
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, SEPTEMBER ? 1

Generating Queries with Cardinality Constraints for
DBMS Testing

Nicolas Bruno Surajit Chaudhuri Dilys Thomas
Microsoft Research Microsoft Research Stanford University

nicolasb@microsoft.com surajitc@microsoft.com dilys@cs.stanford.edu

Abstract— Good testing coverage of novel database techniques,
such as multidimensional histograms or changes in the execution
engine, is a complex problem. In this work, we argue that thistask
requires generating query instances, not randomly, but based on
a given set of constraints. Specifically, obtaining query instances
that satisfy cardinality constraints on their sub-expressions is an
important challenge. We show that this problem is inherently
hard, and develop heuristics that effectively find approximate
solutions.

Index Terms— Query Generation, Database Testing, Cardinal-
ity Constraints.

I. I NTRODUCTION

EValuating the performance and quality of novel database
technology, such as a new multidimensional histogram

or changes in the database execution engine, is not an easy
task. A common methodology to validate the relative im-
provements of a new technique is to choose a comprehensive
set of databases and queries and compare the behavior of
the database system before and after the new component is
incorporated. While data generation is a relatively well-studied
problem (e.g., [1], [2]), query generation has been given little
attention.

Consider for instance a newly designed memory manager,
and suppose that we want to evaluate its impact on multi-way
hash-join queries (i.e., how the per-operator memory allocation
strategy influences the performance of the resulting execution
plans). For a given test database, a reasonable testing plan
consists of trying different query scenarios and measure their
performance when the new memory manager is available.
This evaluation would be meaningful only if input queries
are carefully chosen to exhibit a wide range of patterns and
characteristics. To that end, we could use tools like RAGS [3]
or QGen [4], which can stochastically generate a large number
of valid SQL statements in a short amount of time. Ideally,
our testing strategy should consider join queries with vary-
ing memory requirements at each intermediate operator. The
memory requirement of a hash join is determined by the size
of its inputs (i.e., the sizes of the intermediate results inthe
query execution plan). Figure 1(a) shows a sample test query
(with parametersp1 to p4) that joins a large tableR2 with
table R1 to obtain a small intermediate result. When this
small intermediate result is joined withR3, we get a very
small final result. While it is not difficult to force a database

engine to evaluate a given query using specific operators, or
even fixing the join order, there is no easy way to control
the sizes of intermediate joins. In this situation, randomly
generating queries over the given database as described above
would require an extremely large amount of time to cover the
desired test scenarios. Alternatively, we could use a painful
trial-and-error procedure to generate queries with cardinality
constraints.

An alternative approach that we explore in this work con-
sists of automatically generating queries based on specific
semantic constraints. In this manner, we separate the problem
of obtaining test queries in two stages. First, we declara-
tively specify semantic properties that the resulting queries
should satisfy. Second, we find query instances that satisfy
the constraints. While the first step depends on the component
being evaluated and therefore requires manual intervention, the
second step can be fully automated (though, as we will see,
this is not trivial).

Motivated by the example above, in this work we focus on
the problem of automatically generating queries with cardi-
nality constraints on its sub-expressions (Section II formally
defines the problem). We show in Sections III and IV that this
problem is inherently hard, and then in Section V we develop
heuristics that effectively find approximate solutions. Finally
we report some preliminary results in Section VI.

II. QUERY SPECIFICATION

We next show how to formally state the problem of gen-
erating queries with cardinality constraints as in Figure 1(a).
We restrict this work to parametric conjunctive queries andpa-
rameters to range predicates in theWHERE clause. Specifically,
we consider two types of parametric predicates:single-sided
predicates (e.g.,p1 ≤ R.a or R.a ≤ p2), and double-sided
predicates (e.g.,p1 ≤ R.a ≤ p2). Additionally, we focus on
constraints that restrict the cardinality of intermediateresults
of the input query. We now state the query generation problem:

Query generation problem: Given a database
D, a conjunctive queryQ with parametric range
predicates, and cardinality constraints1 over sub-

1Alternatively, we can specify selectivity constraints to avoid rewriting
specifications if the sizes of the database tables change. These approaches
are equivalent, and we can easily transform one into the other depending on
the application.

