can simply use the plug-ins exposed by 
the OS, daemons, and frequently run applications to be run. 
Detecting them then becomes the challenging problem of 
distinguishing malware from other plug-in extensions. One study 
found that a sample of 120 different spyware programs used a 
total of 334 EPs to integrate themselves into a system [5]. 

We present a method for analyzing PS traces to discover and rank 
security-sensitive PS entries that are used by processes as plug-
ins.  Unfortunately, the Windows OS and thousands of third party 
applications have many EPs whose usage is not controlled.  
Managing EPs is difficult because they are hard to identify since 
many were designed for internal use only and are therefore not 
documented. Discovering EPs through static analysis is difficult 
because of the general unavailability of system and application 
source code; and the lack of a standard location or format for EPs 
make it impractical to find them amongst the O(106) PS entries. 

5.1.1 Detecting Extensibility Points 
To discover EPs we analyze the per process PS interactions 
preceding a new executable file loading into a process, to 
correlate the name of the executable file with prior reading of a PS 
entry containing that name.2 We label these PS as direct 
extensibility points. We then identify first order indirect 
extensibility points by continuing to search through the history of 
PS events to discover references to the direct EP. This process is 
then repeated to identify EPs with the next order of indirection.   
For example, an indirect EP may reference an ActiveX class 
identifier that contains the ID of the COM3 object direct EP that 
ultimately contains the executable file name. Identifying indirect 
EPs may potentially yield false positives, however we filter them 
out through manual investigation of new EP instances. 

                                                                 
2 Our PS interaction tracing records the loading of a file for 

execution as a distinct activity from simply reading a file into 
memory. 

3 C̀omponent Object Model‘ is a Microsoft standard for reusing 
and sharing software components across applications. 

Many EPs have a similar name prefix that typically indicates that 
plug-ins using it follow a standard design pattern. We define a 
common EP name prefix as an extensibility point class, and the 
fully named EP as an extensibility point instance. For example, 
the EP class ―HKLM\Software\Classes\CLSID\‖ contains 
2396 EP instances. We identify new EP classes by manually 
examining newly discovered EP instances that do not match an 
existing EP class, and update our list with a new entry. 

In our analysis we processed 912 daily traces from 53 Home, 
Desktop, and Server machines. We discovered 364 EP classes and 
7227 EP instances. 6526 EP instances were direct, and 701 were 
indirect. While 130 EP classes had only 1 instance, 28 had more 
than 20 unique extensibility points. COM objects are the most 
dominant EP instances with 2796 of 7227 (40%) of the total. The 
second most EP class is associated with the Windows desktop 
environment, and the third contains web browser plug-ins. The 
remaining popular EP classes are related to an Office productivity 
suite and a development environment, both of which support rich 
extensibility features. 

We found that 470 of the 697 (67%) of distinct processes in our 
traces used EP instances, and those that did used 7 on average. 
Explorer.exe, responsible for the Windows desktop, used the 
largest number of EP classes (133 EP Classes), followed by a web 
browser (105 EP Classes) and an email client (73 EP Classes). 

Overall we found that monitoring PS interactions and correlating 
them with process executable file loads is an effective method of 
discovering EPs in applications. Also with 67% of processes 
using EPs, and at least 364 EP classes available, there is a lot of 
opportunity for malware to run on a system. 

