Combining Abstract Interpreters

Sumit Gulwani Ashish Tiwari
Microsoft Research SRI International
sumitg@microsoft.com tiwari@csl.sri.com
Abstract l
We present a methodology for automatically combining abstract
interpreters over given lattices to construct an abstract interpreter a,:=0;a,:=0;
for the combination of those lattices. This lends modularity to the b, :=1; b, :=F(1);
process of design and implementation of abstract interpreters. € 1=2,¢,1=2;
We define the notion of logical product of lattices. This kind d,:=3:d, = F(4);
1 - y Uo -)

of combination is more precise than the reduced product combi-
nation. We give algorithms to obtain the join operator and the ex- 1
istential quantification operator for the combined lattice from the
corresponding operators of the individual lattices. We also give a o P e .
bound on the number of steps required to reach a fixed point across b,<b, True | b, 1= F(by); b, := F(by);
loops during analysis over the combined lattice in terms of the cor- ¢ = F(2e1-¢p); ¢ 1= F(ey);
responding bounds for the individual lattices. We prove that our d, ;= F(1+dy); d, := F(d,+1);
combination methodology yields the most precise abstract inter-
pretation operators over the logical product of lattices when the
individual lattices are over theories that are convex, stably infinite,

ay = o+l a, = a,t2;

False

Assert(a,=2a,);
Assert(b, = F(b,));

and disjoint. A
We also present an interesting application of logical product Assert(c,=cy);
wherein some lattices can be reduced to combination of other Assert(d, = F(d,+1));

(unrelated) lattices with known abstract interpreters.

Categories and Subject DescriptorsD.2.4 [Software Engineer- ~ Figure 1. This program illustrates the difference between preci-
ing]: Software/Program Verification; F.3.Ldgics and Meanings Sion of performing analysis ovetirect product reduced product

of Program§ Specifying and Verifying and Reasoning about Pro- andlogical productof the linear arithmetic lattice and uninterpreted
grams; F.3.2l[ogics and Meanings of PrograjisSemantics of functions lattice. Analysis over direct product can verify the first

Programming Languages—Program analysis two assertions, while analysis over reduced product can verify the
. T first three assertions. The analysis over logical product can verify
General Terms Algorithms, Theory, Verification all assertionsF denotes some function without any side-effects

and can be modeled as an uninterpreted function for purpose of

Keywords Abstract Interpreter, Logical Product, Reduced Prod- proving the assertions.

uct, Nelson-Oppen Combination

1. Introduction _ _ . .
o . . more precise abstraction leads to fewer false positives but is also
Establishing full correctness for general programs is computation- harder to reason about.
ally intractable. Hence, program analysis anq verification is typl- One commonly used method to create more precise abstract do-
cally performed over some (sound) abstraction or approximation mains is by combining simpler ones. There are two commonly used
of the program. This gives rise to false positives, i.e., some prop- notions of lattice combinations in the literature: tieect product
erties that are true in the original program may not be true in the gnq theeduced produdis, 4]. Both these combinations yield a lat-
abstract version. Abstract Interpretation is a well-known method- tice whose elements are a cartesian product of the elements of the
ology to analyze programs over a given abstractigin There is individual lattices. The difference is that the lattice operations in
an efficiency-precision trade-off in the choice of the abstraction. A he direct product are performed component-wise (also referred to
) as theindependent attribute meth@#d]), while in case of the re-
Research of the second author was supported in part by NSF grant CCR-gyced product the lattice operations take into account both compo-
ITR-0326540. nents simultaneously. Hence, the direct product “discovers in one
shot the information found separately by the component analyses
but we do not learn more by performing all analyses simultane-
Permission to make digital or hard copies of all or part of this work for personal or - gusly than by performing them one after another and finally taking
classroom use is granted without fee provided that copies are not made or distributed, oy conjunctions”. In case of reduced product the advantage is
for profit or commercial advantage and that copies bear this notice and the full citation hat “ h | L h .. fits f h
on the first page. To copy otherwise, to republish, to post on servers or to redistributej[at ea(_: analysis in the abstract composition benefits from the
to lists, requires prior specific permission and/or a fee. information brought by the other analysed].[
PLDI'06 June 11-14, 2006, Ottawa, Ontario, Canada. Consider, for example, the program shownFigure 1 Note
Copyright(© 2006 ACM 1-59593-320-4/06/0006. .. $5.00. that all assertions at the end of the program are true. If this program

is analyzed over the linear equalities lattice (using, for example, theory with only a polynomial-time blowup in the computational
the abstract interpreter described iG] or [5]), then only the first complexity. It turns out that abstract interpretation operators for a
assertion can be validated. This is because discovering the relationdattice over some theory are harder than the decision procedure for
ship betweer; andb,, between:; andcz, and betweed; andd; that theory. Hence, the problem of combining abstract interpreta-
involves reasoning about uninterpreted functions. Similarly, if this tion operators is harder than the problem of combining decision
program is analyzed over the uninterpreted functions lattice (using, procedures. As a result, the restrictions on theories that allow for
for example, the abstract interpreter describedlij)[then only efficient combination of their decision procedures (namely, convex-
the second assertion can be validated. Hence, an analysis over théy, stably infiniteness, and disjointness) also transfer to the context
direct product of these lattices can only verify the first two asser- of combining abstract interpreters for lattices over those theories.
tions (since performing an analysis over the direct product of these One of the attractive features of our combination algorithms
lattices is equivalent to performing analyses over the individual lat- is that the complexity of the abstract interpretation operators for
tices independently and then putting the results together). the logical product lattice is at most quadratic in the complexity
An analysis over the reduced product of these lattices can verify of the operations for the individual lattices. Also, our combination
the third assertion too. Such an analysis computes at each programmethodology is more general than being restricted to lattices over
point the invariants that involve only linear arithmetic operators or convex, stably infinite, and convex theories. In cases when the lat-
only uninterpreted functions. In particular, it is able to discover the tices to be combined do not satisfy the desired constraint, our com-
loop invariantc; = ¢z, which is required to prove the third asser- bination methodology still gives abstract interpretation operations
tion. Hence, the reduced product combination is more precise thanthat are more precise than those for the direct product lattice; how-
the direct product combination. However, there is no automatic way ever they may not in general be as precise as the reduced product
to construct the abstract interpretation operations for the reducedlattice.
product lattice. In fact, Cousot and Cous@itfiave pointed out that In Section 5we provide an interesting application of reasoning
it is not possible to combine two abstract interpreters in a “black- about logical product of lattices. It turns out that some lattices
box” manner to obtain the most precise abstract interpreter for the can be modeled as logical product of other unrelated lattices with
reduced product lattice. The algorithms for the reduced product lat- known abstract interpreters. Hence, abstract interpreters for such
tice need to be designed and implemented from scratch. decomposable lattices can be constructed by combining abstract
In this paper, we show how to automatically construct the most interpretation operators for those other unrelated lattices using our
precise abstract interpretation for the reduced product combina-combination methodology.
tion of lattices that satisfy some constraint (namely, the elements This paper is organized as follows. 8ection 2 we introduce
of these lattices are conjunctions of atomic facts over theories that some basic terminology and discuss some basic operations in the
are convex, stably infinite, and disjoint). This constraint is general Nelson-Oppen method for combining decision procedures. We use
enough to describe several abstract domains that have been used tthis terminology and operations in bo8ection 3and Section 4
build existing abstract interpreters. In fact, we go one step further Section 3defines the logical product combination of lattices, while
and define a new notion of combination for such lattices catigd Section 4describes how to construct an abstract interpreter for
cal product which is more precise than the reduced product, and we the logical product of lattices given the abstract interpreter for
show how to automatically construct abstract interpretation opera- the individual lattices. We describe an interesting application of
tions for the logical product lattice. The approach of automatically our logical product combination methodology 8ection 5 We
combining abstract interpretation operators lends modularity to the then discuss some related work $®ction 6and future work in
design and implementation of program analyses based on abstracSection 7
interpretations. It avoids the need for proof of correctness of the
analysis over combined domains (in fact, these proofs can be quite2 Background
involved like our generic proof of correctness of our combination o . .
algorithms) and allows for reuse of implementations of analyses ©Our methodology for combining abstract interpreters is based on
over the individual domains. the Nelson-Oppen method of combining decision procedurgs [
The logical product of lattices whose elements are conjunctions !N this section, we introduce some terminology and algorithms that
of atomic facts from theorie®; andTs is the lattice whose ele- are used in the Nelson-Oppen method. We use this terminology
ments are conjunctions of atomic facts over the combined theory @nd algorithms as part of our combination methodology described
T, U T,. Note that the logical product lattice consists of more ele- 1N Section 3andSection4 o
ments than simply the direct product of the lattices, and hence itis = A theoryT consists of a signaturBr, which is a set of func-
more precise than the reduced product. Consider again the progrant!on and predicate symbols, and some axiofgswhich define the
shown inFigure 1 Note that an analysis over the reduced product Meaning of the function and predicate symbol&’in The combi-
combination of linear arithmetic and uninterpreted functions lattice nation of two theoriesl'; andTs is the theoryT; U T» such that
cannot verify the fourth assertion because the relevant loop invari- >T1ut> = ¥, U X, and Ar,ur, = Ar, U Ar,. A term¢ over
antd, = F(dy + 1) is not expressible as an element of the reduced theoryT is an expression consisting c_)f variables, an_d functlo_n sym-
product lattice, which involves conjunctions of only linear equali- P0IS fromXr. In this paper, we consider the following theories in
ties and equalities between uninterpreted function terms as opposed®Ur €xamples.
to equalities between mixed expressions (i.e., expressions that in- e Theory of parity.

