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Abstract. Speech recognition has become common in many applica-
tion domains. Incorporating acoustic-phonetic knowledge into Automatic
Speech Recognition (ASR) systems design has been proven a viable ap-
proach to rise ASR accuracy. Manner of articulation attributes such as
vowel, stop, fricative, approximant, nasal, and silence are examples of
such knowledge. Neural networks have already been used successfully as
detectors for manner of articulation attributes starting from representa-
tions of speech signal frames. In this paper, a set of six detectors for the
above mentioned attributes is designed based on the E-aNet model of
neural networks. This model was chosen for its capability to learn hidden
activation functions that results in better generalization properties. Ex-
perimental set-up and results are presented that show an average 3.5%
improvement over a baseline neural network implementation.

1 Introduction

State-of-the-art speech recognition technology utilizes frame-based feature vec-
tors, corresponding to about 10-20 milliseconds (ms) of speech (frame length).
Within this framework, Mel-Frequency Cepstrum Coefficients (MFCCs)[4] are
the most commonly employed features because of their properties to capture
the main characteristics of the vocal cords and tract. Moreover, these features
are usually computed by means of short-term spectral techniques, such as lin-
ear prediction (LP) analysis, or band-pass filter benches (BPFs). In addition,
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as the Continuous Density Hidden Markov Model (CDHMM)[I] models the
sound classes, data-driven machine learning techniques allow the training of the
CDHMM parameters directly from the speech data by way of dynamic program-
ming algorithms, e.g. Baum-Welch procedure [I]. Nonetheless, even if speech
researchers have learned a lot on how to build speech recognition systems, the
performance of Automatic Speech Recognition (ASR) systems are comparable to
Human Speech Recognition (HSR) only when working conditions match training
conditions [7]. In this context, it is interesting to note that human beings inte-
grate multiple knowledge sources in bottom-up fashion. The HSR system gathers
acoustic and auditory information from the speech signal, combines them into
cognitive hypotheses, and then recursively validates these hypotheses until a fi-
nal decision is reached. Conversely, data-driven automatic systems, such as the
Hidden Markov Model (HMM) [2] or Artificial Neural Networks (ANN) [1]], ad-
dress the speech recognition problem as a top-down paradigm, directly trying to
convert the speech signal into words, and thus neglecting all the rich set of infor-
mation that a speech signal conveys, such as gender, accent, speaking style, etc.

To overcome these limits one could attempt to incorporate the above infor-
mation by collecting more data for the training data set. Nevertheless, C.-H.
Lee has recently pointed out that the performance of these knowledge-ignorant
modelling approaches can be improved integrating the knowledge sources avail-
able in the large body of speech science literature [II]. In the same work,
he proposed a detection-based automatic speech recognition (ASR) paradigm
through automatic speech attribute transcription (ASAT). Furthermore, in [6]
it is showed that the idea of a direct incorporation of acoustic-phonetic knowl-
edge, as knowledge-based features (also referred to as speech attributes in the
same work) into ASR design rises the accuracy. This goal was achieved aug-
menting the front-end module of a conventional ASR system by means of a set
of feature detectors able to capture the above-mentioned speech attributes.

The problem addressed in this paper is to build a set of detectors to recognize
six attributes, namely wvowel, stop, fricative, approximant, nasal, and silence.
These attributes represent the manner of articulation, and in this paper are
referred to as manner of articulation attributes. The choice of these attributes
was dictated by not only their strong relation to human speech production [3],
but also by their robustness to speech variations [6]. These six manner events
are extracted directly by short time MFCCs, and represent the direct input to
the six detectors.

