

Analyzing Persistent State Interactions to Improve State Management

Chad Verbowski
Emre Kiciman
Brad Daniels

Shan Lu
Roussi Roussev
Yi-Min Wang

Juhan Lee

April 4, 2006

Technical Report
MSR-TR-2006-39

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

 2

Analyzing Persistent State Interactions to Improve State
Management

Chad Verbowski, Emre Kıcıman, Brad Daniels, Shan Lu, Roussi Roussev,
Yi-Min Wang

ABSTRACT
A primary challenge to building reliable and secure computer
systems is managing the persistent state of the system: all the
executable files, configuration settings and other data that govern
how a system functions. The difficulty comes from the sheer
volume of this persistent state, the frequency of changes to it, and
the variety of workloads and requirements that require
customization of persistent state. The cost of not managing a
system‘s persistent state effectively is high: configuration errors
are the leading cause of downtime at Internet services,
troubleshooting configuration problems is a leading component of
total cost of ownership in corporate environments, and malware—
effectively, unwanted persistent state—is a serious privacy and
security concern on personal computers.

In this paper, we analyze how computer systems dynamically
interact with files and configuration settings in an attempt to gain
insights into the problem of persistent state management. We
analyze over 3648 machine days of these persistent state
interactions, collected over an 8 month period from 193
machines. These machines are under real workloads and include
Internet servers, corporate desktops, and home machines. We
characterize the scope and magnitude of the persistent state
management problem today, measuring not only the gross
characteristics of persistent state, but also analyzing how it is used
by applications, and when administrators and users modify it. We
find that monitoring persistent state interactions provides
important visibility and show how it can be used as a foundation
for building better persistent state management tools.

1. Introduction
Misconfigurations and other persistent state (PS) problems are
among the primary causes of failures and security vulnerabilities
across a surprising variety of systems, from individual desktop
machines to large-scale Internet services. One large MSN service
found that, in their 7000 machine system, 70% of their non-
reboot-curable problems were related to PS corruptions, while
only 30% were hardware failures. In [13], Oppenheimer et al.
find that configuration errors are the largest category of operator
mistakes that lead to downtime in Internet services. Studies of
wide-area networks show that misconfigurations cause 3 out of 4
BGP routing announcements, and are also a significant cause of
extra load on DNS root servers [13,4]. Our own analysis of call
logs from a large software company‘s internal help desk,
responsible for managing corporate desktops, found that a
plurality of their calls (28%) were PS related.1 Furthermore, most

1 The other calls were related to hardware problems (17%),
software bugs (15%), design problems (6%), ―how to‖ calls
(9%) and unclassified calls (12%).

reported security compromises are against known
vulnerabilities—administrators are wary of patching these
vulnerabilities because they do not know the state of their systems
and thus cannot predict the impact of a change [2,16,22].

PS management is the process of maintaining the ―correctness‖ of
critical program files and settings to avoid the misconfigurations
and inconsistencies that cause these reliability and security
problems. Managing the PS of computer systems poses many
challenges. First is the sheer volume of data. Today, the unit of
state management is individual files or registry entries. A typical
Windows machine contains on average 70,000 files and 200,000
configuration settings [5,24]. Understanding the roles of these
files and settings and their inter-dependencies requires a
practically unattainable breadth of knowledge. The second
challenge is the rate of change. Our traces indicate that the
average Windows computer makes over 1 million changes to files
(e.g., file creations, writes and deletions) and 30,000 changes to
configuration settings daily. While many of these changes are to
temporary files and user data, we found that each machine saw
critical security updates, software upgrades, and new application
installations occurred, on average, once every 5 days. To
effectively manage computer systems‘ PS, we have to track and
evaluate the impact of these changes. The third challenge to PS
management is that ―correctness‖ is ever changing. Security
patches, software upgrades and changing user requirements mean
that the critical PS on a system must be updated frequently.
Moreover, different systems, having different workloads,
requirements and hardware configurations, will require different
PS—there is no single ―golden‖ version.

The first step to improving PS management is gaining a better
understanding and characterization of how computer systems
interact with their PS—how and when this state is created, read,
written and deleted by the programs and users of a computer
system. To this end, we collected over 3648 machine days of
these PS interactions over an 8 month period from 193 machines
operating under real workloads in a variety of environments,
including Internet services, corporate desktops, experimental lab
machines and home machines. In Section 3, we find that there is
significant variation in how state is used and managed across our
monitored environments, implying that ―one-size fits all‖
approaches to PS management may not be appropriate. While our
analysis is limited to Windows machines,many of the observations
we make have a strong relationship with user workload and
administrator behavior and thus may apply well to other systems
with similar workloads and administrative polices.

While existing methods for managing PS are based on static
analysis of the state itself (e.g., malware scanners) or a priori
descriptions of actions taken on the state (e.g., installation
manifests), we find that analyzing the state and actions together,
as PS interactions, provides a more complete foundation for

 3

managing PS. In Section 4, we characterize how processes use
and share state. In Section 5, we present two case studies to show
how monitoring PS interactions can improve PS management.

Finally, in Section 6, we explore how PS interactions can be
naturally grouped into coarse-grained bursts of activity. We find
that this grouping reduces the volume of events that must be
recorded and analyzed by O(103). Moreover, most of these
activity bursts are repeated events and the amount of new activity
is low—70% of applications generate no more than 5 previously
unseen bursts each day.

2. Methodology
In this section, we describe our instrumentation package for
monitoring and collecting PS interactions. We also describe the
machines and environments from which we collected our traces.
Throughout this paper, we use PS to refer to both the file system
and the Windows Registry. PS entries refer to files and folders as
well as their registry equivalents. A PS interaction is any kind of
access, such as a read or write, to an entry.

2.1 Trace Collection
To collect our traces of PS interactions, we built a black box
instrumentation tool for the Windows operating system. It
consists of (1) a kernel mode driver that intercepts all PS
interactions with the file system and the Windows Registry, along
with process creation and binary load activity; and (2) a user
mode daemon that manages the trace files and uploads them to a
central server. Neither the kernel mode driver nor the user mode
daemon requires any changes to the core operating system or the
applications running atop it.

The kernel mode driver operates in real-time and, for each
interaction, records the current timestamp, process ID, thread ID,
user ID, interaction type (read, write, etc.), and hashes of data
values where applicable. For accesses to the file system, the
driver records the path and filename, whether the access is to a
file or a directory and, if applicable, the number of bytes read or
written. For accesses to the registry, the driver records the name
and location of the registry entry as well as the data it contains.
The driver sits above the file system cache, but below the memory
mapping manager. We also record process tree information,
noting when a process spawns another. The daily logs for a
machine range in size from 348MB to 1.4GB, depending on the
system‘s workload. Idle machines generated 30MB of logs daily.