volve both linear arithmetic and uninterpreted functions). However, This theory has the signatufe=, even, odd, +, —, 0,1}, where
analysis over the logical product of linear arithmetic and uninter- even andodd are unary predicates, while, — are binary func-
preted functions lattices can verify all four assertions in the pro- tions, and) and1 are constants (nullary functions). The axioms
gram. of this theory include all standard axioms of even and odd num-
Our methodology for combining abstract interpretation opera- bers like even(0), even(t) A odd(t') = odd(t + t'), etc. In

tors is inspired by the classic Nelson-Oppen methodology for com- the latter axiom¢ andt’ are universally quantified.
bining decision procedured§]. Nelson and Oppen have showed

how to combine decision procedures for convex, stably infinite and
disjoint theories to obtain a decision procedure for the combined

e Theory of sign.
This theory has the signatufe-, positive, negative, +, —, 0,1},
wherepositive andnegative are unary predicates.

E
AlienTermst, 1, (F)
Pumf?/qu Ty (E)

23 < F(2x2—71) AN 33>711 AN 11 =F(31) AN 32 = F(F(21))
{222 — 1, F (222 — x1)}
(V,E1, E2) whereE 1 ist1 =2z —x1 A w3 <t2 A 3> 1
andEziste = F(t1) A xz1=F(z1) AN z2 = F(F(z1))
andV is {t1,t2}
<E1 A E/, Es N El> whereFE’ is x1 =22 N z1=t1 N x1=1t2 N X1 =23

NOSaturationt, r,(E1, E2)

Figure 2. This example illustrates the functionien Termsr, r,, Purifyy, 1, and NOSaturationr, r,, which are used in the Nelson-
Oppen method of combining decision proceduigss a conjunction of atomic facts over the combined theory of linear arithmiBticand

uninterpreted functionsl().

e Theory of linear arithmetic.
This theory has the signatufe=, <, +,—,0,1}. We some-
times use the phraskeory of linear arithmetic with only equal-
ity to refer to the theory with signatufe=, +, —,0,1}.

Theory of uninterpreted functions.

The signature of this theory consists of uninterpreted functions
and the equality predicate. The theory of uninterpreted func-
tions (UFS) has only one axiom for each functiBfi, namely,

N t ti = F%t1,..,ta) Fe(ty,..,t,). Alterna-
1=1

tively, we can reason about uninterpreted functions using the
theory of term algebra (TA), where it is also the case that (1)
F(t1,...,ta) = G(t},...,t) iff a = b, F is same as7, and

for all 4, t; = ¢, and (2) any term properly containingis not
equal tox. Due to a technical observatiohd], using either of
these theories gives the same results in the context of program
analysis.

Theory of lists.
This theory has the signaturfcar, cdr, cons,=} with the
usual axioms.

An atomic fact f over theoryT is a predicate of the form
p(t1,..,ta), wherep is a predicate symbol frorlir andty, . ., ¢,
are terms ovefl. We use the notatioVars(y) and Symbols(~y)
to denote the set of variables and symbols respectively that occur
in v, wherey may be a term, fact, or conjunction of facts. We use
the termdefinitionfor an atomic fact of the form = ¢, where the
variablez does not occur in the term

Let E be any conjunction of atomic facts over combination of
two theoriedT; UT,. We definedlien Termsr, r, (E) to be the set
of all alien terms that occur ifv. A term¢ in E is alienif the top-
level function symbol int belongs toXr, (or Xr,) andt¢ occurs
as an argument of some function or predicate symbol fiom
(or Xr, respectively) inE. For example, consider the conjunction
E over the combination of the theories of linear arithmetic and
uninterpreted functions ifrigure 2 Note that2z, — z; is an
alien term because it is a linear arithmetic term that occurs as an
argument of uninterpreted functidn (in the termF (2z2 — z1)).
Similarly, the termF'(2z2 — z1) is an alien term because its top-
level operator is the uninterpreted functiéwhile it occurs as an
argument of the inequality predicatedn < F'(2z2 — x1).

The Purifyr, 1, operator takes as input a conjunction of atomic
facts £ over combination of two theorie¥; U T, and returns
(V, E1, E3), where E; and E, are conjunctions of atomic facts
over theoriesT; andT respectively, and’ is the set of all fresh
variables that occur ilr; or E» (but do not occur inF). Further-
more,E1 A E» is aconservative extensiaf E, i.e., for all factsf
that do not involve variables i, the following holds:

T1UT,

ETER it poaE, ER

Purification (i.e., the operatiod®urifyy, r,(F)) decomposes a
conjunction of atomic facts over combined thedfy U T> into
conjunctions of atomic facts, each of which is either over theory
T, or over theoryl's. The purification ofF involves introducing a
fresh variable for each alien term . For example, consider the
conjunction of atomic fact# in Figure 2 Purifyy, 1, (£) is ob-
tained fromFE by introducing new variables andt. to represent
the alien terms of.

The NOSaturationt, 1, (E1, E2) operator takes as input two
conjunctions of atomic fact&; and E» over theoriesI'; andT»
respectively, and return&; and E; that are obtained front; and
E respectively by saturating them with variable equalities that are
implied by B4 A Eb.

