IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 1

Generating Queries with Cardinality Constraints fo
DBMS Testing

Nicolas Bruno Surajit Chaudhuri Dilys Thomas
Microsoft Research Microsoft Research Stanford Universit
ni col asb@ri crosoft.com surajitc@r crosoft.com dilys@s. stanford.edu

Abstract— Good testing coverage of novel database techniques,engine to evaluate a given query using specific operators, or
such as multidimensional histograms or changes in the exeton  even fixing the join order, there is no easy way to control
engine, is a complex problem. In this work, we argue that thisask the sizes of intermediate joins. In this situation, randoml

requires generating query instances, not randomly, but basd on fi : the ai datab d ibed ab
a given set of constraints. Specifically, obtaining query istances generaung queries over the given database as aescribed abo

that satisfy cardinality constraints on their sub-expressons is an Would require an extremely large amount of time to cover the
important challenge. We show that this problem is inherenty desired test scenarios. Alternatively, we could use a phinf

hard, and develop heuristics that effectively find approxinate trial-and-error procedure to generate queries with califjn

solutions. constraints.
~ Index Terms— Query Generation, Database Testing, Cardinal-  An alternative approach that we explore in this work con-
ity Constraints. sists of automatically generating queries based on specific

semantic constraints. In this manner, we separate thegobl

of obtaining test queries in two stages. First, we declara-

tively specify semantic properties that the resulting @ser
Valuating the performance and quality of novel databastould satisfy. Second, we find query instances that satisfy
technology, such as a new multidimensional histograthe constraints. While the first step depends on the componen

or changes in the database execution engine, is not an easing evaluated and therefore requires manual interverttie

task. A common methodology to validate the relative imsecond step can be fully automated (though, as we will see,

provements of a new technique is to choose a comprehenshig is not trivial).

set of databases and queries and compare the behavior dflotivated by the example above, in this work we focus on

the database system before and after the new componerthis problem of automatically generating queries with cardi

incorporated. While data generation is a relatively waldged nality constraints on its sub-expressions (Section Il faltyn

problem (e.g., [1], [2]), query generation has been givitleli defines the problem). We show in Sections Ill and IV that this

attention. problem is inherently hard, and then in Section V we develop

Consider for instance a newly designed memory managkeuristics that effectively find approximate solutionsndiy

and suppose that we want to evaluate its impact on multi-wese report some preliminary results in Section VI.

hash-join queries (i.e., how the per-operator memory ation

strategy influenges the performance of the resulting ek_m:ut Il. QUERY SPECIFICATION

plans). For a given test database, a reasonable testing plan

consists of trying different query scenarios and meastei th We next show how to formally state the problem of gen-

performance when the new memory manager is availabffating queries with cardinality constraints as in Figu(e)1

This evaluation would be meaningful only if input querie¥Ve restrict this work to parametric conjunctive queries pad

are carefully chosen to exhibit a wide range of patterns af@Meters to range predicates in INERE clause. Specifically,

characteristics. To that end, we could use tools like RAGS [#/€ consider two types of parametric predicatagle-sided

or QGen [4], which can stochastically generate a large nump¥edicates (e.gp1 < R.a or R.a < ps), and double-sided

of valid SQL statements in a short amount of time. Ideallpredicates (e.9.,p1 < R.a < p»). Additionally, we focus on

our testing strategy should consider join queries with Var9onstr§|nts that restrict the cardinality of mtermedmeults

ing memory requirements at each intermediate operator. THdhe input query. We now state the query generation problem

memory requirement of a hash join is determined by the size Query generation problem: Given a database

of its inputs (i.e., the sizes of the intermediate resultshia D, a conjunctive queryQ with parametric range

query execution plan). Figure 1(a) shows a sample test query predicates, and cardinality constraitever sub-

(with parameterg; to p,) that joins a large table?; with

table R; to obtain a small intermediate result. When this LAlternatively, we can specify selectivity constraints teoi rewriting
specifications if the sizes of the database tables changeseTapproaches

small '_ntermedlate re_SUI_t _'S Jome_d _W'tR3' we get a Very g equivalent, and we can easily transform one into ther aibpending on
small final result. While it is not difficult to force a dataleas the application.