5.1.2 Importance of Extensibility Points 
Some EPs are more critical security hazards than others.  We 
estimate an EP‘s criticality using three metrics:  1) the privilege-
level of the loading process, where higher-privilege processes 
such as operating system or administrator-level processes, are 
more critical; 2) the lifetime of the loading process, where longer 
running applications provide higher availability for a malicious 
extension; 3) the sensitivity of the data accessed by the loading 
process and, hence, available directly to a malicious extension.  
The first two metrics are captured in our traces, while the third 
cannot be measured. 
Figure 9 shows a scatter plot for all machines where each point is 
the percentage of EP instances that are loaded by processes that 
run for a given percentage of the overall system uptime. It shows 
that there are many EPs either used by short lived processes, or 
long lived processes and not many in the middle. We observed 
that on average a machine will have at least a third of EP 
instances (spanning 210 EP classes) loaded by processes that are 
running for 95% of the machines uptime. Furthermore we 
observed that one third of all EP instances were used by processes 
running in a process with elevated privileges. Overall, we found 
that a significant portion of EP instances are security hazards due 
to longevity and elevated privileges. 
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5.1.3 Lessons and Suggestions 
We compared our list of EP classes that contained EP instances 
loaded by processes running for 80% of system uptime or greater, 
with the published gatekeeper list [22]. Gatekeeper identified 30 
long life EP classes, compared to the 210 long life EP classes. 
Gatekeeper identified 6 EP classes that were not in our list 
because we did not observe processes that used them. 

Apart from demonstrating the utility of PS interactions in 
discovering and documenting these extensibility points and their 
exposure, our results suggest that OS and application design 
changes may be possible to restrict or eliminate many EP 
instances. 

Removal – We observed that 3197 of 7227 EP (44%) of the EP 
instances across all machines were not modified during the 
monitoring period.  It may be possible to remove these EPs by 
converting them into static application data.  
Lockdown – 5111 of 7227 (70%) of the EP instances, spanning 
221 of 367 (60%) EP classes were used by a single process. For 
these privately used EP instances it may be possible to lock them 
down by implementing a policy mechanism to prevent 
interference or corruption from other applications, or to convert 
them into static application data. If the EP instances identified 
above are removed or locked down 88 (18%) of EP using 
applications will no longer use them. 
We found that 1297 (19%) of EP instances, spanning 43 EP 
classes, were changed and shared by multiple applications and 
therefore are not candidates for removal or lock down. However 
the remaining 81% can potentially be locked down or removed, 
thus making 18% of current EP using applications more secure. 

5.2 Tracking Software Ownership 
Intuitively, we may think that managing PS should be easy 
because executable files and configuration are infrequently 
created or are modified by well-known software installers.  In 
Section 5.2.1, we analyze our traces to find that installations 
actually occur quite frequently.  Additionally, while most software 
installers provide manifests, listing the PS entries owned by the 
installed application to facilitate its clean uninstallation, these 

manifests are often incomplete or incorrect [7].  In Section 5.2.2 
we analyze PS entries across 70 machines and find that many 
entries cannot be accounted for via the machines‘ static manifests.  
To better understand the origins of these orphaned PS entries, we 
describe point experiments with installing and uninstalling three 
popular applications. 

5.2.1 How often is software installed? 
To identify a software installation examined our PS traces to 
identify the creation or modification of files that were later loaded 
by a process as an executable file. We found that on average 20% 
of all machine days had at least 1 installation. However this varied 
significantly across each environment. 15% of Home and Lab 
machine days and 30% of desktop machine days had at least 1 
install. Servers environments had a wide variance in the frequency 
of software installations ranging from 7%-80% of machine days 
having at least one install.  This reflects the variation in change 
management policy for each Internet service. 
While we might have thought that centralized administration of 
corporate desktops, or Windows auto-update service might cause 
synchronized updates, this does not appear to be the case. Overall 
we observed that most software installations, even in the server 
environment, occur in an unpredictable manner. Table 5 describes 
the distribution of observed installations across install types. We 
see that processes that update themselves (Self Update), 
predominantly anti-virus applications, account for a significant 
portion of installs. Also, enterprise software distribution 
applications and Windows auto-update account for the majority of 
software installs in most environments. As we expect, Servers 
have a large portion of scripted installs from administrators 
manually rolling out upgrades and in-house applications. 
Installations caused by users running install programs are 
infrequent. It is interesting to see that our analysis was able to 
distinguish binary files created and used on developer machines as 
‗installed‘ by the developer tools. Overall we found that a wide 
variety of software installers create and modify executable files on 
a machine, and that installations happen quite frequently. 