0000–0000/00$00.00c© 2002 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, SEPTEMBER ? 2

����������� �������	��
� �
��
��
��� � �������� � ���������� �� ��
������� �������������������������� ����� ���� Sub-expression Card

1.SELECT * FROM R1 WHERE p1 ≤ R1.a1 ≤ p2 5000
2.SELECT * FROM R2 WHERE R2.a2 ≤ p3 80000
3.SELECT * FROM R3 WHERE p4 ≤ R3.a3 6000
4.SELECT * FROM R1,R2 WHERE R1.a4=R2.a5

AND p1 ≤ R1.a1 ≤ p2 AND R2.a2 ≤ p3 300
5.SELECT * FROM R1,R2,R3 WHERE R1.a4=R2.a5

AND R2.a6=R3.a7 AND p1 ≤ R1.a1 ≤ p2

AND R2.a2 ≤ p3 AND p4 ≤ R3.a3 20

(a) Graphical representation. (b) Formal specification.

Fig. 1. A parametric query with cardinality constraints.!"#"$"%&'(")*"#+,- ."/&01&2"3# ,0"440,2+5"#&678*&0/ 9&-&0"#+,-:);,0+#<5 =>?>@ABA? C>DEAFG>?HIJ>DIBK C>DEAF
Fig. 2. Evaluation model.

expressions ofQ, find parameter values that make
the resulting query satisfy the constraints overD.

As an example, Figure 1(a) can be formally specified as
finding values of parametersp1, p2, p3, and p4 that satisfy
the constraints in Figure 1(b). Parameters cannot be shared
amongdifferent predicates. However, a parametric predicate
might occur in multiple sub-expressions (e.g.,R2.a2 ≤ p3

above is shared in queries2, 4 and5 in Figure 1(b)).

III. SPECIAL COMPLEXITY RESULTS

For a given assignment of values to the parametric predi-
cates in a constraint, we can use the DBMS to evaluate the
instantiated query and verify whether the constraint is satisfied.
In this section, we first use a simple evaluation model in
which the only mechanism to obtain information from the
given database is through anevaluation layer (see Figure 2)
that returns the cardinality of a constrained sub-expression
for a given assignment of parameters (to evaluate multiple
cardinality constraints, we need to invoke the evaluation layer
repeatedly, once per sub-expression). The evaluation layer can
either process queries in the database or use approximations
to estimate cardinality values, but we consider it as a black
box. We then study lower and upper bounds for the number
of invocations of such evaluation module by algorithms that
solve the query generation problem. In the remainder of this
section, we address the simpler case of single-sided predicates
and a single cardinality constraint. Later, in Section IV we
generalize the results to multiple cardinality constraints and
both single- and double-sided predicates.

To simplify the presentation, we use the followingarray
notation to model the evaluation layer. Consider a query
constraint withk single-sided predicatesa1 ≤ p1 ∧ . . .∧ak ≤
pk, where ai are attributes andpi are parameters. Assume
that ni is the number of distinct values for attributeai. We
model the evaluation layer as ak-dimensionaln1 × . . . × nk

matrix A. The value ofA[v1, . . . , vk] for 1 ≤ vi ≤ ni is
precisely the cardinality of the query constraint where each pi

is instantiated with thevi-th smallest distinct value of attribute

ai. Therefore,A satisfies the following monotonicity property:
A[v1, . . . , vk] ≤ A[w1, . . . , wk] whenvi ≤ wi for all i.

Using the array notation described above, we can see each
lookup to matrix A as representing an invocation to the
evaluation layer. We now analyze the complexity of query
generation algorithms by counting the number of lookups to
the corresponding matrices.

A. One Parametric Predicate

Consider a query that contains a single parametric predicate:
SELECT * FROM R WHERE a ≤ p (Card = c)
In this situation, the matrix associated with the query con-

straint is a single-dimensional vector with increasing values.
We can then use binary search on this vector and determine
whether some value ofp satisfies the cardinality constraint.
Thus, an upper (and lower) bound for this problem islog(n)
query evaluations, wheren is the number of distinct values of
attributea.