Ei = E\AE

E, = EyAE

E = /\ r=1y
P(z,y)

whereP(z,y) is the following predicate:

(r,y € Vars(E1 AN E2)) N (E1AEs g g o Y)

E can be computed by repeatedly sharing variable equalities be-
tweenE; andF,. For example, consider the conjunction of atomic
facts E; and E» over theoriesl'y and T, respectively inFigure 2

E{ andE) are obtained fron&; andE» by sharing variable equal-
ities between them as follows:

xr1=x9 x1=t1 zr1=t2 T1=T3

E2 E1 E2 El E2
A corollary of the correctness of the Nelson-Oppen combination
method [L9] is that the NOSaturationt, T, operator has the fol-
lowing interesting property when theori@s and T2 are convex
stably infiniteanddisjoint.

PROPERTY1 (NOSaturationt, 1,). Let Ty and T2 be two con-
vex and stably infinite theories that are disjoint. LBtbe any
conjunction of atomic facts ovél, U T,. Let f be any atomic
fact overT:. Let(V, E1, Ea) = Purifyy, 5, (E) and(E1, E3)
NOSaturationt, 1,(E1, E2). Then,

Ty UTs
=

E foiff B3 f

A theory T is convexiff for every quantifier-free formulap,
10) = V z; = y; implies ¢ = x; = y; for somej. A theoryT is

stably infiniteiff for every quantifier-free formul®, ¢ is satisfiable

in T iff ¢ is satisfiable in an infinite model @f. Two theoriesT;

and T, aredisjoint if their signaturesty, and Xr, are disjoint,
while ignoring the equality symbol. For example, the theories of
uninterpreted functions, linear arithmetic, and lists are all disjoint
with respect to each other. In contrast, the theories of parity and

E, = (z=a) N (y=D
B = (z=b) A (y=a a<b
Ji (B, Es) = (z+y=a+b) True False
Ji,(E1, E2) = true
z = F(a+1); z = F(b+1);
E\VE, S \F(z+o)+Fy+c)=Fla+c)+ F(b+o) y:=a, y:=b,
Lq: logical lattice over theory of linear arithmeti@'() \/
L-: logical lattice over theory of term algebré) Assert(z = F(y+1));

Assert(F(a)+F(b) = F(y)+F(a+b-y));

Figure 3. This figure demonstrates why the implication relation- — - - -]
ship over finite conjunctions of atomic facts in the combined the- Figure 4. This program illustrates the difference between preci-
ory of linear arithmetic and term algebra does not form a lattice. Sion ofstrict logical product combination and logical product com-
Note thatr 4+ y = a + b is the only (independent) atomic fact that bination of lattices (over linear arithmetic and uninterpreted func-
is implied by both; and E; over the theory of linear arithmetic. t!ons). Abstract interpretation over strict |OgICB_.| _product combina-
Hence the join (i.e., least upper bound)®f and E- in the logi- tion can verify both assertions because .the joincof= F.(.a +

cal lattice L, denoted byJy, (E1, E2), isz 4+ y = a + b. Also, 1)Ay = aandy = F(b+ 1) Ay = bincludes equalities in
note that there is no atomic fact over uninterpreted functions that Poth assertions. (This involves representing and manipulating infi-
is implied by both; and E». However, over the combined theory nite conjunctions of atomic facts, which is inefficient.) On the other
of linear arithmetic and term algebra, there are infinite number of hand, abstract interpretation over the logical product combination
atomic facts that are implied by boffy, and E>; one such infinite can verify only the first assertion because the result of the join is
family is: F(z +¢) + F(y+¢) = F(a+ ¢) + F(b+ c) for all z=F(y+1).

linear arithmetic constants

DEFINITION 2 (Logical Product of Logical Lattices).et T; and
sign are not disjoint. However, all of these five theories are convex T, be two convex, stably-infinite, and disjoint theories. The logical

and stably infinite. product of the two logical latticed.; and L, over theoriesT,
and T, respectively is defined to be the lattiée x Lo where
3. Logical Lattices and Their Combination Dy, x1, is the set of all finite conjunction of atomic facts from

. . . theoryT; U T2, and =<1, w1, iS the following partial order:
A lattice L consists of a seD;, and a partial order<; among

elements ofDy. In this paper, we consider logical lattices, as g <, ,,. ' < (5"X™) A

defined below. (AlienTermst, 1,(E') C Termst, 1,(E))

DEFINITION 1 (Logical Lattice).A lattice L is a logical lattice
over some theont if Dy, is the set of all finite conjunctions
of atomic facts from theor{f, and the partial order<y, is the

For any conjunction of fact& in combination of two theorie®;
andT., we defineTermst, 1, (E) to be the following set.

implication relationship= in theoryT, i.e.,.E <, E'iff E = E'. Termsr, 1,(E) = {t|3t" € Vars(E) U AlienTermsr, r, (E)
T, UT
Any abstract domain can be viewed as a logical lattice over an such thatly ="t = t'}

appropriate theory. (However, the theory may not be convex or sta- ! .

bly infinite, which are the assumptions required to guarantee the _Itwould have been more natural to defifig , x ., to be simply
precision of our combination methodology.) For example, the ab- ' “£2; but then as mentioned above, unfortunatel > does not
stract lattice used for discovering linear equalities between program necessarily form a lattice even whety,, and<,, define a logical
variables [L6, 10, 18] is a logical lattice over the theory of linear lattice. One way to solve this problem would be to relax the domain

arithmetic with only equality, while the one used for discovering Dy, 1, t0 also include infinite conjunction of atomic facts; in that

linear inequality relationshipsTis over the general theory of lin- 546 the choice 0fX™ as<, 1, defines a lattice (and we refer
ear arithmetic. The abstract lattice used for global value numbering 1y this as thestrict logical ;;roauctz combination). However, this is
for discovering Herbrand equivalenceisi{17] is a logical lattice not a good practical solution because we now need to represent
over the theory of term algebra. _ _and manipulate infinite conjunctions of atomic facts. Our recent
The implication relation in any theof§ always defines a semi- rogits 13 on hardness of assertion checking for programs that
lattice. A sufficient condition for this semi-lattice to be a lattice is . olve only linear arithmetic and uninterpreted functions imply
thatT have dinite basis propertythat is, every infinite conjunction 5 there cannot be any efficient data structure and algorithms to

of atomic formulas over a finite number of variables be equivalent ea50n about such infinite conjunctions of atomic facts in general
to a finite conjunction in the theory. (unless P=coNPY.

Let L, and L, be two logical lattices over theori€s; and
T respectively. In the next section, we describe algorithms that
perform abstract interpretation over the semi-lattice induced by

IWe have shown that the problem of assertion checking in programs

. whose expressions involve linear arithmetic and uninterpreted functions,
%l U er%I‘ Scllnce'JI‘é:L_J Ts gﬁfed not |n(Ijuce a |Og|_CaI| latttlfe e\{en if and whose conditionals have been abstracted as non-deterministic branches,
hl andls ?’ se Igubr§ or exlampﬁ’ W% p.reC|s§ yC ark?c €rZ€ s coNP-hard. This problem can be solved by performing abstract interpre-
the power of our combination algorithms by introducing the notion tation over the lattice whose elements are (potentially infinite) conjunctions
Of |99|Ca| product of lattices induced by convex, stably infinite, and of atomic facts over the combined theory of linear arithmetic and uninter-
disjoint theories. preted functions, and whose partial order is the implication relationship.
This implies that there cannot be any data-structures and algorithms that

Our solution to solve the above problem is to defiig, w .,
to have an additional restriction that is as weak as possible and
along with the implication relationship defines a lattice. This ad-
ditional restriction isAlienTermst, 1,(E") C Termst, 1, (FE).
The failure of E; and E; (as defined irFigure 3 to have a least
upper bound under the implication relationship can be attributed
to the fact that the number of alien terms that can be constructed
over combination of two theories, even with a finite number of
program variables, is unbounded. Considering that, the restric-
tion AlienTermst, T, (E') C Termst, 1,(E) in the definition
of <1, x L, iS quite natural; it has the effect of including only those
atomic facts in the least upper bound Bfand E’ whose alien
terms occur semantically in both elemeiffsand E’. By seman-
tic (as opposed to syntactic) occurrence of an alien teoh E’
in E, we mean that there is some variable or alien tefim £

such thate "2 t = ¢/, i.e.,t € Termsr, n,(E) (as opposed
tot € AlienTermsr, 1, (F)). The program irFigure 4illustrates
the differences between the precisiorstfct logical product com-
bination and logical product combination of lattices.