Once the user mode daemon on a monitored machine has
uploaded a set of collected observations of state interactions to a
central machine (or machines), these log files are processed and
inserted into a database. Processing log files involves correlating
registry and file activity with the applications making the request.
In addition, we canonicalize some machine-specific differences in
the fully qualified name of files and registry settings to improve
cross-machine comparison. For example, the Windows file
manager is C:\WINDOWS\explorer.exe on some systems,
but D:\WINNT\explorer.exe on others. Our processing will
canonicalize both instances to WINDIR\explorer.exe.

To date, our data collector has been tested and deployed reliably
on over 300 Windows 2000, Windows XP, and Windows 2003
machines. The performance overhead imposed by this monitoring
is not noticeable for common user tasks. At a large commercial

web site, pre-production testing of our data collector was done in
a lab setup of 4 identical servers, 1 running our data collector,
each receiving a copy of the current live production load.
Measurements were made of volume and latency of workload
transactions along with memory, network, CPU, and I/O
overhead. The performance impact of our data collector was
minimal, with less than 1% CPU overhead measured, and no
measurable degradation in transaction rate or latency.

2.2 Monitored machines
For our experiments, we installed the data collector software and
monitored over 193 machines. In total, we have collected 3648
machine days of PS interactions over an 8 month period from
March to November, 2005. Our deployment of the data collector
was gradual, so many machines were not monitored for the full
period. We monitored machines from a variety of environments,
as summarized in Table 1, with different applications, workloads,
and management policies.

Internet server environment: We worked with a MSN to
instrument 76 of their machines, across 5 different services with
different workloads and management styles. Svc1 is a CPU-
bound system with heavy disk workload. Svc2 is a critical back-
end system with high workload and is ―intensely managed.‖ The
main distinction of Svc3 is that it is administered under a ―follow
the sun model,‖ with 3 operations teams around the world
monitoring the system. Svc4 is a large storage service for external
users. Svc5 is web notifications publish/subscribe system. All
services are managed by the same operations organization, but
different engineering teams.
Lab environment: We monitored laboratory machines in our
research facility, used for various data collection, analysis and
simulation experiments. These machines are managed by our
research labs‘ own IT staff. Software patches are automatically
installed as needed through Windows‘ auto-update facility.
Corporate desktop environment: We also monitored corporate
desktops and laptops, used by researchers and engineers, primarily
for activities such as software development and word processing.
These machines are managed jointly by users, who can install and
uninstall software, and by the corporate IT department, which
installs critical patches as needed and manages security-critical
settings, such as firewall and web browser configuration.
Home environment: We monitored home machines, used for
entertainment and work-related activities by researchers,
engineers and their families. These machines are not actively

Table 1 Summary information about our collected traces

Environment
Number of
Machines

Total Observed
Machine-Days

Internet service machines 76 841

Research lab machines 72 1703

Corporate desktops 35 849

Home machines 7 169

Idle machines 3 86

Total 193 3648

 4

managed by professionals, though they may be configured to
accept critical Windows updates automatically.
As a control, we also collected traces from 3 idle systems, running
within virtual machines. The first idle machine had no network
access. The second had network access; and the third idle
machine had network access as well as Windows‘ auto-update
functionality enabled. After our initial setup of these idle
machines, we placed no user workload on them.

For some of our analyses, we categorize the processes running on
a system into one of three broad functionalities: (1) an OS-level
process, or a surrogate process such as cmd.exe, svchost.exe,
cscript.exe, which primarily spawn other programs;
(2) an installation program or a management tool, such as a
configuration panel or antivirus program; (3) a workload
application such as a word processor on a home machine or a web
service on a server. We categorized processes based on our own
knowledge of its functionality as well as information gleaned from
the Internet.

When we analyze our traces to find daily statistics, such as the
volume of activity per day, we exclude machine-days that do not
cover a whole 24 hours, such as days with extended periods where
a machine or our monitoring was turned off.

3. Characterizing PS
In this section, we quantify the three challenges of PS
management, and explore how the state is used by the software
and users on the system.

3.1 Scale
The first challenge to managing PS is the volume of data and
volume of interactions with the data. Previous studies of file
system contents [5,17,21] and the Windows registry [22,24] have
noted that modern computer systems contain 70k files and
approximately 200k registry settings. We examined file system
and registry snapshots from 33 of our monitored machines, and
found them to be consistent with prior findings. We do not
further review the volume of data here.

In addition to the volume of data, the volume of PS interactions
also challenges efforts to manage PS. The existing I/O load
influences when we might be willing to add extra load on the
system to manage state. Figure 1 presents a one week sample of
activity for a representative home machine, corporate laptop,
corporate desktop, Svc2 machine, and Svc5 machine. The
variation of interactions from day to day matches our intuition of
each machine‘s workload: home machines are busiest on the
weekend, the corporate laptop and desktop machines vary
significantly from day to day, while the servers workloads are
stable from day-to-day. Perhaps not surprisingly, our corporate
desktops load did not drop over the weekends.
Figure 2 shows the average number of daily interactions across all
our traces. Here, we see that Svc1 has the highest workload and
variability of the servers—the other server environments have
very stable workloads. The lab machines, especially the lab
machines 60-78 show high variability in the number of
interactions per day. Desktop and home machines have a high
variability both across machines and from day-to-day on a single
machine.
Table 2 presents the average volume of daily interactions, divided
by the category of application generating the interaction and type
of activity. One surprising result is that existing state
management applications, such as hardware configuration tools
and antivirus scanners, generate 38%-98% of the interactions
across our environments. We examine this observation in detail in
Section 4.1. Overall, we see that server machines generate
considerably more interactions than desktop, home, and lab
machines.

0

10

20

30

40

50

S M T WT F S S M T WT F S S M T WT F S S M T WT F S S M T WT F S

M
ill

io
ns

N
um

be
r o

f E
ve

nt
s

Workload Events

Mgmt Events

OS Events

Desktop(2) Svc5Home Desktop(1) Svc2

Figure 1 Week long samples of interactions from a home
machine, two corporate desktops, Svc2, and Svc5.

Table 2 Summary of daily PS activity per machine across
environments. All units are in millions.

E
nv

ir
on

m
en

t Category Type

T
ot

al

W
or

kl
oa

d

M
gm

t.