B. Two Parametric Predicates

We next show that there is an exponential jump in complex-
ity as we move from one to two parametric predicates ([5], pp.
143). Consider a query that contains two parametric predicates
and a cardinality constraintCard = c:

SELECT * FROM R WHERE a1 ≤ p1 AND a2 ≤ p2

Theorem 3.1: [Lower Bound] A lower bound on the num-
ber of query evaluations for a single constraint with two
parametric predicatesa1 ≤ p1 and a2 ≤ p2 and cardinality
c is Ω(nmin), wherenmin is the minimum number of distinct
values ina1 anda2.

Proof. Consider the following family of tables with columns
a1 anda2, where the domain of botha1 anda2 is {1, . . . , n}.
For a given vector(v1, . . . , vn) with 1 ≤ vi ≤ n, we generate
a table that containsvi tuples with value(n − i + 1, i) (for
1 ≤ i ≤ n), and(2i+j−n−1n − αi,j) tuples with value(i, j),
where1 ≤ i ≤ n, 1 ≤ j ≤ n, i + j > n + 1, andαi,j is the
number of tuples(i′, j′) such thati′ ≤ i, j′ ≤ j, and(i, j) 6=
(i′, j′). This is to ensure that the diagonal is(v1, v2, . . . , vn)
and the non-diagonal elements are constants independent of
(v1, v2, . . . , vn). The evaluation layer for this table is modeled
by the matrix in Figure 3(a) (we show an example of such a
matrix in Figure 3(b)).

Now, suppose that there is an algorithm that always returns
the correct answer using fewer thann evaluations, and set all

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, SEPTEMBER ? 3













0 0 0 . . . vn

.

0 0 v3 . . . 2n−3n

0 v2 2n . . . 2n−2n

v1 2n 4n . . . 2n−1n













(a) General matrix












0 0 0 0 4

0 0 0 2 10

0 0 3 10 20

0 5 10 20 40

1 10 20 40 80













(b) Sample matrix forn = 5 andv = (1, 5, 3, 2, 4).

Fig. 3. Evaluation layer for two parametric predicates.

vi 6= c. In such a case, such an algorithm would return no
matches after examining fewer thann elements, and therefore
would miss at least one element in the diagonal (say, the
element at position(i∗, i∗)). Using an adversarial argument,
we now generate a new instance table where allvi are the
same as before, exceptvi∗ = c. This algorithm would not be
able to distinguish the difference between the two tables and
would report that no match is found, which is incorrect. Thus,
as desired, at leastn probes are required.

Theorem 3.2: [Upper Bound] An upper bound on the
number of query evaluations for a single constraint with two
parametric predicatesa1 ≤ p1 anda2 ≤ p2 and cardinalityc
is O(nmax), wherenmax is the maximum number of distinct
values ina1 anda2.

Proof. Consider then1 × n2 matrix A associated with the
given query constraint as defined earlier, wheren1 and n2

are the number of distinct values in attributesa1 anda2. Let
S(i1, i2) denote{A[j1, j2] : i1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ i2}. We
now show that algorithmWalk in Figure 4 correctly determines
whether any parameter values forp1 andp2 satisfy the query
constraint. For that purpose, we define the following invariant:
S(i1, i2) contains the un-probed elements ofA that may still
containc. We show that the invariant holds by induction on
the number of iterations in the algorithm. The invariant is
true initially: when i1 = 1 and i2 = n2, S(i1, i2) includes
all elements ofA. If A[i1, i2] < c, due to the monotonicity
property ofA, A[i1, j2] ≤ A[i1, i2] < c for 1 ≤ j2 ≤ i2. These
A[i1, j2] are precisely the elements dropped fromS(i1, i2) by
the updatei1 = i1 + 1 in line 4. Similarly if A[i1, i2] > c,
by monotonicityA[j1, i2] ≥ A[i1, i2] > c for i1 ≤ j1 ≤
n1, and these elements are dropped fromS(i1, i2) by the
updatei2 = i2 − 1 in line 5. If A[i1, i2] = c the algorithm
returns correctly. Otherwise, each iteration removes elements
that cannot be equal toc, maintaining the invariant. At each
iteration, either the row indexi1 is increased or the column
index i2 is decreased. Sincei1 and i2 can only take values
from 1 to n = max(n1, n2), the algorithm iterates at most
2 · n times, and its complexity isO(n).