It is well known that neural networks are widely used since they can learn a
mapping from an input space to an output space realizing a compromise between
recognition speed, recognition rate and hardware resources[8]. The generaliza-
tion capability of neural networks is acquired during the training phase and the
generalization degree achieved is strictly related to the training set characteris-
tics. In [6], feed-forward neural networks are used to implement the six speech
attribute detectors, the output of which may be interpreted as a posteriori prob-
abilities of an attribute given the speech signal [3]. This set of detectors is used
as baseline for comparisons against the model herein proposed.
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Recently, a feed-forward neural architecture (EaNet) capable of learning its
hidden neuron activation function has been introduced [§], and proven to per-
form better than traditional feed-forward neural architectures [9][I0]. In this
architecture, the activation functions of the hidden units are not chosen a priori,
but rather they are approximated with a regression formula based on orthonor-
mal Hermite polynomial functions. Each activation function belonging to the
hidden layer, along with the neuron connection weights is then learnt during the
training phase with the use of the Conjugate Gradient Descent technique with
the Powells restart conditions|g].

In this paper, a set of six attribute detectors is designed based on the EaNet
neural architecture. Each one of the EaNet detector classifies input speech frames
into a single attribute category. The performance is evaluated on continuous
phone recognition using the TIMIT database [12]. Experimental results demon-
strate the effectiveness of this design for speech attribute classification, with an
average 3.5% improvement with respect to the traditional ANN (maximum 8.5%
improvement for plosives). The rest of the paper is organized as follows. Section 2
describes the architecture of the EaNet neural network. Section 3 describes the
general framework of the knowledge extraction module. Section 4 presents the
experimental set-up and results, with comparison to the baseline architecture.
Some concluding remarks close the paper.

2 E-aNet Architecture

EaNet [8][9][10] is a feed-forward neural architecture, or multi-layer perceptron,
that is able to learn the activation function of its hidden units during the training
phase. Compared to a traditional feed-forward network that uses sigmoidal or
sinusoidal activation functions for its hidden unit, this model is characterized by
lower values of the gradient of the network output function in the surroundings
of the training points. Furthermore, to avoid introduction of additional infor-
mation beyond what already available in the training set (see [9][10]) in EaNet
architectures the activation function is modelled through a Hermite regression
formula and the optimization algorithm is based on the conjugate gradient de-
scent with Powell restart conditions [§]. The choice of the Hermite regression
algorithm is motivated by i) the smoothness of the resulting interpolation, and
ii) its easy to compute first derivative [8][9].

3 Knowledge Extraction Module

The Knowledge Extraction (KE) module uses a frame-based approach to provide
K manner of articulation attributes (4;,7 € [1,..., K]) from an input speech
signal s(¢). In this paper the manner classes were chosen as in [6], and are listed
in Table [Tl

The KE module, depicted in Figure [ is composed of two fundamentals
blocks: the feature extraction module (FE), and the attribute scoring mod-

ule (SC).



Application of EaNets to Feature Recognition 143

Table 1. Manner articulation attribute

Articulation manner Class Elements

VOWEL IY, IH, EH, EY, AE, AA, AW, AY, AH,
AO, OY, OW, UH, UW, ER, AX, IX

FRICATIVE JH, CH, S, SH, Z, ZH, F, TH, V, DH

STOP B, D, G, P, T, K, DX

NASAL M, N, NG, EN

APPROXIMANT L, R, W, Y, HH, EL

SILENCE SIL
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Fig. 1. Procedure of encoding the k-th word of the i-th lexical set

The FE module consists of a bank of K feature extraction blocks F'E;, where
i € [i... K] and it maps a speech waveform into a sequence of speech parameter
vectors Y;, 4 € [i... K]. Actually, each of the F'E; is fed the same speech waveform
s(t) and for each 10 ms-frame it computes a thirteen-MFCC feature vector X;
(12MFCCs + Energy). The frame length of 30 msec, overlapped by 20 msec.

Finally, F'E; produces, as output, a 117-feature vector Y; combining the actual
frame with the eight surrounding frames, 4 frames before and after, so that each
speech parameter vector represents nine frames.