O
S

R
ea

d

W
rit

e

Svc. 1 39.75 26.52 3.59 68.31 1.55 69.86
Svc. 4 19.16 37.10 4.37 57.77 2.86 60.63
Svc. 5 2.29 23.10 3.67 28.31 0.76 29.07
Svc. 2 0.005 21.00 1.45 21.26 1.20 22.46
Svc. 3 1.63 14.93 2.18 16.90 1.83 18.73
Home 4.27 8.89 4.17 16.70 0.62 17.33

Desktop 2.74 5.02 1.62 8.94 0.44 9.38
Lab 2.52 5.99 0.74 8.73 0.51 9.25
Idle 0.005 0.25 0.10 0.34 0.02 0.36

 5

While millions of interactions occur every day on a typical
machine, there are several factors that we can use to easily reduce
the volume of events and state that we care about. First, we see
that read activity is consistently an order of magnitude (or more)
greater than write activity across all environments, consistent with
prior findings [2]. While read interactions are important when
trying to debug or explain software behavior, we do not have to
worry about these interactions corrupting PS.
Furthermore, the number of distinct non-temporary files and
registry entries read or written every day is much smaller than the
total number of interactions, as shown in Figure 3—up to 2 orders
of magnitude smaller. However, this is still a large number of
entries: 10-15% of the 70k files and 5-10% of the 200k registry
entries on a system are used on any given day. Although server
machines have more total interactions per day, Figure 3 shows
that they use an order of magnitude fewer distinct PS entries
compared to the desktop and home machines. Also note that, in

terms of the number of distinct files, management activity is no
longer dominant, indicating it is a very repetitive activity..

3.2 Update Frequency
The second challenge to managing PS is that it changes so
frequently. The result is that it is difficult to track changes or
distinguish between acceptable and problematic ones.
By identifying specific intervals at which most entries are
updated, we might be able to automatically flag unexpected
changes for closer inspection. To explore this potential, we
measure the update frequency of the PS entries on our monitored
machines. We calculate the average time between modifications
for each entry modified at least twice. Figures 4 and 5 show that
the update frequency distribution of files and registry settings
ranges greatly, from 30 seconds to 3 weeks. We also see that the
volume of entries that change at a given frequency varies across
environments by orders of magnitude. Desktop, lab and servers
have thousands of entries that change at a range of intervals, while
home machines have hundreds. It is worth noting that even our
idle machines have tens of entries that are modified regularly, for
example, to update internal OS data and cryptographic random
seeds. Overall, there does not appear to be a specific interval at
which most entries are updated.
Another method of identifying potentially problematic PS changes
might be to identify a deviation from the normal rate of change for
each entry. Table 3 shows the regularity of PS updates by
calculating the ratio of standard deviation to average for the time
between successive updates to each distinct registry or file entry.
We see that idle machine activity is quite regular, as we might

0

20

40

60

80

100

120

140

160

180

200

S MT WT F S S MT WT F S S MT WT F S S MTWT F S S MTWT F S S MTWT F S

Th
ou

sa
nd

s

D
is

tin
ct

 E
nt

ry
 In

te
ra

ct
io

ns

Distinct Registry Read

Distinct Registry Written

Distinct Files Read

Distinct Files Written

Desktop(1) Desktop(2) Svc2 Svc5 IdleHome

Figure 3 Number of distinct non-temp files and registry

items read/written during 1 week of representative
machine activity.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110

M
ill

io
ns

Machine ID

N
um

be
r o

f E
ve

nt
s

H
om

e

D
es

kt
op

Id
le

La
b

S
vc

5
S

vc
3

S
vc

1
S

vc
4

S
vc

2

Figure 2 The median number of interactions per day for
each machine. The vertical bars mark the 25th and 75th

percentile of daily activity. The gray/white bands group
our environments.

1

10

100

1000

10000

100000

1 s
ec

30
 se

c
1 m

in
5 m

in

15
 m

in 1 h
r

6 h
r

12
 hr

1 d
ay

2 d
ay

4 d
ay

1 w
eek

3 w
eek

3W
ee

k+

N
um

be
r

of
 F

ile
s

Desktop Home Idle Lab Server

Figure 4 The average number of files per machine with

given update frequency, for each environment.

1

10

100

1000

10000

100000

1 s
ec

30
 se

c
1 m

in
5 m

in

15
 m

in 1 h
r

6 h
r

12
 hr

1 d
ay

2 d
ay

4 d
ay

1 w
eek

3 w
eek

3W
ee

k+

Nu
m

be
r o

f R
eg

is
tr

y
En

tr
ie

s

Desktop Home Idle Lab Server

Figure 5 The average number of registry entries with a

given update frequency, for each environment.

 6

expect. Across environments, we find that files are updated more
regularly than registry entries. Investigation found regular
updates to log files, temporary files created by applications‘
periodic auto-save feature, and memory mapped files. Many of
the irregular updates to registry entries are associated with the
startup and shutdown of end-user applications, and are thus tied to
human behavior, rather than regular computer behavior. These
registry entries hold information such as recent window
coordinates, the last run time, and other application-specific
information. Overall, it appears that monitoring the update
frequency of entries is not a good indicator of potential problems
because the false positives due to irregularly updated entries
would be overwhelming.

3.3 Variety of PS
The third challenge to managing PS is that there is no single
―correct‖ version of PS. ―Correctness‖ varies across workloads
and system configurations, as well as with the development of
security patches, etc. One way to measure the diversity of
―correct‖ state is to measure the cardinality of configuration
settings: how many valid settings does a particular entry appear
to have across machines? If we see that a registry entry always
has one of a small number of values, we might be able to develop
consistency checks on it. Alternatively, if we see that a registry
entry always has a different value and changes frequently, we may
assume that it is temporary or less important state.

Table 4 shows the cardinality for all registry entries we have seen
accessed for each environment. We see that 97.7% of idle
machine registry state has cardinality 1, not surprising given that
there is no user activity and minimal differentiation between
machines. We manually inspected all of the 153 (1.6%) registry
entries, across the idle machines with cardinality between 2 and 5,
and found that these entries were related to installation differences

(e.g., network settings) or were one of a small number of settings
involving locally generated unique IDs. We see also that home
machines at 96.9% and server machines at 95% also have very
high degree of cardinality 1 entries. Interestingly desktop and lab
machines have 10% fewer cardinality 1 entries, and 10% more
cardinality 5 or fewer entries. This reflects that these systems are
configured slightly differently, in many cases due to OS and
application installation that differs from the default locations and
settings. As we compare entries across all our environments, we
find that the number of registry entries with a cardinality of 1
quickly decreases, indicating, not surprisingly, that the system‘s
environment and workload has a large influence on its specific
configuration. However, most of the entries still have low
cardinality. While it would not be a complete solution, this raises
the possibility of identifying consistency checks on many entries.

4. Process Interaction with PS
In this section, we analyze how processes use the PS on a system,
and the implications for PS management.

4.1 Running Processes
Before we analyze how processes use state, let us first look at
what processes are running on our monitored machines. Figure 6
presents the number of distinct processes per day for each of our
machines. As expected, idle machines have the fewest number of
processes run per day (15-17). The corporate desktop
environments show the highest variability, with some machines
running over 100 different processes on a given day. The server
environments show variability across services but show similar
behavior within a single service. Looking at how often each of
these processes is run per day, we find that 85% are run between 1
and 5 times per day across all our environments. We found that a
small number of processes were running over 100 times every day
on lab, desktop, and server machines. Upon inspection, we found
that these were related to the workload of the system, such as
build processes on developer desktops, and command line
administrative tools on servers.
We found that a few processes in each environment account for a
significant portion, sometimes a majority, of PS interactions. On

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110
Machine ID

Pr
oc

es
s

/ D
ay

H
om

e

D
es

kt
op

Id
le

La
b

S
vc

5
S

vc
3

S
vc

1
S

vc
4

S
vc

2

Figure 6 The median number of distinct processes run per
day for each machine. The vertical bars mark the 25th and

75th percentiles. The gray/white bands group our
environments.