0000-0000/00$00.0®) 2002 IEEE

I. INTRODUCTION



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 2

"_,_1_‘_§‘ize=20

Rz.2¢=Ra.a, Sub- expr essi on Card
size=300.--. \ size=6000 1. SELECT » FROM R; WHERE p; < Ri.a1 < p2 5000
2. SELECT * FROM Ry WHERE Rj.az < ps 80000
' O pistss 3. SELECT » FROM Ry WHERE ps < Rj.as 6000
Ri.a,=Rz.as | 4. SELECT * FROM R;, R WHERE R;.a4=Rs.as
ize= AND p; < Ri.a1 < p2 AND Rs.az < p3 300
size=5000..... R 5. SELECT * FROM Ri, R2, R3 WHERE R;.as=Rs.as
:: l AND Rg.a6=Rsz.a7 AND p1 < Ri.a1 < p2
[¢) P1§Rl|—1|1§P2 [6) Rzl-azSPJ AND Rg.az < ps AND ps < Rs.as 20
R4 R2
(a) Graphical representation. (b) Formal specification.

Fig. 1. A parametric query with cardinality constraints.

Query Generation |«_Cerdnatty vaiues Eval(t::(t{i:‘? (l)_rEYer a;. Therefore A satisfies the following monotonicity property:
Algorithm Parametervalues |  approximated) A[’Ul, Ceey ’Uk] < A[wl, Ce ,wk] when v; < w; for all <.
Using the array notation described above, we can see each
Fig. 2. Evaluation model. lookup to matrix A as representing an invocation to the
evaluation layer. We now analyze the complexity of query
generation algorithms by counting the number of lookups to
expressions ofy), find parameter values that make  the corresponding matrices.

the resulting query satisfy the constraints over
As an example, Figure 1(a) can be formally specified # One Parametric Predicate

finding values of parametensi, p2, ps3, andp, that satisfy  Consider a query that contains a single parametric predicat
the constraints in Figure 1(b). Parameters cannot be sharede| ECT + FROM R WHERE a < p (Card = c)
amongdifferent predicates. However, a parametric predicate |n this situation, the matrix associated with the query con-
might occur in multiple sub-expressions (e.&z.a2 < p3 straint is a single-dimensional vector with increasingueal

Y

above is shared in queri@s 4 and5 in Figure 1(b)). We can then use binary search on this vector and determine
whether some value gf satisfies the cardinality constraint.
I1l. SPECIAL COMPLEXITY RESULTS Thus, an upper (and lower) bound for this problenoig(n)

For a given assignment of values to the parametric pre@ery evaluations, wherne is the number of distinct values of
cates in a constraint, we can use the DBMS to evaluate @ributea.
instantiated query and verify whether the constraint isad.
In this section, we first use a simple evaluation model {g- Two Parametric Predicates
which the only mechanism to obtain information from the We next show that there is an exponential jump in complex-
given database is through awaluation layer (see Figure 2) ity as we move from one to two parametric predicates ([5], pp.
that returns the cardinality of a constrained sub-expoessil43). Consider a query that contains two parametric présiica
for a given assignment of parameters (to evaluate multied a cardinality constraif@ard = c:
cardinality constraints, we need to invoke the evaluatayet SELECT * FROM R WHERE a; < p1 AND ax < p2
repeatedly, once per sub-expression). The evaluatiom taye  Theorem 3.1: [Lower Bound] A lower bound on the num-
either process queries in the database or use approxiraatioer of query evaluations for a single constraint with two
to estimate cardinality values, but we consider it as a blaglarametric predicates; < p; andas < p, and cardinality
box. We then study lower and upper bounds for the numbeis Q(n,,:,), wheren,,;, is the minimum number of distinct
of invocations of such evaluation module by algorithms thatlues ina; andas.
solve the query generation problem. In the remainder of thisProof. Consider the following family of tables with columns
section, we address the simpler case of single-sided @tedic a; andas, where the domain of botly, andas is {1,...,n}.
and a single cardinality constraint. Later, in Section IV wEor a given vectofvy, . ..,v,) with 1 < v; < n, we generate
generalize the results to multiple cardinality constsiiahd a table that contains; tuples with value(n — i + 1,4) (for
both single- and double-sided predicates. 1 <4 <n),and (27 7""1n — «; ;) tuples with value(i, j),