C. Multiple (>2) Parametric Predicates

We now sketch how the theorems in the previous section
can be generalized for a single constraint withk parametric

Algorithm Walk (A: n1 × n2 matrix, c:integer)
1 i1=1; i2=n2

2 while i1 ≤ n1 AND i2 ≥ 1
3 if (A[i1][i2] = c) return true
4 else-if (A[i1][i2] < c) i1 = i1 + 1
5 else-if (A[i1][i2] > c) i2 = i2 − 1
6 return false

Fig. 4. Solving one constraint with two parameters.

predicates. For simplicity, we assume that the number of
distinct values for each of thek attributes is equal ton.

Lower Bound: Consider the integer solutions1 ≤ pi ≤ n
in p1 + p2 + . . . + pk = n + k − 1. The number of solutions
is

(

n+k−2

k−1

)

(i.e., the number of ways we can placek − 1
delimiters among a sequence ofn + k − 2 objects). As in
Theorem 3.1, we construct a family of tables that take any
value inA[p1, . . . , pk] for each(p1, . . . , pk) that is a solution
of the above equation. We then use an adversarial argument
to get a lower bound of

(

n+k−2

k−1

)

evaluations.
Upper Bound: Consider thek-dimensional matrixA that

corresponds to the given query. If we fix all but the last two
indices ofA, we conceptually obtainnk−2 two-dimensional
matrices of sizen×n. We then use the algorithm of Figure 4 on
each of these matrices. Since each execution of the algorithm
requires at most2 · n matrix lookups, the overall search
algorithm requires at mostnk−2 ·2·n = O(2·nk−1) evaluations
for k > 1.

IV. GENERAL COMPLEXITY RESULTS

So far we assumed that a database invocation was the only
available mechanism to obtain cardinality information from
the database. We might believe, then, that other evaluation
mechanisms could improve the worst case complexity of the
problem. In this section we show that unlessP=NP, we cannot
obtain better results independently of the evaluation model
being used.

Theorem 4.1: Given a databaseD and a single constraint
C for a parametric conjunctive queryQ, finding parameter
values that makeQ satisfyC on D is NP-hard.

Proof. We provide a reduction from thesubset-sum prob-
lem [5], which takes as input an integers and a set of integers
S={s1, s2, . . . sm} (let us assume that allsi ≤ 2n for some
n), and outputs whether there exists a subsetS′ ⊆ S such
that Σsi∈S′si = s. Consider tableR, shown to the right of
Figure 5 (we explain below how to obtain this table). Table
R hasm + 1 columns andT =

∑

si rows. The rows inR
are clustered inm groups, where thei-th group hassi tuples
with id = i, andaj = 1 if i = j or aj = 0 otherwise. We ask
for the following query:

SELECT * FROM R (Card =s)
WHERE p1,1 ≤ a1 ≤ p1,2 AND

p2,1 ≤ a2 ≤ p2,2 AND ... AND
pm,1 ≤ am ≤ pm,2

Suppose now that we obtain a solution for this problem (i.e.,
parameters for the query that make it evaluate tos results).
We note that since all predicates are over columnsai, then the
result of any query that contains some tuple withid = k must

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, SEPTEMBER ? 4

1
2
2
3
3
…
n
n

RL
1
2
3
3
…
n
n

RM
1
2
3
...
n

RN
...

1
1
1
2
2
3
3
3
3
…
m

1
2
4
3
4
1
3
4
7
…
4

RONP
1
…
1
2
…
2

…

m
…
m

sL
sQsM

R

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
 …
0 0 0 ... 1

1
2
3

m

1 0 0 ... 0
 ...
1 0 0 ... 0
0 1 0 ... 0
 ...
0 1 0 ... 0

 ...

0 0 0 ... 1
 ...
0 0 0 ... 1

RS TU TV TW TXRYZZ
Fig. 5. Reducingsubset-sum to the query generation problem.

containall tuples withid = k (these are all indistinguishable
for the query). Therefore, the answer of the resulting query
hass tuples and contains all the tuples in a subset of values
of id. The groups returned by this query therefore induce a
solution for the original subset-sum problem.

Conversely, we now show that all subset-sums from the
original S can be obtained by suitable choices of parameters.
ConsiderS′, an arbitrary subset of elements inS. If si ∈ S′,
we instantiate thei-th predicate as0 ≤ R.ai ≤ 1. Otherwise,
we use predicate0 ≤ R.ai ≤ 0. In this way, the answer of such
query would contain all tuples except those that haveR.ai = 1
while si 6∈ S′ (i.e.,

∑

si∈S′ si of them). Therefore, if the
algorithm returns no answers, it means that there is no solution
for the corresponding subset-sum problem. Consequently, both
problems are equivalent.