Table 3 Percentage of file and registry entries with change
frequency standard deviation / average ratio <1.

Environ
ment

File Registry

Desktop 55.9% 17.6%

Home 43.6% 38.4%

Idle 98.0% 97.4%

Server 63.6% 16.3%

Table 4 Summary of registry cardinality by environment
showing the percentage with cardinality 1, 2-5, or >5.

Environment 1 2-5 >5

Idle 97.7% 1.6% 0.7%

Home 96.9% 2.7% 0.4%

Server 95.0% 3.4% 1.6%

Desktop 88.8% 10.4% 0.8%

Lab 87.7% 11.7% 0.6%

All machines 60.4% 27.0% 12.6%

 7

Svc2, Svc3, Svc4, and Svc5, one management process,
‗cqmghost.exe,‘ was responsible for 88-96% of daily interactions.
This process enumerates all of the daemons installed on a system
every 2 seconds. The only busier process is one found on Svc1: a
server-side web application that reads the computer name from the
registry approximately 19M times a day. On desktops we found
that two management processes each accounted for 10% of daily
interactions. The first process provides dynamic configuration
support for a laptop modem and reads the same registry entry up
to 400k times per day. The second is an enterprise management
agent which scans the machine, generates log files, and installs
patches. User workload accounted for the rest of the interactions
on desktop and home machines.

4.2 Process state
Monitoring the distinct PS entries used by running processes can
help us with several state management problems: when a process
fails, knowing the entries it accesses narrows down the potential
cause of the failure; knowing the processes that use every PS entry
can help when evaluating the potential impact and risk of a
software update; and finally, we might be able to take special care
to secure or lock-down the state accessed by the most important
processes on a system.
Figure 7 shows the distribution of processes by the volume of
distinct PS entries that they access. We can see that application
category does not appear to be correlated to the volume of data
accessed. Overall, 80% of processes access 500 entries or fewer,
with a third using less than 100 entries. A very small percentage
of processes access more than 3000 entries. These processes
include processes that access many entries because of their
workload, such as state management tools, command shells,
media players and compilers.

4.3 Shared PS Entries
PS entries that are shared across applications can be a serious
source of problems. First of all, if many applications are
modifying and reading an entry, then there must be agreement on
locking or transactional semantics to avoid consistency errors.
Furthermore, the more processes write to an entry, the greater the
opportunity for the entry to become corrupted.
We found that all of the 1281 distinct processes we observed
shared some file or registry entries with other processes. Looking

at the distinct canonicalized entries, we observed that over half
(54.9%) of 3.6M files are shared by more than one process,
whereas only 25.6% of 1.7M registry entries are shared. An
important special class of shared PS is the dynamically linked
library (DLL). Across all our environments, we found 2020
distinct DLL files that had been used. Of these, 717 were loaded
for execution by multiple distinct processes. This indicates that
changes to many DLLs will impact multiple processes.
Figure 8 shows the ratio of the number of readers to writers for
shared state. We see that most entries have exactly one reader and
one writer. When entries are shared, they tend to have many more
readers than writers. Very few files (0.6%) and very few registry
entries (7.1%) are written to by more distinct processes than they
are read from (a reader:writer ratio of 1:2 or higher).
We observed that 76.6% of files and 94.2% of registry entries are
read but never written to by processes. To prevent accidental
corruption, we might consider using access controls to prevent
any writes to these files and entries. Interestingly, we observed
5235 registry entries and 263 files that were written to by multiple
processes and never read. Presumably, this implies that these
entries are not important during normal operation.
Given prior studies showing that most new files are deleted within
seconds of creation [3,21], we might think that temporary entries
also account for a significant portion of distinct file and registry
entries. However, we found that only 16.2% of accessed files and
4.1% of accessed registry entries were temporary. We found that
0.9% of temporary registry entries and 7.2% of temporary files
were shared. Process problems caused by sharing temporary
entries would be difficult to reproduce and troubleshoot.

5. Case Studies in PS Monitoring
We believe that monitoring PS interactions is a fundamental
building block in PS management solutions. In this section, we
present two case studies that show how understanding PS
interactions helps address PS management problems.
The first case study investigates the problem of unwanted
software (malware) running in the background on systems by
attaching as a plug-in to the OS or applications. The PS entries
that control the dynamic loading and execution of these plug-ins
are extensibility points (EPs). We analyze PS interactions to
discover the extensibility points on a system, and quantify their
importance in terms of system exposure. Based on our analysis of
EPs, we make recommendations for eliminating or securing 81%
of them.

0
100
200
300
400
500
600
700
800
900

25 10
0

25
0

50
0

10
00

30
00

30
00

+

Distinct PS Entry Count Buckets

N
um

be
r o

f P
ro

ce
ss

es

Mgmt Apps OS Apps Workload Apps

Figure 7 The number of processes with a given manifest of

file and Registry entry size.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

20:1+ 20:01 10:01 5:01 2:01 1:1 1:02 1:05 1:10 1:20 1:20+

Ratio of Distinct Processes Reading to Writing

P
er

ce
nt

ag
e

of
 E

ve
nt

s

Registry

File

Figure 8 The distribution of files and registry entries

bucketed by the ratio of their readers to writers.

 8

The second case study uses PS interaction monitoring to evaluate
the software installers used to add, update, or remove applications
on a system. We were surprised that, on average, machines have a
software installation every 5 days, and there appears to be no
predictable pattern to these installs. We also found that software
installers do a poor job of declaring the PS entries they add to a
system, and orphaned PS entries are often left behind on a system
when software is uninstalled. These abandoned PS entries
accumulate, potentially causing software decay and reliability
problems. Today, it often takes a system reinstallation to remove
all of this abandoned state. However, by auditing PS interactions
we directly associate PS entries with the software installers and
applications responsible for them.

5.1 Managing Software Plug-ins
In this section, we discover the hooks used by malware to ensure
they are automatically run by their host system, and make
recommendations for securing them. While malware could modify
existing executable files on machines, this is not effective because
detecting them is deterministic. The file malware modifies may be
signed, software updates could overwrite it, or a management tool
can be used to compare a files hash of the file with a known good
value. Instead, malware can simply use the plug-ins exposed by
the OS, daemons, and frequently run applications to be run.
Detecting them then becomes the challenging problem of
distinguishing malware from other plug-in extensions. One study
found that a sample of 120 different spyware programs used a
total of 334 EPs to integrate themselves into a system [5].