To simplify the presentation, we use the followimgray wherel <i<n,1<j<mn,i+j>n+1, andw,; is the
notation to model the evaluation layer. Consider a quemumber of tuplegi’, ;') such that’ <4, j' < j, and(i,j) #

constraint withk single-sided predicates < p; A...Aap < (i,5'). This is to ensure that the diagonal(is, v, . .., v,)

px, Wherea; are attributes angh; are parameters. Assumeand the non-diagonal elements are constants independent o
that n; is the number of distinct values for attribute. We  (v1, v, ..., v,). The evaluation layer for this table is modeled
model the evaluation layer askadimensionaln; x ... x nx by the matrix in Figure 3(a) (we show an example of such a
matrix A. The value ofAfvq,...,v,] for 1 < v; < n; is  matrix in Figure 3(b)).

precisely the cardinality of the query constraint wherehgac ~ Now, suppose that there is an algorithm that always returns
is instantiated with the;-th smallest distinct value of attribute the correct answer using fewer tharevaluations, and set all



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 3

0 0 0 ... v Algorithm Walk (A: n; x ny matrix, c:integer)
. 1 31=1; 42=No
0 0 w3 ... 2"73n 2 while i1 <mn; AND i3 > 1
0 vy 2m ... 2772y 3 if (A[i]iz) =¢) return true
n—1 4 el se-if (Afi]liz] <c¢) 1 =01+1
v 2 A 2. " 5 el se-if Uhi”zj > cg z; = z; i— 1
(a) General matrix 6 return fal se
o 0 0 0 4
O 0 0 2 10 Fig. 4. Solving one constraint with two parameters.
0O 0 3 10 20
0 5 10 20 40
1 10 20 40 80 predicates. For simplicity, we assume that the number of
(b) Sample matrix fom = 5 andv = (1, 5,3, 2, 4). distinct values for each of the attributes is equal ta.
Lower Bound: Consider the integer solutions< p; < n
Fig. 3. Evaluation layer for two parametric predicates. Npr+ps+...+pp=n+k—L The number of solutions
is ("I*?) (i.e., the number of ways we can plage— 1

delimiters among a sequence of+ k£ — 2 objects). As in

v; # c. In such a case, such an algorithm would return nbheorem 3.1, we construct a family of tables that take any
matches after examining fewer tharelements, and thereforevalue in A[py, ..., pi] for each(pi, ..., py) that is a solution
would miss at least one element in the diagonal (say, théthe above equation. We then use an adversarial argument
element at positior(i*,i*)). Using an adversarial argumentfo get a lower bound o(”ﬁf) evaluations.
we now generate a new instance table wherevalare the Upper Bound: Consider thek-dimensional matrixA that
same as before, except = c. This algorithm would not be corresponds to the given query. If we fix all but the last two
able to distinguish the difference between the two tables aimdices of A, we conceptually obtaim*~2 two-dimensional
would report that no match is found, which is incorrect. Thusnatrices of sizevxn. We then use the algorithm of Figure 4 on
as desired, at least probes are required. O each of these matrices. Since each execution of the algorith

Theorem 3.2: [Upper Bound] An upper bound on the requires at most - n matrix lookups, the overall search
number of query evaluations for a single constraint with twalgorithm requires at most*~2.2.n = O(2-n*~1) evaluations
parametric predicates, < p; andas < p, and cardinalityc for k& > 1.
is O(Nmaz ), Wheren,,,.. is the maximum number of distinct
values ina; andas. IV. GENERAL COMPLEXITY RESULTS

Proof. Consider then; x np, matrix A associated with the
given query constraint as defined earlier, whereand n.
are the number of distinct values in attributegsand a,. Let
S(il,iQ) denOte{A[jl,jQ] i1 <51 < TLl,l < jQ < ’LQ} We
now show that algorithrinalk in Figure 4 correctly determines
whether any parameter values for andp, satisfy the query
constraint. For that purpose, we define the following irevat