Explicitly having tableR, however, is not possible because
its size is in the worst case exponential in the size of the
subset-sum problem. We next show how we can encodeR
using polynomial space (see Figure 5). For that purpose, we
consider tablesR1, . . . , Rn, whereRi contains one instance of
all numbers between1 andi, and two instances of all numbers
betweeni+1 andn (recall that allsi ≤ 2n). Clearly, by equi-
joining all Ri tables, we obtain a new table that contains2i−1

duplicates of valuei, for 1 ≤ i ≤ n. Now consider tableREnc,
with two columns, defined as follows. TableREnc containsm
groups of rows, each one encoding valuesi as follows. Let
si = bi1bi2 . . . bin

be the binary representation ofsi. The i-th
group contains as many rows as digits with value one among
the bij

. Each row has valuei in the first column, andj in the
second column, for eachbij

= 1. For instance, the first group
in Figure 5 encodes values1 = (11)10 = (1011)2 and the
second group encodes values2 = (12)10 = (1100)2. Now, if
we join the previousm equi-joined tables withREnc on its
second column, we duplicate each group inREnc exactly si

times, which corresponds to the first column in the desired
table R. A final join with table RAdd in the figure results
in the original tableR that we used in the proof. Tables
R1, . . . , Rn, REnc andRAdd are therefore a polynomial-sized
implicit representation (specifically,O((m + n) · n)) of R.
We thus replace in the original query the occurrence ofR by
R1 ⊲⊳ . . . ⊲⊳ Rn ⊲⊳ REnc ⊲⊳ RAdd to prove the main result.

V. HEURISTIC HILL -CLIMBING APPROACH

As explained in the previous section, the query generation
problem is in general NP-hard. In many cases, however, we

do not need an exact solution for a given query specification.
Suppose there is a constraint with cardinalityc=1000 and
we obtain parameters that make the corresponding query
return c′=995 tuples. Our initial goal is to generate query
instances for coverage testing. It is likely that the query
characteristics we were interested on initially are preserved
for the slightly different query above (e.g., for the example
in the introduction, we know that memory requirements for
plans with slightly different cardinality values do not change
drastically). We relax the original query generation problem
so that approximate solutions are acceptable2. We then define
the relative error for a constraint aserror=max

(

c′

c
, c

c′

)

(if
c or c′ are zero we arbitrarily replace them with one). We
chose relative errors over absolute error as the cardinalities of
different constraints may differ in orders of magnitude as in
Figure 1. In general, for multiple constraints, we search for
parameters that minimize the average relative error.

The search algorithm presented in this section is a hill-
climbing variant motivated by the techniques introduced in
Section II. This algorithm can be described as awalk on the
parameter space. At any point in time, our proposed algorithm
is in a state (i.e., a point in the parameter search space). From
the current state the algorithm tests a fewsteps and chooses
the one that decreases the error metric the most, stopping when
we reach a state that is good enough.

Search Space of Parameter Values: We encode the state
for a single-sided parametric predicate (e.g.,R.a < p) using
a numbers, with 0 ≤ s ≤ 1. In turn, we encode the state
for a double-sided parametric predicate (e.g.,p1 < R.a < p2)
with a pair of numberss=(s1, s2), such that0 ≤ s1 ≤ s2 ≤ 1.
We obtain the actual parameter values from these encoding
by considerings as quantiles in the parameter domains. For
instance,s = 0.5 for R.a < p encodesp to be the median
of the attributeR.a (we use single-column histograms [6] to
translate quantiles to actual values in the attribute domains).
The state space for multiple parametric predicates is the cross
product of states for individual predicates. Ifs1, . . . sk are
states for parametric predicatesP1, . . .Pk, then (s1, . . . , sk)
represents the combined state space for thek predicates.