The SC module is composed of six E-aNets feed-forward neural networks,
and its goal is to attach a score, referred to as knowledge score (KS; ), to each
vector Y;. The input of each network is a 9 frames of 12MFCCs + energy, so
that the input layer is of 117 nodes. The output layer has two nodes, one for the
desired class, and one for the anti-class (which are the the elements belonging
to the other classes). Actually, the value obtained for the desired class for case
i is defined to be the knowledge score (K S;).

4 Experiments and Results

The evaluation of the proposed Manner of Articulation Manner Extraction mod-
ule was performed on the TIMIT Acoustic-Phonetic Continuous Speech Corpus
database [12], which is a well-known speech corpus in the speech recognition field.
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This database is composed of a total of 6300 sentences; it has a one-channel, 16-
bit linear sampling format, and it was sampled at 16000 samples/sec. The EaNet
detectors were trained on 3504 randomly selected utterances, and to be consis-
tent with [6] and [5] the four phones “cl”, “vcl”, “epi”, and “sil” were treated
as a single class, thus reducing the TIMIT phone set to a set of 45 context-
independent (CI) phones.

Each of the six EaNet detectors is a three-layer network the input of which is
a window of nine frames, that is, 117 parameters. The nodes of hidden layers are
100. The output layer contains two units, and a simple linear activation function
is used. Finally, the soft-max module applies a soft-max function to the outputs
in order to compute the overall confusion matrix.

Furthermore, an algorithm based on a mapping table was used to generate
the training labels of each detectors from the phone transcription. In addition,
each generated training set was normalized using the following formula:

2=t H (1)

where z is the new normalized value, z is the original value, u is the training set
mean value and o is the training set standard deviation. These work-condition
constrains were adopted in order to compare fairly the results presented in this
paper with those shown in [6]. As previously stated, the detectors work in a
frame-based paradigm, so that their performance was evaluated in term of frame
error rate. Each frame was classified according to the neural network with the
largest value. The global confusion matrix for the manner of articulation manner

Table 2. Phoneme accuracies (as percentages) for the manner of articulation attributes
using EaNet architectures. Confusion Matrix of the manner attributes.

% Vowel Fricative Stop Nasal Appr Silence
Vowel 91,00 1,38 1,53 1,26 4,64 0,19
Fricative 3,16 88,06 5,53 1,02 0,89 1,24
Stop 6,32 7,41 81,03 1,71 1,57 1,96
Nasal 9,65 2,44 3,25 81,45 2,20 0,90
Approximant 30,82 2,88 3,26 2,74 59,11 1,19
Silence 1,10 1,09 1,88 0,61 0,58 94,74

Table 3. Relative improvement to the Li’s Improvement of the articulation manner
classification over the baseline ANN [6]

% Vowel Fricative Stop Nasal Appr Silence
Vowel 2,00 -0,12 0,03 -0,54 -0,36 -0,01
Fricative -0,54 2,86 -1,27 -0,18 -0,41 -0,46
Stop -1,28 -3,59 8,53 -1,19 -0,53 -1,94
Nasal -1,55 -0,06 -1,45 3,95 -1,00 0,10
Approximant  -1,48 -0,02 -0,44 -0,46 2,61 -0,21

Silence 0,00 -0,11 -1,32 -0,09 -0,32 1,84
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attributes is given in Table Bl The (p, q) — th element of the confusion matrix
measures the rate of the p — th attribute being classified into the g — th class.

5 Conclusions

Incorporating acoustic-phonetic knowledge into Automatic Speech Recognition
designs has been proven a viable approach to rise their accuracy. Manner of
articulation attributes such as vowel, stop, fricative, approximant, nasal, and
silence are examples of such knowledge, and they represent speech attributes.
A set of six attribute detectors was designed based on the EaNet neural archi-
tecture and their performance has been studied. The evaluation demonstrates
the effectiveness of this design for speech attribute classification, with an aver-
age 3.5% improvement with respect to the use of a traditional ANN approach,
showing a maximum 8.5% improvement in the case of plosives.
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