5.2.2 Static Software Ownership Manifests 
Unfortunately, a statically declared manifest is not always 
complete.  Today‘s manifests are not always correctly specified, 
nor do they account for PS created post-installation, such as user 
preference settings, log files, etc.  This means that during software 
upgrades or removal entries can become orphaned on the 
machine. Furthermore, installation or removal of software can fail 
or be interrupted which often leaves registry entries and files in an 
inconsistent state. Over time the few orphaned files and registry 
entries accumulate on a machine causing a build up of unused 
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Figure 9 The distribution of EP instances to lifetime of 
their host processes as a percentage of machine uptime. 

Table 5 The distribution of installations by installation program 
type for all observed installations. 

 
User 
Setup Scripted 

Auto 
Update 

Self 
Update Developer 

Home 7% 7% 51% 35% 0% 
Desktop 5% 8% 58% 22% 7% 
Lab 2% 5% 61% 32% 0% 
Server 1% 17% 38% 44% 0% 
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entries that can lead to system problems.4  Because of this 
phenomenon, common advice is to reinstall your computer 
occasionally to return the system to a known state. 
To quantify the significance of this problem, we wrote a tool to 
extract PS ownership manifests from within the Windows OS.  
The tool identifies the components installed on the system by 
analyzing the OS installation configuration files, enumerating the 
list of program that have registered with the Windows 
‗Add/Remove programs‘ component, the Windows Installer 
database (WI), the OS configuration for launching applications 
when a file of a given extension is run, and manifests of patch 
contents as described in the Microsoft Security Baseline Analyzer 
tool. We then enumerate all files and registry entries on a machine 
and compare them with these manifests to identify unaccounted 
for entries. We associate entries that are children of entries that 
are referenced in the manifests as implicitly associated with the 
manifest as well. Finally we filter the remaining list to exclude 
well known user data files by their extension, and remove entries 
from well known temporary folders. We define the remaining 
subset as leaked entries on the system. Table 6 contains the results 
of running this tool across 8 desktops, 20 Server, and 42 lab 
machines. It shows that 31-70% of files and 38-53% of registry 
entries could not be accounted for. 
To further understand the prevalence of software leaks, we 
measured the leakage of 3 popular commercial applications. By 
running our data collector while installing the application, using it 
for a short period, and then uninstalling the application; we were 
able to measure the net increase of file and registry entries on the 
machine. The first application was the game ‗Doom3‘, which left 
9 files and 418 registry entries. The second was the common 
corporate desktop application suite Microsoft Office product suite 
which left no files, but 1490 registry entries. Additionally, it left 
129 registry entries for each user that logged into the system and 
used the program while it was installed. The third example was 
the enterprise database application Microsoft SQL Server Yukon 
edition, which leaked 57 files and 6 registry entries. 

6. Activity Bursts 
In this section, we analyze activity bursts: groups of PS 
interactions occurring close together in time, within a single 
thread.  We first discuss how we find activity bursts, and then 
explore how they can be used to reduce the O(107) daily events 
                                                                 
4 Examples can be found at http://support.microsoft.com/ via the 

article IDs: 898582, 816598, 239291, 810932, 181008. 

reported in Section 3.1 to O(103) distinct daily activity bursts.  
Also, we show that 73% of observed processes produce only 2 
never-before-seen bursts per day. We found that bursts may be the 
ideal unit for measuring PS activity, and discuss how they might 
be used to detect anomalous events. 

6.1 Identifying Activity Bursts 
To make our definition of an activity burst more concrete, we 
have to define how close together in time interactions have to be 
before we will group them together into a single activity burst—in 
other words, what gap should separate activity bursts?  While we 
could group together interactions at any time scale, we are 
interested in analyzing activity bursts for the purpose of studying 
how software, administrators, and users of computer systems 
manage their PS, and thus are interested in relatively macro-scale 
activities.  This implies that our activity bursts will also be 
relatively macro-scale, at the granularity of seconds or minutes, as 
opposed to a granularity of milliseconds that we might want if we 
were interested in studying, for example, the effects of activity 
bursts on disk caches. 