Note that the syntactic restriction € AlienTermst, 1,(E)
would have been an (unnecessarily) stronger restriction compared
to the semantic restriction € Termsr, r,(E). For example,
consider the fact®; = (z = F(a+1))A(y = a) andEz = (x =
F(b+1)) A (y = b) over the combined theory of linear arithmetic
and uninterpreted functions. The result of join Bf and E- is
x = F(y + 1) under our definition o<1, w 1,, While it is true in
case of the stronger syntactic restrictidien Termsr, 1, (E") C
AlienTermsrt, ,(E). This is because the alien termm+ 1 in

z = F(y+1) belongs toTermsr, 1, (E1) (sinceE; = 2 y+1 =
a+1anda+ 1is an alien term irk,) and Termst, 1, (E2) but it
is not an alien term i, or Es.

The following theorem states that; , « ., as defined in Defin-

ition 2 indeed defines a lattice.

THEOREM 1. The partial order<r,« 1z, between finite conjunc-
tions of facts from theor{; U T2 defines a lattice under the as-
sumptions made in Definitiah

The proof of Theorem 1follows from the fact that any two
elementsE, E' € Dr, x5, have a least upper bound (which is
computed by the algorithm describedrigure §a)) and a greatest
upper bound (which i& A E’).

4. Abstract Interpreter for Combination of
Logical Lattices

Let L; and L, be some logical lattices over theori@s and T,
respectively. In this section, we show how to efficiently combine
the abstract interpreters that operate over the lattigeand Lo

to obtain an abstract interpreter that operates over the combined
lattice L1 x Ls. Our combination methodology yields the most
precise abstract interpreter for the combined latfigex L, when

(a) the theoried'; andT, are convex, stably infinite, and disjoint,
and (b) the individual abstract interpreters that operate over the
latticesL, andL- are most precise themselves. The key idea of our
combination methodology is to combine the corresponding transfer
functions of the abstract interpreters that operate over the lattices
L, and L to yield the transfer functions of the abstract interpreter
that operates over the lattidg x L.

An abstract interpreter performs a forward analysis on the pro-
gram computing invariants (which are elements of the underlying
lattice over which the analysis is being performed) at each pro-
gram point. The invariants are computed at each program point

can represent and perform abstract interpretation operations on infinite con-
junctions of atomic facts in polynomial time unless P=coNP.

True

E

2

|

Figure 5. Flowchart Nodes.

False J

1

(@) Join Node (b) Assignment Node (c) Conditional Node

from the invariants at the preceding program points in an itera-
tive manner using appropriate transfer functions. The abstract in-
terpreter that operates over the lattice x L, uses the following
transfer functions to compute these invariants across the different
flowchart nodes shown iRigure 5

¢ Join Node. Se€igure Ha).
The elementt after a join node is obtained by computing the
least upper bound of the elemerdfs and E- before the join
node (in the latticd.; x Ls).

E =Jr,m1,(E1, E2)

The join operatorJ;, for any lattice L takes as input two el-
ementsE; and E» from Dy, and computes their least upper
bound (under the partial ordetz). In Section 4.1 we show
how to obtainJr, x ., from Jr, andJr,.

Assignment Node. Sg&gure §b).

First note that an assignment= e is general enough to model
any programming language assignment. Memory, for example,
can be modeled using array variables and select and update
expressions, without losing any precision.

The element after an assignment node:= e is the strongest
postcondition of the elemerf’ before the assignment node.
It is computed by using an existential quantification operator
Qr,x L, as described below.

E = QrxL, (Ely{ml})
whereE; = FE'[z'/z] A B}
N elz’/z] if Symbols(e) C Ty ur,
! true otherwise

The existential quantification operat@}; for any lattice L

takes as input an elemehtfrom Dy, and a set of variableg,

and produces the least upper boundiofin the lattice) that
does not involve any variables . In Section 4.2we show
how to obtainQr, xr, fromQr, andQr,.

Conditional Node. SeEigure Kc).

The elementd’; and E»> on the two branches of a conditional
are obtained by computing the meet (i.e., the greatest lower
bound) of the elemenk’ before the join node with any atomic
fact over the theor'y U T+ that is implied by the conditional

on the corresponding branch.

Ei = Mrp,wr,(E, E7)
I P if p is an atomic fact over theof§; U T2
T true otherwise

Inputs:
il i
JL1ML2(E£7E7‘) = = u = u)) N (v= u) —

1 (VL EP EL) = Purifyy, 1, (E); Trace of /v, (E1, B2):
2 <E{17E§1> := NOSaturationr, 1, (fO,Eéo); (v 7E%1ﬂ E%1> = ({hw=v+1u=F(w)
3 (V',E[°,E5%) := Purifyy, 1, (E"); BB) = {w=v4 L= F(w) B
a (B E3) := NOSaturationr, z, (E{°, E5); (Vo Bi LBy = bl v =b—1,b=F(u) \ u=Fu)
5 Vo= {{z,y) |z € VU Vars(EY),y € V" U Vars(E")}; (Br, Bg) = (v=b—1Au=bb=F(u) Au=F(u)
e V= {{w,b), (w,u), (w,v), (), (), u,0),...}

(z,y)eV E)Q = (’LU = <w7b>) A (w = <wau>) A (w = (w,v)) ce
7 E? = N\ y=(zy) ; E™ = (b= (w,b)) A (u=(w,u)) A(v=(w,v))...

(z.)eV Ey = (v=(w,b)+1)
8 FEi := J, (B ANE® ETYAE™); By = (u= F({w,b)))
9 FEy := Ji, (B8 AE® ESY AET?); E = (u=F(v+1))
10 FE := QleL2(E1/\E2,V);
11 return F;

(a) Algorithm (b) Example

Figure 6. This figure describes the algorithm for join operator for combined laftice« Lo in terms of the join operators for the lattices
L, and L, along with an example.

e Completeness: IE’ is such thatF, <; E’ and E; <1 F,
thenE < E'.