Initialization: We show how to obtain an initial point
for our search algorithm that is optimal if the parametric
predicates are independent. Letp1, . . . , pm be the parametric

2Alternatively, we can relax the original problem by allowing ranges of
cardinality constraints, but we do not explore this scenario in the paper.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, SEPTEMBER ? 5

predicates, andC1, . . . , Cn be the cardinality constraints. As-
sume thatCj containskj parametric predicatespj1 , . . . , pjkj

.
For eachpi (1 ≤ i ≤ m) we define a variableli, which
represents the initial selectivity value for the parametric pred-
icate pi (li are selectivity values, so0 ≤ li ≤ 1). Let tj
(1 ≤ j ≤ n) be the cardinality of constraintCj where all
parametric predicates are removed, andcj denote the desired
cardinality of Cj as specified. Then, the joint selectivity of
all parametric predicates forCj is selj = cj/tj. Assuming
independence among predicates, the valueselj is the product
of the selectivities of each parametric predicate. Thus, for each
constraintCj (1 ≤ j ≤ n) we write lj1 × lj2 × . . . ljkj

= selj.
Taking logarithms on both sides we obtain a system ofn
linear equations given bylog(li1) + log(li2) + . . . log(liki

) =
log(seli) for 1 ≤ i ≤ n. We are interested in values forli
(1 ≤ i ≤ m) that minimize the sum of errors inlog(selj)
(1 ≤ j ≤ n). Additionally, we havem constraints of the form
0 ≤ li ≤ 1. Rather than using linear programming [7], we
use an approximation by recursive least square estimators [8]
that is more efficient. The result of this algorithm is a set
of selectivity values that minimize the relative error of the
input constraintsassuming independence among predicates.
Once such selectivity valuesli are obtained, we calculate the
algorithm’s initial state as shown in Figure6(a).

Predicate Initialization states
p ≤ R.a s = 1 − l

p1 ≤ R.a ≤ p2 s=(s1, s1 + l), wheres1=Random(0..1 − l)
R.a ≤ p s = l

(a) Initializing parameters for selectivityl

Original state Resulting states
s (s + sz), (s − sz)

(s1, s2) (s1 + sz, s2), (s1, s2 + sz),
(s1 − sz, s2), (s1, s2 − sz),

(s1+sz, s2+sz), (s1 − sz, s2 − sz)
(s1-sz, s2+sz), (s1 + sz, s2 − sz)

(b) Steps in the state space.

Fig. 6. Details of the hill-climbing-based algorithm.

Steps: Following a hill-climbing approach, wemove,
at each iteration, towards the region in the state space that
reduces the error metric the most. Specifically, astep is a
change in the parameter’s state. Let the step size be denoted
by sz (0 ≤ sz ≤ 1). From a state in the parameter space, we
consider two steps for single-sided predicates and eight steps
for double-sided predicates as shown in Figure 6(b). (If anyof
the final state values fall outside[0, 1] they are rounded to the
boundary point, and if the left parameter value becomes larger
than the right parameter value in a double-sided predicate,the
step is discarded.) For multiple parameters, we consider steps
along a single parameter at a time (i.e., we do not consider
diagonal steps). This pruning technique reduces the search
time fromdm to d ·m evaluations ford types of steps andm
predicates. The rationale for this pruning is that if the error
metric were continuous and the current state were not a local
minima, at least one partial differential (a step on a single
parameter) would show a decrease in the relative error, and
pruning would not compromise quality.

1 initialize parameter state (Section V)
2 sz =1; maxHalve=log(n)
3 for i=1 to maxHalve
4 while (step decreases error metric)
5 use step that most decreases error
6 sz = sz/2.

Fig. 7. Hill-climbing algorithm with halving search.

Main Algorithm: The main algorithm is summarized in
Figure 7. We start with step sizesz=1. When the algorithm
cannot find a step that decreases the error in line4, sz is halved
in line 6. This halving is done until the final step sizesz can
distinguish a single distinct value, guaranteeing convergence
to a local minima of the error function. Let a single stage of
the algorithm be the execution of lines 4-5 with a constant
sz. In practice we observe that at any stage the number of
steps in a direction made for a single parameter is at most
two. Otherwise, a larger step would have been made in the
previous stage whensz was double its current value. Thus, if
there arek parametric predicates andd types of steps per
predicate, we expect each stage to haveO(d · k) steps. If
the largest number of distinct values on any attribute in a
parametric predicate isn, there will be at mostlog(n) stages
per attribute, therefore resulting inO(d·k·log(n)) steps before
the algorithm converges.