We present a method for analyzing PS traces to discover and rank
security-sensitive PS entries that are used by processes as plug-
ins. Unfortunately, the Windows OS and thousands of third party
applications have many EPs whose usage is not controlled.
Managing EPs is difficult because they are hard to identify since
many were designed for internal use only and are therefore not
documented. Discovering EPs through static analysis is difficult
because of the general unavailability of system and application
source code; and the lack of a standard location or format for EPs
make it impractical to find them amongst the O(106) PS entries.

5.1.1 Detecting Extensibility Points
To discover EPs we analyze the per process PS interactions
preceding a new executable file loading into a process, to
correlate the name of the executable file with prior reading of a PS
entry containing that name.2 We label these PS as direct
extensibility points. We then identify first order indirect
extensibility points by continuing to search through the history of
PS events to discover references to the direct EP. This process is
then repeated to identify EPs with the next order of indirection.
For example, an indirect EP may reference an ActiveX class
identifier that contains the ID of the COM3 object direct EP that
ultimately contains the executable file name. Identifying indirect
EPs may potentially yield false positives, however we filter them
out through manual investigation of new EP instances.

2 Our PS interaction tracing records the loading of a file for

execution as a distinct activity from simply reading a file into
memory.

3 C̀omponent Object Model‘ is a Microsoft standard for reusing
and sharing software components across applications.

Many EPs have a similar name prefix that typically indicates that
plug-ins using it follow a standard design pattern. We define a
common EP name prefix as an extensibility point class, and the
fully named EP as an extensibility point instance. For example,
the EP class ―HKLM\Software\Classes\CLSID\‖ contains
2396 EP instances. We identify new EP classes by manually
examining newly discovered EP instances that do not match an
existing EP class, and update our list with a new entry.

In our analysis we processed 912 daily traces from 53 Home,
Desktop, and Server machines. We discovered 364 EP classes and
7227 EP instances. 6526 EP instances were direct, and 701 were
indirect. While 130 EP classes had only 1 instance, 28 had more
than 20 unique extensibility points. COM objects are the most
dominant EP instances with 2796 of 7227 (40%) of the total. The
second most EP class is associated with the Windows desktop
environment, and the third contains web browser plug-ins. The
remaining popular EP classes are related to an Office productivity
suite and a development environment, both of which support rich
extensibility features.

We found that 470 of the 697 (67%) of distinct processes in our
traces used EP instances, and those that did used 7 on average.
Explorer.exe, responsible for the Windows desktop, used the
largest number of EP classes (133 EP Classes), followed by a web
browser (105 EP Classes) and an email client (73 EP Classes).

Overall we found that monitoring PS interactions and correlating
them with process executable file loads is an effective method of
discovering EPs in applications. Also with 67% of processes
using EPs, and at least 364 EP classes available, there is a lot of
opportunity for malware to run on a system.

5.1.2 Importance of Extensibility Points
Some EPs are more critical security hazards than others. We
estimate an EP‘s criticality using three metrics: 1) the privilege-
level of the loading process, where higher-privilege processes
such as operating system or administrator-level processes, are
more critical; 2) the lifetime of the loading process, where longer
running applications provide higher availability for a malicious
extension; 3) the sensitivity of the data accessed by the loading
process and, hence, available directly to a malicious extension.
The first two metrics are captured in our traces, while the third
cannot be measured.
Figure 9 shows a scatter plot for all machines where each point is
the percentage of EP instances that are loaded by processes that
run for a given percentage of the overall system uptime. It shows
that there are many EPs either used by short lived processes, or
long lived processes and not many in the middle. We observed
that on average a machine will have at least a third of EP
instances (spanning 210 EP classes) loaded by processes that are
running for 95% of the machines uptime. Furthermore we
observed that one third of all EP instances were used by processes
running in a process with elevated privileges. Overall, we found
that a significant portion of EP instances are security hazards due
to longevity and elevated privileges.

 9

5.1.3 Lessons and Suggestions
We compared our list of EP classes that contained EP instances
loaded by processes running for 80% of system uptime or greater,
with the published gatekeeper list [22]. Gatekeeper identified 30
long life EP classes, compared to the 210 long life EP classes.
Gatekeeper identified 6 EP classes that were not in our list
because we did not observe processes that used them.

Apart from demonstrating the utility of PS interactions in
discovering and documenting these extensibility points and their
exposure, our results suggest that OS and application design
changes may be possible to restrict or eliminate many EP
instances.

Removal – We observed that 3197 of 7227 EP (44%) of the EP
instances across all machines were not modified during the
monitoring period. It may be possible to remove these EPs by
converting them into static application data.
Lockdown – 5111 of 7227 (70%) of the EP instances, spanning
221 of 367 (60%) EP classes were used by a single process. For
these privately used EP instances it may be possible to lock them
down by implementing a policy mechanism to prevent
interference or corruption from other applications, or to convert
them into static application data. If the EP instances identified
above are removed or locked down 88 (18%) of EP using
applications will no longer use them.
We found that 1297 (19%) of EP instances, spanning 43 EP
classes, were changed and shared by multiple applications and
therefore are not candidates for removal or lock down. However
the remaining 81% can potentially be locked down or removed,
thus making 18% of current EP using applications more secure.

5.2 Tracking Software Ownership
Intuitively, we may think that managing PS should be easy
because executable files and configuration are infrequently
created or are modified by well-known software installers. In
Section 5.2.1, we analyze our traces to find that installations
actually occur quite frequently. Additionally, while most software
installers provide manifests, listing the PS entries owned by the
installed application to facilitate its clean uninstallation, these

manifests are often incomplete or incorrect [7]. In Section 5.2.2
we analyze PS entries across 70 machines and find that many
entries cannot be accounted for via the machines‘ static manifests.
To better understand the origins of these orphaned PS entries, we
describe point experiments with installing and uninstalling three
popular applications.

5.2.1 How often is software installed?
To identify a software installation examined our PS traces to
identify the creation or modification of files that were later loaded
by a process as an executable file. We found that on average 20%
of all machine days had at least 1 installation. However this varied
significantly across each environment. 15% of Home and Lab
machine days and 30% of desktop machine days had at least 1
install. Servers environments had a wide variance in the frequency
of software installations ranging from 7%-80% of machine days
having at least one install. This reflects the variation in change
management policy for each Internet service.
While we might have thought that centralized administration of
corporate desktops, or Windows auto-update service might cause
synchronized updates, this does not appear to be the case. Overall
we observed that most software installations, even in the server
environment, occur in an unpredictable manner. Table 5 describes
the distribution of observed installations across install types. We
see that processes that update themselves (Self Update),
predominantly anti-virus applications, account for a significant
portion of installs. Also, enterprise software distribution
applications and Windows auto-update account for the majority of
software installs in most environments. As we expect, Servers
have a large portion of scripted installs from administrators
manually rolling out upgrades and in-house applications.
Installations caused by users running install programs are
infrequent. It is interesting to see that our analysis was able to
distinguish binary files created and used on developer machines as
‗installed‘ by the developer tools. Overall we found that a wide
variety of software installers create and modify executable files on
a machine, and that installations happen quite frequently.