S(i1,i2) contains the un-probed elements.bfthat may still Theorem 4.1: Given a databas® and a single constraint

containc. We show that the invariant holds by induction o for a parametric conjunctive querg, finding parameter
the number of iterations in the algorithm. The invariant iS5 es that make) satisfy C on D is NP-hard

true initially: wheni; = 1 andia = ng, S(i1,i2) includes
all elements ofA. If Afi1,is] < ¢, due to the monotonicity
property ofA, Ali1, jo] < Ali,ia] < cfor1 < jo <is. These
Aliq, jo] are precisely the elements dropped fréifi;, i2) by
the updatei; = i; + 1 in line 4. Similarly if Afi1,i2] > ¢,
by monotonicity A[j1,ia] > Ali1,ia] > ¢ fori; < j; <
ny, and these elements are dropped fréifi;,i2) by the
updateir = i; — 1 in Ime_ 5. If A[Zl.’ iz] — ¢ the algorithm oo cjustered inn groups, where thé-th group hass; tuples
returns correctly. OtherW|se,_ ea_ch |terat|qn removes elgm with id = i, anda; = 1 if i = j or a; = 0 otherwise. We ask
that cannot be equal tg maintaining the invariant. At eachfor the following query:

iteration, either the row index; is increased or the column

So far we assumed that a database invocation was the only
available mechanism to obtain cardinality informationnfro
the database. We might believe, then, that other evaluation
mechanisms could improve the worst case complexity of the
problem. In this section we show that unléssNP, we cannot
obtain better results independently of the evaluation rhode
being used.

Proof. We provide a reduction from thsubset-sum prob-
lem [5], which takes as input an integeand a set of integers
S={s1,82,...5m} (let us assume that ali; < 2" for some
n), and outputs whether there exists a subSetC S such
that X,,c5s;, = s. Consider tableR, shown to the right of
Figure 5 (we explain below how to obtain this table). Table
R hasm + 1 columns andl’ = > s; rows. The rows inR

index i is decreased. Sinca andi, can only take values \?\VEEECE:T * F<' QaO“<R AND (Card =s)
from 1 ton = max(n;,n2), the algorithm iterates at most B ar < s AND ... AND
2 -n times, and its complexity i®(n). ad Pt < Gm < P2

) ) ) Suppose now that we obtain a solution for this problem (i.e.,
C. Multiple (>2) Parametric Predicates parameters for the query that make it evaluates t@sults).
We now sketch how the theorems in the previous sectitie note that since all predicates are over columnshen the
can be generalized for a single constraint witlparametric result of any query that contains some tuple with= & must



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 4

R1 Rz Renc Radg R ida a,a am
1 1 :II ; 11100 . 0 s 11100 .. 0
2 2 1 4 2|1010.. 0
5 3 3001 .. 0 11100 .. 0
3 3 2 3 2/010.. 0
2 4 S,
3 m|{000 .. 1 2 - :
n 3 1 2|010 0
<l 3|3
n 3| 4
n 3|7
m(f00O0 .. 1
m| 4 Sm
m(f00O0 .. 1

Fig. 5. Reducingsubset-sum to the query generation problem.