Other Optimizations: We additionally use optimizations
for efficiency and robustness, such as starting with multiple
initial points to avoid local minima, pruning some steps at
each iteration depending on the query, and decomposing a
big query into smaller problems when certain properties are
satisfied.

VI. EXPERIMENTAL EVALUATION

We next report an experimental evaluation of our technique
of Section V to generate queries with cardinality constraints.
We generated a synthetic database that consists of three tables,
ranging from104 to 106 tuples, joined via (quasi) foreign
keys. Attribute values are generated with different degrees
of skew and correlation, and joins do not satisfy referential
integrity. We then generated query specifications using the
following encoding. For integersn1, n2, andn3, we denote
by Jn1

Pn2
Cn3

a specification of a query withn1 joins,
n2 parametric predicates, andn3 cardinality constraints. For
instance,J2P1C3 represents a specification of a two-way join
query with a single parametric predicate and three cardinality
constraints.

Figure 8 shows the average relative error during the execu-
tion of our hill-climbing-based algorithm for different query
specifications. In most cases the initial average relative error
is very large, sometimes above 10000%. This means that the
queries we are interested in significantly deviate from inde-
pendence among their parametric predicates. Local minima are
not uncommon, and sometimes these solutions have relative
errors that are significantly larger than the ones reported in
the figure. Our approach leads to a more robust strategy by
trying multiple initial points. In all cases, the final average
relative error is below 1.09 (i.e., 9% of average difference

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, SEPTEMBER ? 6

1

10

100

0 10 20 30 40 50
Seconds

A
ve

ra
ge

 R
el

at
iv

e
Er

ro
r

J1P1C1

J1P2C3

J1P3C7

(a) Single-table queries.

1

10

100

1000

0 200 400 600

Seconds

A
ve

ra
ge

 R
el

at
iv

e
Er

ro
r

J2P1C2

J2P2C4

J2P3C6

(b) Two-way join queries.

1

10

100

1000

10000

0 500 1000
Seconds

A
ve

ra
ge

 R
el

at
iv

e
Er

ro
r

J3P6C1

J3P6C3

J3P6C6

(c) Three-way join queries.

Fig. 8. Average relative error over time for different queryspecifications.

between the desired and actual constraints). Not surprisingly,
the more constraints that are present in the query specification
or the more complex the constraints, the longer it takes to
converge because there are fewer states in the search space
that are relatively accurate. If the right indexes are present in
the system, we obtained an efficiency improvement of an order
of magnitude (we omit these results due to space constraints).
While there is room for improvement (our techniques can take
seconds, and sometimes minutes to return query instances),
we believe that in our context this can be tolerated. In fact,
the objective is not to generate large workloads but queries
with specific characteristics to evaluate and pinpoint complex
behavior in a system.

VII. C ONCLUSIONS ANDFUTURE WORK

In this work we considered the problem of generating
queries with cardinality constraints. We showed that in general
the problem is computationally hard, and developed heuristics
that efficiently return approximate results. It is important to
investigate whether our techniques can be complemented by
specific data generation tools (i.e., generating both database
and query instances might be a competitive alternative if we
are not constrained to use a specific data source).

REFERENCES

[1] N. Bruno and S. Chaudhuri, “Flexible database generators,” in Pro-
ceedings of the 31th International Conference on Very Large Databases
(VLDB), 2005.

[2] A. Neufeld, G. Moerkotte, and P. C. Lockemann, “Generating consistent
test data for a variable set of general consistency constraints,” VLDB J.,
vol. 2, no. 2, 1993.

[3] D. R. Slutz, “Massive stochastic testing of SQL,” inProceedings of the
24th International Conference on Very Large Databases (VLDB), 1998.

[4] M. Poess and J. M. Stephens, “Generating thousand benchmark queries
in seconds,” inProceedings of the 30th International Conference on Very
Large Databases (VLDB), 2004.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms (Second Edition). MIT Press, 2001.

[6] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita,“Improved his-
tograms for selectivity estimation of range predicates,” in Proceedings of
the ACM International Conference on Management of Data (SIGMOD),
1996.

[7] V. Chvatal, Linear Programming. W. H. Freeman, 1983.
[8] S. Haykin, Adaptive Filtering Theory (Chapter 9). Prentice Hall, 2002.