5.2.2 Static Software Ownership Manifests
Unfortunately, a statically declared manifest is not always
complete. Today‘s manifests are not always correctly specified,
nor do they account for PS created post-installation, such as user
preference settings, log files, etc. This means that during software
upgrades or removal entries can become orphaned on the
machine. Furthermore, installation or removal of software can fail
or be interrupted which often leaves registry entries and files in an
inconsistent state. Over time the few orphaned files and registry
entries accumulate on a machine causing a build up of unused

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0% 20% 40% 60% 80% 100%

Host Process Lifetime

%
 o

f
al

l E
P

 in
st

an
ce

s

Figure 9 The distribution of EP instances to lifetime of
their host processes as a percentage of machine uptime.

Table 5 The distribution of installations by installation program
type for all observed installations.

User
Setup Scripted

Auto
Update

Self
Update Developer

Home 7% 7% 51% 35% 0%
Desktop 5% 8% 58% 22% 7%
Lab 2% 5% 61% 32% 0%
Server 1% 17% 38% 44% 0%

 10

entries that can lead to system problems.4 Because of this
phenomenon, common advice is to reinstall your computer
occasionally to return the system to a known state.
To quantify the significance of this problem, we wrote a tool to
extract PS ownership manifests from within the Windows OS.
The tool identifies the components installed on the system by
analyzing the OS installation configuration files, enumerating the
list of program that have registered with the Windows
‗Add/Remove programs‘ component, the Windows Installer
database (WI), the OS configuration for launching applications
when a file of a given extension is run, and manifests of patch
contents as described in the Microsoft Security Baseline Analyzer
tool. We then enumerate all files and registry entries on a machine
and compare them with these manifests to identify unaccounted
for entries. We associate entries that are children of entries that
are referenced in the manifests as implicitly associated with the
manifest as well. Finally we filter the remaining list to exclude
well known user data files by their extension, and remove entries
from well known temporary folders. We define the remaining
subset as leaked entries on the system. Table 6 contains the results
of running this tool across 8 desktops, 20 Server, and 42 lab
machines. It shows that 31-70% of files and 38-53% of registry
entries could not be accounted for.
To further understand the prevalence of software leaks, we
measured the leakage of 3 popular commercial applications. By
running our data collector while installing the application, using it
for a short period, and then uninstalling the application; we were
able to measure the net increase of file and registry entries on the
machine. The first application was the game ‗Doom3‘, which left
9 files and 418 registry entries. The second was the common
corporate desktop application suite Microsoft Office product suite
which left no files, but 1490 registry entries. Additionally, it left
129 registry entries for each user that logged into the system and
used the program while it was installed. The third example was
the enterprise database application Microsoft SQL Server Yukon
edition, which leaked 57 files and 6 registry entries.

6. Activity Bursts
In this section, we analyze activity bursts: groups of PS
interactions occurring close together in time, within a single
thread. We first discuss how we find activity bursts, and then
explore how they can be used to reduce the O(107) daily events

4 Examples can be found at http://support.microsoft.com/ via the

article IDs: 898582, 816598, 239291, 810932, 181008.

reported in Section 3.1 to O(103) distinct daily activity bursts.
Also, we show that 73% of observed processes produce only 2
never-before-seen bursts per day. We found that bursts may be the
ideal unit for measuring PS activity, and discuss how they might
be used to detect anomalous events.

6.1 Identifying Activity Bursts
To make our definition of an activity burst more concrete, we
have to define how close together in time interactions have to be
before we will group them together into a single activity burst—in
other words, what gap should separate activity bursts? While we
could group together interactions at any time scale, we are
interested in analyzing activity bursts for the purpose of studying
how software, administrators, and users of computer systems
manage their PS, and thus are interested in relatively macro-scale
activities. This implies that our activity bursts will also be
relatively macro-scale, at the granularity of seconds or minutes, as
opposed to a granularity of milliseconds that we might want if we
were interested in studying, for example, the effects of activity
bursts on disk caches.

Examining our trace logs, we find that over 99% of PS
interactions within a single thread occur within 1 second of
another interaction. Also, there are long periods of no state
interactions as well. This seems to confirm our expectation that
PS interactions do occur in bursts.

Formally, we define an activity bursts as a group of interactions
{et | i ≤ t ≤ j} occurring within a single thread, where
gap(et,et+1) < k, for all i ≤ t < j; gap(ei-1,ei) ≥ k; gap(ej,ej+1) ≥ k;
gap(x,y) is the time between two interactions x and y; and k is the
threshold gap between bursts. To inform our specific choice of
the threshold gap k, we considered the distribution of the gap
between PS interactions over the range [1-900] seconds. We
found that the curve representing the distribution of the gap
between all PS interactions per thread is relatively flat, implying
that there is likely little difference between values of k within this
range. The ideal gap size will produce activity bursts that closely
match user and system activities while producing few overall
distinct blocks, each of which containing a small number of
events to enable manual investigation if needed. For our analysis,
we choose k=60sec. Examining the 55.6 million burst we
identified with this gap size, we found that the average burst was
34 seconds long. Also, these bursts contained 34 distinct events
representing 650 total events.

6.1.1 Exact Matching with Signatures
To identify repeating activity bursts we assign each burst a
deterministic signature, calculated by hashing the file paths,
names and activity types (read, write, etc) for all interaction
within the activity. We considered using other attributes, such as
interaction ordering or timing information, but found that, given
the PS entries accessed; this extra information did not help.

Some interactions, such as temporary files and user documents,
obscure the underlying similarity of activity bursts. For example,
a program that uses a temporary file will usually generate a
random file name for it. Two executions of such a program will
generate activity bursts with different signatures, unless we
recognize and compensate for the randomness of the temporary
filename. In our analysis, we recognize temporary files, as
described in Section 4.3, and replace their random filenames with

Table 6 Average file and registry entries that are specified in
manifests, implicitly in manifests, user data, or temp entries.
We do not have heuristics to recognize data and temporary

registry entries.
 Manifes t Implicit Data T e m p U nknow n

Fi
le

D e s kt op 18.5% 21.0% 20.6% 8.3% 31.6%
S erv e r 4.7% 52.6% 2.4% 3.4% 36.9%
Lab 13.2% 5.8% 9.5% 1.4% 70.1%

R
eg

.

D e s kt op 28.2% 32.2% N/A N/A 39.6%
S erv e r 10.5% 36.4% N/A N/A 53.1%
Lab 30.3% 31.7% N/A N/A 38.0%

http://support.microsoft.com/

 11

a canonical one. Similarly, we use simple heuristics, such as file
extensions, to recognize and canonicalize users‘ documents, as
well as unique identifiers, such as user and machine IDs.