Similarly,
E,

ML1NL2(E7 E;)

{

Here M1, 1, denotes the meet operator for the lattice x

if —p is an atomic fact over theoff}; U T»
otherwise

B P
true Figure 6shows how to implement the join operatfy, » 1., for
the combined latticé, x Lo using the join operator$.,, and.J.,
L, and can be implemented simply as a conjunction operator. for the logical lattices.; and L. Lines1 and 2 perform purifica-
tion and NO-saturation of the inpu¢. Purification of £ (which

! 4 ! 4
Mpyer (B, E7) = EENE involves atomic facts over combination of two theorisU T+)

In presence of loops in programs, the abstract interpreter goesS€Ives the purpose of splitting the inut into two partsE;” and
around each loop until a fixed point is reached. A fixed point is said 27z €ach of which involves facts over eithf or T, and hence
to be reached when the elements at any program point inside thec@n be understood by eithgr, orJr,. The NO-saturation of;
loop in two successive iterations of that loop represent the sameand E5' serves the purpose of sharing information betwéxf
lattice element. We show iBection 4.3that the number of steps ~ andE5' so that each of them can independently imply the atomic
required to reach a fixed point across a loop (when the analysis facts in corresponding theories that are implied#y(Propertyl).
is performed over the latticé; x L) is linear in the number Similarly, lines3 and4 perform purification and NO-saturation of
of steps required to reach a fixed point across that loop when thethe other input”.
analysis is performed over the lattics or L. If the latticesL Lines 5 through7 introduce some dummy variables and defi-
or L, have infinite chains above a given element, then fixed point nitions for purpose of creating variable names for some potential
for a loop may not be reached in a finite number of steps. In that alien terms in the output. If we leave out lineshrough?7 in the
case, a widening operation may be used to over-approximate thecombination algorithm, then we simply obtain a join operator for
analysis results at loop headers. A widening operator for a lattice the reduced product combination of lattices and L, because
takes as input two elements fraBy, and produces an upper bound both E; and E» are atomic facts involving only those variables
of those elements (which may not necessarily be the least upperthat occur inE* and E”. However, presence of these dummy vari-
bound). A widening operator has the property that it guarantees ables and definitions allow the individual join operatdis and
fixed point computation across loops terminates in a finite number Jr, to output result in terms of these dummy variables along with
of steps even for infinite height lattices. A widening operator for their definitions. Elimination of these dummy variables in |k
the latticeL; x Lo can be constructed from widening operators (using the existential quantification operar , » ., described in
for the latticesL; and L. respectively in exactly the same way as the next section) results imixedfacts over the combined theory
JL,x L, IS constructed from/, and J.,. Section 4.3discusses T1 U Tz. In the example ifrigure §b), v + 1 is such an alien term
these issues in more detail. in the output, which is represented by the dummy varidblé) in

EfY A E*? aswell asinEj? A E™2.

4.1 Combining Join Operators The operatorNOSaturationt, T, involves sharing variable

The join operator/y, for a lattice L takes as input two elemenis

and E, from D, and computes the least upper boundtsf and
E> with respect to the partial ordet;,. The following definition
makes this more precise.

DEFINITION 3 (Join Operatody). LetE = J(E1, E2). Then,
e Soundnesst, <p FandE; <p FE.

equalities between its input elements until no more equalities can
be shared. It can be implemented using an operéfor that takes

as input a conjunction of atomic facts in thedhand discovers all
variable equalities implied by it. Th& E1 operator for any theory

T is theoretically at most as hard as the join operatprfor the
logical lattice L over theoryT, as is exhibited by the following
construction.

B,V Input
: Q?V%?E(g,’@% - Puriys, 5, (B); r T @A Eu) A= FEQ+) A L= P+ D)
2 (Fi,E3) := NOSaturationt, T,(EY, E9); = {ou}
3 V! =Vvouv;,
4 (V? Defs) := QSatumtionTlmQ(Ell,Ezl,VI); Trace ofQr,wi, (E,V):
5 Ef := Qu,(BE{,V?); ' (VO,EYES) = {aha<yAy<una=l+yAb=y+1,
6 Ej :=Qr,(E3,V?); x = F(F(a)) A v=F(b))
7 E} := Ef[Defs(y)/y] for all yc VZ -V, (BL,E;) = (@<yAy<uAa=l+yAb=y+1,
8 Fj := E3[Defs(y)/y] for all y e V2 -V, z=F(F(a)) Nv=F(0b) N a=b)
9 return E} A E3; vio= {z,y,a,b}
(V2,Defs) = ({y,a,b},z=F(v))
C‘)Satumtzonm-1 (B, E3, V') = Eg = TZu
1 V2=Vl Ey = true
2 Defs:= @ Ei = F)<u
3 repeat By = true
4 for all y € V!
5 t := Alternater, (E1,y,V?);
6 if t= 1, then t:= Alternater,(F3,y,V?);
7 if t# 1, then Defs:=Defs Ay =1¢;
8 V2=V {y};
9 until no change in V?;
10 return (V?,Defs);
(a) Algorithm (b) Example

Figure 7. This figure describes the algorithm for existential quantification operator for combined FattigeL- in terms of the existential
quantification operators for the latticés and L, along with an example.

VEr(E) = J.(E,E) 4.2 Combining Existential Quantification Operators
, QL(E,V) computes the best approximation to the existentially
whereE" = /\ To = Ti guantified elemenfiz E (whereV is some set of variables) in the

lattice L. The following definition makes this more precise.
and{zo,...,zx} = Vars(E))) o
DEFINITION 4 (Existential Quantification Operat@)). LetE’ =
However, for several theories, tHéET operator for a theory can ~ Qr(E,V). Then,
be implemented in a simpler and more efficient manner than the o goundnesst <, E’ and Vars(E')N'V =0
join operator for the corresponding logical lattice. For example, Completeness: [E” is such thate <;, E” and Vars(E") N
the VEr operator for the theory of uninterpreted functions can V = 0. thenE’ <, E". -
be implemented using congruence closure algorithm, while the -
join operator for the theory of uninterpreted functions is based Figure 7shows how to combine existential quantification op-
on automata intersectiori§]. The VEr operator for the theory erators for logical lattices. Lines and 2 perform purification
of linear arithmetic with only equality (i.e., no inequalities) can and NO-saturation of the inpuE (for the same reasons as in
be implemented simply using Gaussian elimination, while the join case of our algorithm fot/z, ., operator). Purification intro-
algorithm is more involved1[g]. duces some new variablés’, which also need to be eliminated.
The following theorem states that our algorithm for the join 1! on line 3 represents the set of all variables that need to be
operatorJr, w1, (E*, E") (as described iffigure a)) computes eliminated. We first filter out those variables frov? that have

an upper bound OEZ andE". some definitiont such thatVars(t) N V' = using the oper-
ator QSaturationy, 1, (E1, E2, V1), The following claim states
THEOREM2 (Soundness of ., 1., algorithm).If £ = this more formally.

14 T 13 r
Tiania (B B7), henB” Z1yui, BANE" S1ymL, B CLAIM 1. Let (V?, Defs) = QSaturationy, 1, (Ei,E3, V'),
The proof ofTheorem 2s not difficult and can be found in the full whereE! and E2 are purified and NO-saturated. B} A E3 2™
version of this paperlf4]. y=tand Vars(t) N V' = (), theny ¢ V>,
The following theorem states that the upper bound computed by
our algorithm for the join operatofr, w1, (E°, E7) is least if the
underlying theories are convex, stably infinite, and disjoint.