Examining our trace logs, we find that over 99% of PS 
interactions within a single thread occur within 1 second of 
another interaction.  Also, there are long periods of no state 
interactions as well.  This seems to confirm our expectation that 
PS interactions do occur in bursts.  

Formally, we define an activity bursts as a group of interactions 
{et | i ≤ t ≤ j} occurring within a single thread, where 
gap(et,et+1) < k, for all i ≤ t < j; gap(ei-1,ei) ≥ k; gap(ej,ej+1) ≥ k; 
gap(x,y) is the time between two interactions x and y; and k is the 
threshold gap between bursts.  To inform our specific choice of 
the threshold gap k, we considered the distribution of the gap 
between PS interactions over the range [1-900] seconds. We 
found that the curve representing the distribution of the gap 
between all PS interactions per thread is relatively flat, implying 
that there is likely little difference between values of k within this 
range.  The ideal gap size will produce activity bursts that closely 
match user and system activities while producing few overall 
distinct blocks, each of which containing a small number of 
events to enable manual investigation if needed. For our analysis, 
we choose k=60sec. Examining the 55.6 million burst we 
identified with this gap size, we found that the average burst was 
34 seconds long. Also, these bursts contained 34 distinct events 
representing 650 total events. 

6.1.1 Exact Matching with Signatures 
To identify repeating activity bursts we assign each burst a 
deterministic signature, calculated by hashing the file paths, 
names and activity types (read, write, etc) for all interaction 
within the activity.  We considered using other attributes, such as 
interaction ordering or timing information, but found that, given 
the PS entries accessed; this extra information did not help. 

Some interactions, such as temporary files and user documents, 
obscure the underlying similarity of activity bursts.  For example, 
a program that uses a temporary file will usually generate a 
random file name for it. Two executions of such a program will 
generate activity bursts with different signatures, unless we 
recognize and compensate for the randomness of the temporary 
filename. In our analysis, we recognize temporary files, as 
described in Section 4.3, and replace their random filenames with 

Table 6 Average file and registry entries that are specified in 
manifests, implicitly in manifests, user data, or temp entries.  
We do not have heuristics to recognize data and temporary 

registry entries. 
  Manifes t Implicit Data T e m p U nknow n 

Fi
le

 

D e s kt op 18.5% 21.0% 20.6% 8.3% 31.6% 
S erv e r 4.7% 52.6% 2.4% 3.4% 36.9% 
Lab 13.2% 5.8% 9.5% 1.4% 70.1% 

R
eg

. 

D e s kt op 28.2% 32.2% N/A N/A 39.6% 
S erv e r 10.5% 36.4% N/A N/A 53.1% 
Lab 30.3% 31.7% N/A N/A 38.0% 

 

http://support.microsoft.com/
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a canonical one. Similarly, we use simple heuristics, such as file 
extensions, to recognize and canonicalize users‘ documents, as 
well as unique identifiers, such as user and machine IDs. 

6.2 Event Reduction 
We expect that the number of activity bursts in a day will be much 
less than the number of PS interactions per day, given that the 
number of bursts we expect to see is bound by the number of gaps 
longer than our threshold k=60.   Thus, with about 0.1% of 
interactions having gaps>60, we would expect a O(103) reduction 
in the number of events.  Shown in Figure 10, the number of daily 
activity bursts is approximately 103 fewer than the number of 
daily PS interactions. 
To gain assurance that these bursts are valid groupings of 
activities, we look to see how many of these bursts are  repeated 
over time.  If our grouping is arbitrary, we would expect to see 
very few repeated activities.  However, we find that most of the 
activity bursts we observe in a given day are in fact repeated, and 
the number of distinct activity bursts we observe is on the order of 
1000-4000 bursts/day for most machines, as shown in Figure 11. 