6.2 Event Reduction
We expect that the number of activity bursts in a day will be much
less than the number of PS interactions per day, given that the
number of bursts we expect to see is bound by the number of gaps
longer than our threshold k=60. Thus, with about 0.1% of
interactions having gaps>60, we would expect a O(103) reduction
in the number of events. Shown in Figure 10, the number of daily
activity bursts is approximately 103 fewer than the number of
daily PS interactions.
To gain assurance that these bursts are valid groupings of
activities, we look to see how many of these bursts are repeated
over time. If our grouping is arbitrary, we would expect to see
very few repeated activities. However, we find that most of the
activity bursts we observe in a given day are in fact repeated, and
the number of distinct activity bursts we observe is on the order of
1000-4000 bursts/day for most machines, as shown in Figure 11.

6.3 New Activity Blocks over Time
In addition to the event reduction afforded by identifying coarse-
grained activity bursts, we find that the number of new activity
bursts occurring over time quickly stabilizes to a small number.
That is, most applications appear to repeat the same activity bursts
over time, and exhibit few new activity bursts in any given day.
To quantify this, we model the application‘s creation of new
bursts over time as a stochastic process, in particular, as two

Gaussian processes with unit variance and a single transition time
where the stochastic process transitions from the state associated
with the first Gaussian process to the second Gaussian process.
Our initial intuition is that this simple model might be sufficient
to capture the behavior of an application which initially generates
large numbers of new blocks, and then quickly settles into
generating few or no new blocks for the remainder of our
observations. The first Gaussian process corresponds to the
former transient behavior, while the second Gaussian corresponds
to the steady state behavior.

Given this model, finding the most likely setting of parameters is
straightforward. Let the mean of the first Gaussian be denoted by
λ1, the mean of the second by λ2, and the transition time by t. Then
the most likely setting of these parameters is given by:









 

 txi txi
ii

t
xx 2

2
2

1
,,

)()(minarg
21




For a fixed t, the minimizing values of λ1 and λ2 are given by the
respective averages over the xi‘s on either side of the transition t,
allowing us to efficiently compute the above quantity as:









 

 txi txi
iiii

t
tIxavgxtIxavgx 22

,,
)),(()),((minarg

21 

The only pathological case we have observed is for applications
with no observed transition. In this case, we choose the left-most
t, and the number of new bursts generated in the application‘s
steady state (λ2) remains a large number.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10 20 30 40 50 60 70 80 90 100 110

Machine ID

Nu
m

be
r o

f B
ur

st
s

H
om

e

D
es

kt
op

Id
le

La
b

S
vc

5
S

vc
3

S
vc

1
S

vc
4

S
vc

2

Figure 10 The median number of activity bursts we see on

each machine, with bars marking the 25th and 75th
percentiles. The gray/white bands group our

environments.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100 110

Machine ID

Nu
m

be
r o

f B
ur

st
s

H
om

e

D
es

kt
op

Id
le

La
b

S
vc

5
S

vc
3

S
vc

1
S

vc
4

S
vc

2

Figure 11 The median number of distinct activity bursts
we see on each machine, with bars marking the 25th and

75th percentiles. The gray/white bands group our
environments.

 12

Figure 12 shows the result of our analysis. For each application,
we plot the steady state blocks generated by it (λ2) against the
transition time it takes for the application to stabilize into steady
state (t). We see that most of the applications we have monitored
do stabilize and generate a small number of new bursts per day.
The median of λ2 across our applications is 2 bursts/day, while the
mean is 29.8 bursts/day. The median convergence time t is 1 day,
while the mean is 4.5 days. The mean for both λ2 and t is heavily
skewed by the pathological applications that show poor
convergence. These applications make up only 23% of the
applications we observed. Overall activity bursts are an ideal unit
for managing PS because they provide O(104) reduction when
considering PS interactions, and because they provide the
additional contextual information of the process, user context, and
related PS interactions for every PS change. This complexity
reduction and additional information simplifies PS management.

7. Related Work
There have been many studies of file system workload traces with
the goal of improving I/O system performance by optimizing disk
layout, replication, etc. [3,5,7,9,15,17,18,19,21]. To our
knowledge, we are the first to study file system accesses and
registry accesses with the goal of characterizing and improving
the management of PS.

Some studies of distributed file systems do not capture the
complete logical file accesses of a system [7,18]. While these
traces, captured through network sniffing of NFS or at the disk
I/O layer, are sufficient for studying many performance and
structural issues, it does not provide the usage information
required for improving PS management. Other studies have
instrumented system calls or drivers to capture complete logical
traces of file system activity [12,17,21]. Our tracing strategy is
similar to Vogel‘s instrumentation in [20] and Lorch and Smith‘s
VTrace [11]. We share with VTrace the ability to associate
process and user IDs with accesses to PS. However, Hau and
Smith‘s analysis of VTrace logs in [8] focuses on the I/O of low-
level disk blocks. Roselli et al.‘s comparative analysis of VTrace
logs does not consider process or user IDs. In our tracing, we also
add the ability to trace accesses to the Windows Registry. In [9],
Kroeger and Long find that recent file system accesses can be
used to predict the next file system access with high probability.

This is consistent with our findings of repeated activity bursts in
Section 6.

Most current techniques for PS management use predetermined
information, e.g., manifests to track installed software and rules to
detect missing dependencies and known symptoms of problems.
Automated or semi-automated tools, such as software installers,
anti-virus monitors and configuration error checkers use this
predetermined information to effectively reduce the complexity of
PS management by focusing on a narrow set of state. The
problem with this approach is its reliance on the correctness and
completeness of pre-determined information. If new software is
added to the system or an unanticipated failure occurs then the
predetermined rules will not notice a problem.

Recent work on black-box analysis of the Windows Registry for
troubleshooting configuration problems avoids the above problem
by replacing predetermined information with dynamically
observed truth about software behavior and registry accesses and
using administrator interaction to scope the tracing and analysis of
events during troubleshooting [22,24]. The black-box analysis
used in this paper avoids the problems of predetermined
information and uses, for example, the structure of activity bursts
to reduce the scale of the analysis problem. Also, there has been
previous work on designing models for component interactions
[10], and for tracking only the dependencies between executable
files [19], where our approach is to focus on the managing all PS.

8. Conclusion and Future Directions
Our goal in performing this study was to better characterize the
challenges of PS management, as well as to explore potential
methods for tackling the problems facing it. To this end, we
collected and analyzed several thousand machine-days of file
system and Windows Registry accesses, across a range of server
and client environments under real-world workloads. To our
knowledge, this is the first such study characterizing how PS is
used and managed across multiple environments. Our
characterization and analysis provides several interesting
observations:

Differences across environments: The variation we observed
across environments was significant, and may imply that different
state management solutions may be required in different
environments. In particular, desktop systems and home machines
exhibited widely varying behavior from day to day, whereas
server behavior was relatively stable. Thus, for example,
monitoring techniques that interpret anomalous behaviors as
significant events might be appropriate within Internet services,
but not in corporate desktop and home environments.