In lines5 and6, we use the existential quantification operators for
the individual lattices to eliminate the variablg€ from E; and
E3. We then eliminate all variables in the &t — V2 by replacing

THEOREM3 (Completeness ofy, » 1., algorithm). Suppose the themhby thelir definitions (lines ands). ‘
theoriesT; and T» are convex, stably infinite and disjoint. Let The implementation of)Saturationy, r, operator makes use
E = Jo,ni,(E', E"). Let E' be such tha® <y, 1, E' and of operatorsdlternater, and Alternater,. Alternater(E,y, V)
- 1 2 i . — L1 2
E" 2rp,x1y E'.ThenE <1, w1, E'. returns a ternt (if it exists) such that? = y = ¢ and Vars(t) N
(V U{y}) = 0. If no such term exists, theAlternater(E,y, V)
The proof ofTheorem 3s non-trivial and is given in the appendix. returns_L. The implementation ofilternater operator is theory-

specific. For example, thdlternater operator for the theory of

uninterpreted functions involves constructing a congruence closed

EDAG representingE, erasing all variables it/ U {y} from
the EDAG, and then returning any terifrom the equivalence
class ofy. The Alternater operator for the theory of linear arith-
metic can be implemented by discovering all equalities implied
by E (by using a linear inequalities reasoning algorithm like sim-
plex or ellipsoid algorithm), eliminating all variables ¥ us-
ing Gaussian elimination, and then returning any teritom any
equality that involves variablg. We do not know of any general al-
gorithm for implementingdlternater, however we conjecture that
the Alternater operator for any theor¥ is at most as hard as the
existential quantification operat@;, for the corresponding logical
lattice L sinceQr (E,V U {y}) should ideally replace all occur-
rences ofy in F by the desired term(if it exists) unless it rewrites
the facts in a different manner.

The following theorem states that our algorithm for the existen-
tial quantification operato@r,xr.(E, V) (as described irFig-
ure Ta)) computes an upper bound Bfthat does not involve any
variables inV. The proof of this theorem is not difficult and can be
found in the full version of this papef.f].

THEOREM4 (Soundness aD 1, x 1., algorithm).Let B’ =
QLleg (E, V) Then,E =LixLs FE’ and Vars(E’) NV =0.

The following theorem states that the upper boundZatom-
puted by our algorithm for the existential quantification operator
Jr,wi, (E, V) is least if the underlying theories are convex, stably
infinite, and disjoint.

THEOREMS5 (Completeness @1, r, algorithm). Suppose the
theoriesT, and T are convex, stably infinite and disjoint. Let
E' = Qr,x1,(E,V). Let E” be such thatt <r,.r, E” and
Vars(E"YNV = 0. Then,E’ <r,x1, E".

The proof ofTheorem Ss non-trivial and can be found in the full
version of this paperlf4]. Figure 8describes an example that illus-
trates why the completeness of our combination algorithm for exis-
tential quantification operator relies on the fact that the underlying

Ei = even(z)Az=2" -1
Ey = positive(z)Nz =2"—1
Qui(By {#'}) = odd(x)
QLy(B2,{z"}) = true
Qrinr,(E1 A E2, {2'}) = odd(x) A positive(x)

Figure 8. This figure illustrates the incompleteness of our algo-
rithm for Qr, « L, in presence of theories that share common func-
tion symbols. SinceE; A Es is already purified and NO-saturated,
and QSaturationy, r, does not return any definitions, our al-
gorithm for Qr,wr, (E1 A E2,{z'}) outputsQr, (E1, {z'}) A
Qr,(E2,{z'}), i.e., odd(z), which is less precise than the re-
sult odd(x) A positive(z). The example in this figure is adapted
from [6].

THEOREMG6. LetE € Dr,wL,, (V, EY, E9) = Purifyy, ,(E),
and(E1, E») = NOSaturationr, r,(EY, EY). Then,

Hrpiwr, (E) <Hp, (El) + Hp, (EQ) + \AlienTermsTl To (E)|

where E; and E; are obtained by purification and NO-saturation
of E. | AlienTermst, 1, (E)| denotes the size of the set
AlienTermsr, 1, (E).

The proof ofTheorem @s non-trivial and is given in the appendix.

It follows from Theorem @hat the number of times each node
inside a loop is processed is linear in the number of times each
node is processed when analysis is done over the latliceend
L,. However, if the latticeL, (or L) has infinite chains above
some elements, then fixed point may not be reached across the
loop in a finite number of steps when the analysis is performed
over the latticeL; x Lo or even the latticel; (or lattice Lo).

In that case, a widening operation is needed to over-approximate

theories are disjoint. This example is adapted from Cousots’ early the analysis results at loop headers. A widening operator for the

work [6] in which they argued that it is not possible to combine

lattice L; x Ly can be constructed from the widening operations

abstract interpreters for any two arbitrary abstractions in a black- for the latticesL, and L using the same algorithm that combines
box manner to obtain the most precise abstract interpreter for thejoin operators (described #igure §. The proof of correctness of
combined lattice. The example used to illustrate this point was the the construction of the widening operator is same as the soundness

computation of strongest postconditionafen(z) A positive(x)
with respect to the assignment= = — 1. The abstract interpreter
operating over the parity abstraction will computg!(x) while the

abstract interpreter operating over the sign abstraction will compute

proof of the combination of join algorithms.

4.4 Complexity

true, and there is no way to combine the results of these abstractL€t 7. (1), T (1), Tar,, (n) andTa, (n) denote the time taken
interpreters in a black-box manner to generate the most precise redy the join operator/, existential quantification operat@py,

sult, which isodd(x) A positive(z).
It is interesting to note that if we defirié? on line4 to be V!
(and not invoke theQSaturationy, 1, operator), then we obtain

meet operatolM, and Alternater operator respectively to operate
on inputs of sizex. It follows from reduction otNOSaturationr, t,
operator in terms of the join operatofg, andJr, (as described

an existential quantification operator for the reduced product com- In Section 4.) that the complexity ofVOSaturationr, v, opera-

bination of lattices.; andLs.

4.3 Fixed Point Computation

In presence of loops, the abstract interpreter goes around each loop

until a fixed point is reached. The number of times a ngdeside

a loop is processed is bounded above by the maximum number of 7Qz, ., (n)

elements abové& along any chain in the latticé; x Lo, where
E'is the element before the nodewhen it is first processed. Let
Hp (FE) denote the maximum number of elements abbvie any
chain in any latticd.. The following theorem specifies a bound on
Hi,wi,(E) interms ofHy, (E1) and Hy, (E2), where E; and
E5 are obtained by purification and NO-saturationtbf

tor (for two input elements of size over theoriedl'; andT- is at
mostn times the sum of;, (n) + 17, (n). It now follows from
Figure 6andFigure 7that:

n) = O(Ts, (n*) +Ti,, (n*) + Tqp s, (n%))
O(TQL1 (n) + TQL2 (n) +n x TATl (n) +
n X Tay, (n) +nx Ty (n) +nxTy, (n))

O(n)

‘Llez(

TML1 Lo (n)

Above we use the fact that complexity &OSaturationt, 1,
operator on inputs of size is O(n x Ty, (n) +n x Ty, (n)),

which is alsoO(T’s, (n*) 4 Ty, (n?)).

5. Applications of Combination Methodology The following mapping maps these terms to terms that use a

The obvious application of our combination methodology to com- Single uninterpreted functiofi and linear arithmetic.
bine abstract interpreters for given lattices is to analyze programs M(z) = =

over the logical product combination of those lattices. However, @) 1 o

there is ano%her irpl)teresting application of this combination method- M(Gi(t, .- ta)) Fl+2 M) +...+2"M(ta))
ology. It turns out that certain latticéscan be reduced to strictlog- Claim 2 holds for this mapping too. Hence, this transformation of
ical product combination of some other lattices, which may be un- |attices is both sound and complete.

related toL. If analyses for those other lattices are already known,

then the analyses can be combined using our combination method-

ology to construct an analysis fdr 2. We next describe some lat- 0. Related Work

tices L that can be reduced to strict logical product combination of The problem of combining abstract interpreters for combination of

other (unrelated) lattices. abstract lattices was first considered by Cousot and Co@sé}. [
They defined different notions of combination of lattices: the di-
5.1 Commutative Functions rect product and the more precise reduced product. The notion of

reduced product of combination of lattices does not specify any au-

Commutative functions are useful in modeling binary program . . . |
tomatic way to construct the abstract interpretation operations for

operators that are commutative, e.g. floating-point addition and th bined lattice. In thi introd i ¢
multiplication. Note that these floating-point operators should not € combined fatiice. In this paper, we introduce a new notion o

be abstracted as linear arithmetic operators since they do not obey-°MPination of lattices called logical product, which is more pow-
associativity because of overflow issues. erful than the reduced product. We also describe algorithms to au-