6.3 New Activity Blocks over Time 
In addition to the event reduction afforded by identifying coarse-
grained activity bursts, we find that the number of new activity 
bursts occurring over time quickly stabilizes to a small number.  
That is, most applications appear to repeat the same activity bursts 
over time, and exhibit few new activity bursts in any given day. 
To quantify this, we model the application‘s creation of new 
bursts over time as a stochastic process, in particular, as two 

Gaussian processes with unit variance and a single transition time 
where the stochastic process transitions from the state associated 
with the first Gaussian process to the second Gaussian process.   
Our initial intuition is that this simple model might be sufficient 
to capture the behavior of an application which initially generates 
large numbers of new blocks, and then quickly settles into 
generating few or no new blocks for the remainder of our 
observations. The first Gaussian process corresponds to the 
former transient behavior, while the second Gaussian corresponds 
to the steady state behavior. 

Given this model, finding the most likely setting of parameters is 
straightforward.  Let the mean of the first Gaussian be denoted by 
λ1, the mean of the second by λ2, and the transition time by t. Then 
the most likely setting of these parameters is given by: 
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For a fixed t, the minimizing values of λ1 and λ2 are given by the 
respective averages over the xi‘s on either side of the transition t, 
allowing us to efficiently compute the above quantity as: 
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The only pathological case we have observed is for applications 
with no observed transition.  In this case, we choose the left-most 
t, and the number of new bursts generated in the application‘s 
steady state (λ2) remains a large number. 
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Figure 10 The median number of activity bursts we see on 

each machine, with bars marking the 25th and 75th 
percentiles.  The gray/white bands group our 

environments. 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100 110

Machine ID

Nu
m

be
r o

f B
ur

st
s

H
om

e

D
es

kt
op

Id
le

La
b

S
vc

5
S

vc
3

S
vc

1
S

vc
4

S
vc

2

 
Figure 11 The median number of distinct activity bursts 
we see on each machine, with bars marking the 25th and 

75th percentiles.  The gray/white bands group our 
environments. 
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Figure 12 shows the result of our analysis.  For each application, 
we plot the steady state blocks generated by it (λ2) against the 
transition time it takes for the application to stabilize into steady 
state (t).  We see that most of the applications we have monitored 
do stabilize and generate a small number of new bursts per day.  
The median of λ2 across our applications is 2 bursts/day, while the 
mean is 29.8 bursts/day.  The median convergence time t is 1 day, 
while the mean is 4.5 days.  The mean for both λ2 and t is heavily 
skewed by the pathological applications that show poor 
convergence.  These applications make up only 23% of the 
applications we observed. Overall activity bursts are an ideal unit 
for managing PS because they provide O(104) reduction when 
considering PS interactions, and because they provide the 
additional contextual information of the process, user context, and 
related PS interactions for every PS change. This complexity 
reduction and additional information simplifies PS management. 

7. Related Work 
There have been many studies of file system workload traces with 
the goal of improving I/O system performance by optimizing disk 
layout, replication, etc. [3,5,7,9,15,17,18,19,21].  To our 
knowledge, we are the first to study file system accesses and 
registry accesses with the goal of characterizing and improving 
the management of PS. 

Some studies of distributed file systems do not capture the 
complete logical file accesses of a system [7,18].  While these 
traces, captured through network sniffing of NFS or at the disk 
I/O layer, are sufficient for studying many performance and 
structural issues, it does not provide the usage information 
required for improving PS management.  Other studies have 
instrumented system calls or drivers to capture complete logical 
traces of file system activity [12,17,21].  Our tracing strategy is 
similar to Vogel‘s instrumentation in [20] and Lorch and Smith‘s 
VTrace [11].  We share with VTrace the ability to associate 
process and user IDs with accesses to PS.  However, Hau and 
Smith‘s analysis of VTrace logs in [8] focuses on the I/O of low-
level disk blocks.  Roselli et al.‘s comparative analysis of VTrace 
logs does not consider process or user IDs.  In our tracing, we also 
add the ability to trace accesses to the Windows Registry.  In [9], 
Kroeger and Long find that recent file system accesses can be 
used to predict the next file system access with high probability.  