Management tool overhead: We were surprised to find that 60%
of the PS interactions across our traces is overhead from PS
management tools, such as configuration tools, anti-virus scanners
and auto-update tools. Measuring the performance effects of this
extra load on end-users is future work.

Extensibility points: Our case study on discovering extensibility
points for the operating system and applications demonstrated
how PS interactions can tie dynamic application behavior—in this
case, security-critical loading of third-party plug-ins, extensions
and malware—to the configuration settings that control the
behavior. Exploiting this relationship in the context of other

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

Time To Converge (Days)

N
ew

 B
lo

ck
s

pe
r D

ay
 in

 S
te

ad
y

St
at

e

0

50

100

150

0 5 10 15 20 25 30

Detail of 95% of applications

Figure 12 Scatter plot for each distinct process of number of

days to converge and blocks at convergence.

 13

security-critical yet poorly-understood configuration settings may
also prove fruitful.

Poor manifest coverage: We found that current methods for
tracking and managing software packages, through a priori
declared ownership manifests, do a poor job of describing the
total state of installed software processes. We believe on-line
monitoring of PS interactions could generate more complete and
accurate manifests.

Repeated structure: While there are tens of millions of daily
accesses to files and registry settings on both server and desktop
system under normal load, these file system accesses show a large
degree of structure and repetition, in the form of activity bursts.
Recognizing this structure enables the volume of events to be
reduced by several orders of magnitude. This makes the on-line
analysis of PS interactions more feasible.

Overall, we found that tracing the combination of PS interactions
and identifying the responsible processes and users for
interactions provided a powerful view into system behavior, and
believe that incorporating on-line monitoring of this information
will be a great aid to PS management. To further research in this
area, we will be releasing our data collector instrumentation for
general use. We are also investigating how we might anonymize
our captured traces of PS interactions for wide distribution.

9. REFERENCES
[1] W. Arbaugh, W. Fithen, and J. McHugh, ―Windows of
Vulnerability: A Case Study Analysis,‖ In IEEE Computer,
Vol. 33, No. 12, Dec. 2000.

[2] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J.
Ousterhout, ―Measurements of a Distributed File System,‖ In
Proc. of the 13th ACM Symp. on Operating Systems
Principles, Pacific Grove, CA, 1991.

[3] N. Brownlee, K. Claffy, and E. Nemeth, ―DNS
Measurements at a Root Server,‖ In Proc. of the 6th Global
Internet Symposium, San Antonio, TX, 2001.

[4] J. Douceur and B. Bolosky, ―A Large-Scale Study of File-
System Contents,‖ in Proc. of the ACM SIGMETRICS Intl.
Conf. on Measurement and Modeling of Computer Systems,
Atlanta, GA, 1999.

[5] J. Dunagan, R. Roussev, B. Daniels, A. Johnson, C.
Verbowski, and Y.-M. Wang, ―Towards a Self-managing
Software Patching Process Using Black-box Persistent-state
Manifests,‖ in Proc. of the IEEE Intl. Conf. on Autonomic
Computing, New York, NY, 2004.

[6] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, ―Passive
NFS Tracing of Email and Research Workloads,‖ in Proc. of
the 2nd Usenix Conf. on File and Storage Technologies, San
Francisco, CA, 2003.

[7] J. Hart and J. D'Amelia, ―An Analysis of RPM Validation
Drift,‖ in Proc. of the 16th USENIX Conf. on Systems
Administration, Berkeley, CA, 2002.

[8] W.H. Hau and A. J. Smith, ―Characteristics of I/O Traffic in
personal compute and server workloads,‖ in IBM Systems
Journal, Vol. 42, No. 2, pp. 347–372, 2003.

[9] T. Kroeger and D. Long, ―Predicting Future File System
Actions from Prior Events,‖ in Proc. of the USENIX Annual
Technical Conference, San Diego, CA, 1996.

[10] M. Larsson and I. Crnkovic, "Configuration Management for
Component-based Systems," in Proc. of the 23rd Intl. Conf.
on Software Engineering, Toronto, Canada, 2001.

[11] J. Lorch and A. Smith, ―The VTRace Tool: Building a
System Tracer for Windows NT and Windows 2000,‖ in
MSDN Magazine, Vol. 15, No. 10, Oct. 2000.

[12] R. Mahajan, D. Wetherall, and T. Anderson, ―Understanding
BGP Misconfiguration,‖ In Proc. of the 2004 ACM
SIGCOMM Conf., Pittsburgh, PA, 2002.

[13] D. Oppenheimer, A. Ganapathi, and D. Patterson, ―Why do
Internet services fail, and what can be done about it?‖ in
Proc. of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS ‘03), Seattle, WA, 2003.

[14] K. K. Ramakrishnan, P. Biswas and R. Karedla, ―Analysis of
File I/O Traces in Commercial Computing Environments,‖ in
Proc. of the ACM SIGMETRICS Intl. Conf. on Measurement
and Modeling of Computer Systems, Newport, RI, 1992.

[15] E. Rescorla, ―Security Holes… Who Cares?‖ in Proc. of the
12th USENIX Security Symp., Aug. 2003.

[16] D. Roselli, J. Lorch, and T. Anderson, ―A Comparison of
File System Workloads,‖ in Proc. of the USENIX Annual
Technical Conference, San Diego, CA, 2000.

[17] C. Ruemmler and J. Wilkes, ―UNIX Disk Access Patterns,‖
in Proc. of USENIX Technical Conference, San Diego, CA,
1993.

[18] D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Carton,
and J. Ofir, ―Deciding when to Forget in the Elephant File
System,‖ in Proc. of the 17th ACM Symp. on Operating
Systems Principles, Charleston, SC, 1999.

[19] Y. Sun and A. Couch, "Global Analysis of Dynamic Library
Dependencies," in Proc. of the 15th USENIX Conf. on
Systems Administration., San Diego, CA, 2001.

[20] W. Vogels, ―File system usage in Windows NT 4.0,‖ in
Proc. of the 17th ACM Symp. on Operating Systems
Principles, Charleston, SC, 1999.

[21] H. Wang, C. Guo, D. Simon, and A. Zugenmaier, ―Shield:
Vulnerability-Driven Network Filters for Preventing Known
Vulnerability Exploits,‖ in Proc. of the 2004 ACM
SIGCOMM Conf., Portland, OR, 2004.

[22] Y.-M. Wang, R. Roussev, C. Verbowski, A. Johnson, M.-W.
Wu, Y. Huang, and S.-Y. Kuo, ―Gatekeeper: Monitoring
Auto-Start Extensibility Points (ASEPs) for Spyware
Management‖, in Proc. of the 18th Large Installation System
Administration Conf., 2004.

[23] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. Wang,
C. Yuan, and Z. Zhang, ―STRIDER: A Black-box, State-
based Approach to Change and Configuration Management
and Support,‖ in Proc. of the 17th Large Installation Systems
Administration Conf., San Diego, CA, 2003