The lattice of commutative functions can be reduced to the strict ;[on_]atllcally dcorssltrtli_ct t?e abfr'[]ractt;n:er[)trgt?tlon cipte_ratlons fot_r the
logical product combination of the lattice of single unary uninter- °9!ca! product lattice irom the abstract Interpretation operations

preted function and the linear arithmetic lattice. This can be done fOr the individual logical lattices. Our algorithms can be simplified
by using some injective mapping to transform terms that use com- to yield abstract interpretation operations for the reduced product

mutative functions to terms that use a single unary uninterpreted ©f the underlying logical lattices. . .
function and linear arithmetic as described %elow y P An abstract lattice can be lifted to its powerset lattice (called

Consider the following language of terms that use commutative disiunctive completion), which is more precise since there is no loss
functions. Herer denotes some variable. whit@: denotes some of information in join computations]. It is interesting to note that
uninterpréted function ' ' the precision of logical product combination is incomparable with

the disjunctive completion of a reduced product combination. The
tu=a | Gi(t,t2) former yields more precise information across assignment nodes

)) ~since it can represent atomic facts that involve combination of

The following mapping/ maps these terms that use commutative - signatures of the individual lattices. The latter yields more precise
functionsG’s to terms that use a single uninterpreted functfon information across join points since it can represent disjunction of

and linear arithmetic. atomic facts (each of which is pure though).
M@z) = « Codish et. al. 2] have studied the problem of automatically
] generating abstract interpretation for reduced product combination
M(Gi(t1,t2)) = F(i+ M(t)+ M(t2)) of lattices. However, their work has focused on logic programs,

while we are concerned with imperative programs. Also, their com-

bination methodology does not provide any precision guarantees
with respect to the reduced product lattice. On the other hand, our
combination methodology gives precision guarantees over reduced

The following claim implies that the mappiny is injective
and equivalence preserving. Hence, this transformation of lattices
(obtained by mapping terms) is both sound and complete.

CLAIM 2. t1 = to iff M(t1) = M (t2) product (in fact, even over a more precise logical product) combi-
) i) nation of a general class of lattices.
Claim 2can be proved by induction on structure of term Chang and Leinal] have presented preliminary results on com-
bining a given abstract domain with the domain of uninterpreted
5.2 Uninterpreted Functions symbols, but do not define and prove correctness for their combi-

Uninterpreted functions are commonly used to model programming _nation. They point out several subtleties that can arise when deal-

language operators that are otherwise hard to reason about. They"d With the semi-lattice induced by uninterpreted symbol (see
are also used to abstract procedure calls with no side-effects. also [L5]). Our results here consolidate and build a nontrivial frame-

The lattice of uninterpreted functions can be reduced to the Work under which to define and modularly prove correctness of

strict logical product of the lattice of a single unary uninterpreted th€se past approaches.)
function and the linear arithmetic lattice. For this purpose, we . Lerner, Grove and Chambers have described how to automat-
describe a transformation that converts terms involving (potentially I€ally combine dataflow analyses in the context of compiler op-

multiple) uninterpreted function symbols of any finite arity to terms imizations [L7]. Their technique involves implicit communica-
that use only one unary uninterpreted function symbol. tion between the individual components of a super-analysis based

Consider the following language of terms. Herdenotes some on graph transformations. They have shown that under a certain

program variable, whileZ? denotes some uninterpreted function monotonicity condition, _their C(_)mb_ina_tion algorithm produces no
of arity a. worse results than running arbitrarily iterated sequences of the in-

dividual analyses.
tu=x | Gi(t1,...,ta) Reps, Sagiv and Yorsi2{] show that an abstract interpreter
can be constructed using only a decision procedure (that can also
2The analysis thus obtained fdr is not the most precise one since our PrOducemOdels and_a jon ope_rator. This suggests that abStraCt
reduction is in terms of strict logical product combination, while the combi- interpreter for combination lattices can be construaeduming
nation methodology yields an analysis for the logical product combination, @ combination decision procedure and a join algorithm for the
which is less precise than the strict logical product combination. combined lattice. In our work, we make no such assumptions.

Also, unlike our algorithms, the complexity of the procedure for [3] A. Cortesi, G. Fig, R. Giacobazzi, C. Palamidessi, and F. Ranzato.
computing meet and SP suggested by Reps et. al. is linear in the Complementation in abstract interpretatiohCM Trans. Program.

height of the lattice, which is usually unbounded in rich domains. Lang. Syst.19(1):7-47, 1997.

The idea of decomposing a lattice into a reduced product of [4] P. Cousot. Iterative reduced product, Lecture Notes on Abstract
simpler lattices has been formally studied by Cortesi et. 3. [Interpretation, Available at http://web.mit.edu/16.399/www/. 2005.
However, the results in Sectidhpresent nontrivial reductions of [5] P. Cousot and R. Cousot. Abstract interpretation: A unified
some specific lattices inttbgical productsof other (unrelated) lattice model for static analysis of programs by construction or
lattices. approximation of fixpoints. ImMth ACM Symposium on POPL

pages 234-252, 1977.
[6] P. Cousot and R. Cousot. Systematic design of program analysis

7. Conclusion and Future Work frameworks. Inr6th ACM Symp. on PORIpages 269-282, 1979.

This paper describes how to automatically combine the power [7] p, Cousotand N. Halbwachs. Automatic discovery of linear restraints
of abstract interpreters in a non-trivial manner. We define a no- among variables of a program. Hth ACM Symposium on POPL
tion of logical product of lattices, which is more precise than the pages 84-97, 1978.

commonly known reduced product. Our combination methodology (g R. Giacobazzi and F. Ranzato. Refining and compressing abstract

yields the most precise abstract interpreter for the logical product domains. InProc. 24th ICALP volume 1256 oLNCS pages 771—
combination of lattices, when the individual lattices are over theo- 781, 1997.

ries that are convex, stably infinite, and disjoint. In other cases, our [9] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract

combination methodology acts as an efficient heuristic to combine interpreters completel. of the ACM47(2):361—416, 2000.

the power of given abstract interpreters in a non-trivial manner.
The process of analyzing a program using abstract interpreta-

tion over a given abstract domain involves two main steps: design-

ing the abstract interpretation operators for the abstract domain, i])

and implementing them. The combination methodology described [11] S. Gulwani and G. C. Necula. Global value numbering using random

in this paper helps in modularizing both these steps. A user can 'J”;ﬁr%rgé?'c’”' IB1st ACM Symposium on POPpages 342-352,

focus on designing and/or implementing abstract interpreters for i :

potentially simple domains, and then use our combination method- [12] S. Gulwani and G. C. Necula. A polynomial-time algorithm for global

[10] S. Gulwani and G. C. Necula. Discovering affine equalities using
random interpretation. 180th ACM Symposium on POPpages
74-84. ACM, Jan. 2003.