This is consistent with our findings of repeated activity bursts in 
Section 6. 

Most current techniques for PS management use predetermined 
information, e.g., manifests to track installed software and rules to 
detect missing dependencies and known symptoms of problems.  
Automated or semi-automated tools, such as software installers, 
anti-virus monitors and configuration error checkers use this 
predetermined information to effectively reduce the complexity of 
PS management by focusing on a narrow set of state.  The 
problem with this approach is its reliance on the correctness and 
completeness of pre-determined information.  If new software is 
added to the system or an unanticipated failure occurs then the 
predetermined rules will not notice a problem. 

Recent work on black-box analysis of the Windows Registry for 
troubleshooting configuration problems avoids the above problem 
by replacing predetermined information with dynamically 
observed truth about software behavior and registry accesses and 
using administrator interaction to scope the tracing and analysis of 
events during troubleshooting [22,24].  The black-box analysis 
used in this paper avoids the problems of predetermined 
information and uses, for example, the structure of activity bursts 
to reduce the scale of the analysis problem.  Also, there has been 
previous work on designing models for component interactions 
[10], and for tracking only the dependencies between executable 
files [19], where our approach is to focus on the managing all PS. 

8. Conclusion and Future Directions 
Our goal in performing this study was to better characterize the 
challenges of PS management, as well as to explore potential 
methods for tackling the problems facing it.  To this end, we 
collected and analyzed several thousand machine-days of file 
system and Windows Registry accesses, across a range of server 
and client environments under real-world workloads.  To our 
knowledge, this is the first such study characterizing how PS is 
used and managed across multiple environments.  Our 
characterization and analysis provides several interesting 
observations: 

Differences across environments: The variation we observed 
across environments was significant, and may imply that different 
state management solutions may be required in different 
environments.  In particular, desktop systems and home machines 
exhibited widely varying behavior from day to day, whereas 
server behavior was relatively stable.  Thus, for example, 
monitoring techniques that interpret anomalous behaviors as 
significant events might be appropriate within Internet services, 
but not in corporate desktop and home environments. 

Management tool overhead: We were surprised to find that 60% 
of the PS interactions across our traces is overhead from PS 
management tools, such as configuration tools, anti-virus scanners 
and auto-update tools.  Measuring the performance effects of this 
extra load on end-users is future work. 

Extensibility points: Our case study on discovering extensibility 
points for the operating system and applications demonstrated 
how PS interactions can tie dynamic application behavior—in this 
case, security-critical loading of third-party plug-ins, extensions 
and malware—to the configuration settings that control the 
behavior.   Exploiting this relationship in the context of other 
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security-critical yet poorly-understood configuration settings may 
also prove fruitful. 

Poor manifest coverage: We found that current methods for 
tracking and managing software packages, through a priori 
declared ownership manifests, do a poor job of describing the 
total state of installed software processes.  We believe on-line 
monitoring of PS interactions could generate more complete and 
accurate manifests. 

Repeated structure: While there are tens of millions of daily 
accesses to files and registry settings on both server and desktop 
system under normal load, these file system accesses show a large 
degree of structure and repetition, in the form of activity bursts.  
Recognizing this structure enables the volume of events to be 
reduced by several orders of magnitude.  This makes the on-line 
analysis of PS interactions more feasible. 

Overall, we found that tracing the combination of PS interactions 
and identifying the responsible processes and users for 
interactions provided a powerful view into system behavior, and 
believe that incorporating on-line monitoring of this information 
will be a great aid to PS management.  To further research in this 
area, we will be releasing our data collector instrumentation for 
general use.  We are also investigating how we might anonymize 
our captured traces of PS interactions for wide distribution. 
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