ology to automatically construct abstract interpreter for the combi- value numbering. Iri1th Static Analysis Symposiumlume 3148
nation of those domains, which is more precise than the individual of LNCS pages 212-227. Springer-Verlag, Aug. 2004.
domains. [13] S. Gulwani and A. Tiwari. Assertion checking over combined
The concept of logical product suggests several directions for abstraction of Iinea_r arithmetic and ur]interpreted functionslSim
future work. It may be worthwhile to explore logical products and European Symposium on Programminglume 3924 of.NCS

compare them to reduced products in the framework of abstract do- ~ SPringer, Mar. 2006.

mains and closures] 9]. The conditions under which our combi- [14] S. Gulwani and A. Tiwari. Combining abstract interpreters. Technical
nation methodology generates the most precise abstract interpreter ~ Report MSR-TR-2006-25, Microsoft Research, Mar. 2006.

over logical product are inherited from the Nelson-Oppen combi- [15] S. Gulwani, A. Tiwari, and G. C. Necula. Join algorithms for the

nation result for combining decision procedures. It would be useful theory of uninterpreted symbols. Gonf. on Foundations of Software
to see if our results can be extended to perform a precise analy- Tech. and Theor. Comp. Sci., FST&TCS "208slume 3328 o NCS
sis for non-convex theories (e.g., the theory of arrays), or combi- pages 311-323, 2004.

nation of non-disjoint theories. There has been a lot of work in [16] M. Karr. Affine relationships among variables of a programAtta
the theorem-proving community to extend Nelson-Oppen combi- Informatica pages 133-151. Springer, 1976.

nation methodol_ogy for dec_ision procedures to reason about non- [17] S. Lerner, D. Grove, and C. Chambers. Composing dataflow analyses
convex or non-disjoint theories that could also be relevant here. On and transformations. 129th ACM Symposium in POPpages 270~

the other hand, it would be interesting to experimentally evaluate 282, 2002.
the Imprecision of our combination m_ef[h_odology'ln reasoning over [18] M. Muller-Olm and H. Seidl. A note on Karr’s algorithm. IGALP,
combination of non-convex or non-disjoint theories. Since the no- pages 1016-1028, 2004.

tion of logical product is more precise than reduced product and
direct product, another interesting piece of experimentation would (19]
be to compare the cost and precision of an analysis over logical
product as opposed to direct product or reduced product.

G. Nelson and D. Oppen. Simplification by cooperating decision
procedures.ACM Transactions on Programming Languages and
Systemsl(2):245-257, Oct. 1979.

[20] F. Nielson, H. Nielson, and C. HankinPrinciples of Program
Analysis Springer-Verlag, 2005.

Acknowledgments [21] T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the
best transformer. IWMCAI, volume 2937 oL NCS pages 252—-266.

We thank the anonymous reviewers of this paper for their useful Springer, 2004.

and insightful comments.

References A. Proof of Theorem 3
[1] E. Chang and R. Leino. Abstract interpretation with alien expressions Let({z1,...,zm}, B, E3) = Purifyy, 5, (E'). SINCeE’ <L, wL,
h . Al, vol LN 147—
";‘23’. Sea?nsgtéfc%roe; MMCAL volume 3385 oLNCS pages E', we have that?* "= E’ and AlienTermst, 1,(E') C
Termst, 1,(E%). Thisimplies that there exist variables, . . . , 2.,

[2] M. Codish, A. Mulkers, M. Bruynooghe, M. G. de la Banda, and
M. Hermenegildo. Improving abstract interpretations by combining
domains. ACM Transactions on Programming Languages and T UT
Systemsl17(1):28-44, 1995. EP NES TSP (ELAEY)21, Tm) 2m)]

in V¥ U Vars(E*) such that

It follows from Propertyl (property of NOSaturationt, ,) that

Efl Y Eilzi/21,. . Zm/2Zm)
Eél] Ej[z1/21,. . Tm/ Zm)

Similarly, there exist variableg, ...,y € V" U Vars(E") s.t.

EY S By /21, Ym) 2m)]
ESY B By /21, Y/ 2m]
Hence,
B AE® 2 Bl /2 (@ Ym)/ 2m)
ES'AE™ 22 By[(z1, 1) /21, -+, (T Y)/ 2]
EN'AET? R Ev[{z1,y1)/21, oy Ty Ym) [2m]
)

E5Y AE™ 22 By[(z1, 1) /21, -, (T Y)/ 2]

It follows from completeness of join algorithnyg,; and.J., that

By gE£[<x17y1>/zla"'7<$maym>/zm} (1)

Es 2 Bj[(z1,91)/71,- -, (T, Ym) [Zm))

Hence,E: A Bx =" E'. It now follows from the completeness
of Qr,x 1, that

E E

We now show thatdlien Termsrt, 1,(E’) C Termsrt, 1, (E).
Consider any € AlienTermst, 1, (E’). 3is.t.1 < < m and

TUT2
=

; T{UTs

It follows from Equation 1 Equation 2 andEquation 3that

UTso

E1 N Es> T1:>T <137;,y7_'> =t

This implies that the variabléz;, y;) does not belong to the s&%
(on Line4) in our algorithm of the operat@p ., x ., WhenQr, w .,
is called from withinJr, . HenceQr, ., eliminates variable
(z:,y:) in E1 A Eo by substitution with some terrtf. Note that

t = t'. The variablez; (introduced during the
purification step) occurs in a non-trivial manner in bdth and
E! and hence it follows frontquation land Equation 2that the
variable(z;, y;) occurs in bothE; and E». This implies that the
term¢’ occurs in bothE? and E3 (as defined on Line and8 in
pseudo-code of)r,xr,) and hence’ € Termsr, r,(E) (note

thatE = E3 A E2). SinceEy A B> £ ¢ = ¢/, we have that
E"S2 =+ Thust e Termst, 1, (E).

B. Proof of Theorem 6

Let E' be such thal? <r,wr, F' andE’ Ar,x1, E. Let E]
andE’, be obtained by purification and NO-saturation/f Since
AlienTermst, 1,(E') C Termst, 1,(E), we can assume with-
out loss of generality that’ has been purified using the variables
and definitions used to puriffz. It suffices to show the following.
(I) F1 le Ei andEz ﬁLz Eé
(ii) Either E1 A1, E1or B3 A1, Eoor AlienTermst, 1,(E') C
AlienTermst, r, (E).

We first prove (i). LetDefs be the conjunction of definitions

required for purification ofz. SinceE "'2"* E’, we have that:

T1UT,

E ADefs =? E' ADefs 4)

Note that ADefs o5 F1 A Es, andE' ADefs 22 EAE).

Hence, it follows from Eg4 that

T, UT,

EiNEy S? EiAE; (5)
SinceE; andE; are NO-saturated, it follows from E§.that
E 2 E and B, 2 E
We now prove (ii). Suppose for the purpose of contradiction that
Ey =1, E1 E; =r, B (6)
AlienTermst, 1,(E') = AlienTermst, 1,(E) (7)

and

SinceE ADefs <2 [, A Es, andE’ ADefs =2 E| A Eb,

it follows from Equation 6that

T1UT,

E’ ADefs =~ FE ADefs (8)

SinceDefs is simply a conjunction of definitions for variables that
do not occur inE” andE, it follows from Equation &hat

T1UT,

E =2 FE)

It follows from Equation 7and Equation 8that £’ <r,wr, F.
This is a contradiction.

	Introduction
	Background
	Logical Lattices and Their Combination
	Abstract Interpreter for Combination of Logical Lattices
	Combining Join Operators
	Combining Existential Quantification Operators
	Fixed Point Computation
	Complexity

	Applications of Combination Methodology
	Commutative Functions
	Uninterpreted Functions

	Related Work
	Conclusion and Future Work
	Proof of Theorem 3
	Proof of Theorem 6