containall tuples withid = k (these are all indistinguishabledo not need an exact solution for a given query specification.
for the query). Therefore, the answer of the resulting queBuppose there is a constraint with cardinality1000 and
hass tuples and contains all the tuples in a subset of value® obtain parameters that make the corresponding query
of id. The groups returned by this query therefore induceraturn ¢’=995 tuples. Our initial goal is to generate query
solution for the original subset-sum problem. instances for coverage testing. It is likely that the query
Conversely, we now show that all subset-sums from tlebaracteristics we were interested on initially are pneser
original S can be obtained by suitable choices of parametefer the slightly different query above (e.g., for the exaepl
ConsiderS’, an arbitrary subset of elements $h If s; € S/, in the introduction, we know that memory requirements for
we instantiate the-th predicate a$) < R.a; < 1. Otherwise, plans with slightly different cardinality values do not cige
we use predicate < R.a; < 0. In this way, the answer of suchdrastically). We relax the original query generation pesbl
query would contain all tuples except those that hBwe, = 1 so that approximate solutions are acceptablde then define
while s; ¢ S’ (i.e., >, cq s: Of them). Therefore, if the the relative error for a constraint agrror=max (%, Ci) (if
algorithm returns no answers, it means that there is noisalutc or ¢’ are zero we arbitrarily replace them with one). We
for the corresponding subset-sum problem. Consequeiotly, bchose relative errors over absolute error as the cardeslbif
problems are equivalent. different constraints may differ in orders of magnitude @s i
Explicitly having tableR, however, is not possible becausd-igure 1. In general, for multiple constraints, we search fo
its size is in the worst case exponential in the size of thgarameters that minimize the average relative error.
subset-sum problem. We next show how we can enddde The search algorithm presented in this section is a hill-
using polynomial space (see Figure 5). For that purpose, wémbing variant motivated by the techniques introduced in
consider tablesty, . . ., R,, whereR; contains one instance of Section Il. This algorithm can be described awaik on the
all numbers betweeh andi, and two instances of all numbersparameter space. At any point in time, our proposed algarith
betweeni + 1 andn (recall that alls; < 2"). Clearly, by equi- is in astate (i.e., a point in the parameter search space). From
joining all R; tables, we obtain a new table that contalis'  the current state the algorithm tests a fsiaps and chooses
duplicates of valug, for 1 < i < n. Now consider tablé?z,.., the one that decreases the error metric the most, stoppiag wh
with two columns, defined as follows. Tahlez,,. contains»  we reach a state that is good enough.
groups of rows, each one encoding valyeas follows. Let Search Space of Parameter Values. We encode the state
s; = b, by, ... b;, be the binary representation of Thei-th  for a single-sided parametric predicate (eB.¢ < p) using
group contains as many rows as digits with value one amogghumbers, with 0 < s < 1. In turn, we encode the state
the bij- Each row has valugéin the first column, an(j in the for a double-sided parametric predicate (ezg,< R.a < p2)
second column, for eadh, = 1. For instance, the first groupwith a pair of numbers=(sy, s5), such that < s; < s, < 1.
in Figure 5 encodes valug, = (11);0 = (1011); and the we obtain the actual parameter values from these encoding
second group encodes valsg = (12)10 = (1100)2. Now, if by considerings as quantiles in the parameter domains. For
we join the previousn equi-joined tables with?g,. on its instance,s = 0.5 for R.a < p encodes to be the median
second column, we duplicate each groupfip,.. exactlys; of the attributeR.a (we use single-column histograms [6] to
times, which corresponds to the first column in the desirgthnsiate quantiles to actual values in the attribute dog)ai
table R. A final join with table Raqq in the figure results The state space for multiple parametric predicates is thsscr
in the original tableR that we used in the proof. Tablesproduct of states for individual predicates. sf, ... s; are
Ry,..., Rn, Rpne andRaqq are therefore a polynomial-sizedstates for parametric predicaté, ...Ps, then (s, ..., si)
implicit representation (specifically)((m + n) - n)) of R. represents the combined state space forktipeedicates.
We thus replace in the original query the occurrencéidy Initialization: We show how to obtain an initial point
Ry a2 Ry >4 Rpne 2 Raqq to prove the main resultl  ¢or oyr search algorithm that is optimal if the parametric

V. HEURISTIC HILL -CLIMBING APPROACH predicates are independent. st ... p,, be the parametric

As exp-lai.ned in the previous section, the query generationajernatively, we can relax the original problem by allogimanges of
problem is in general NP-hard. In many cases, however, wadinality constraints, but we do not explore this scenarithe paper.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 5

predicates, and’y, ..., C, be the cardinality constraints. As- initialize p~|’ﬁr am|9t eE )St ate (Section V)
sume thatC; containsk; parametric predicates; ,....p;, . sz =1; maxHal ve=l og(n
C; i P P Birs - P, for i=1 to maxHal ve

For eachp; (1 < i < m) we define a variabld;, which
represents the initial selectivity value for the parancgbried-
icate p; (I; are selectivity values, s6 < [; < 1). Let ¢;
(1 < j < n) be the cardinality of constrainf’; where all
parametric predicates are removed, apdienote the desired Fig. 7. Hill-climbing algorithm with halving search.
cardinality of C; as specified. Then, the joint selectivity of

all parametric predicates fof; is sel; = c¢;/t;. Assuming
independence among predicates, the valuel; is the product
of the selectivities of each parametric predicate. Thuseézh
constraintC; (1 <j <n) we writel;, x1j, x...1; = sel;.
Taking logarithms on both sides we obtain a systemnof
linear equations given blpg(l;,) + log(li,) + ... log(li,,) =
log(sel;) for 1 < i < n. We are interested in values for
(1 < ¢ < m) that minimize the sum of errors itog(sel;)
(1 < j < n). Additionally, we havem constraints of the form
0 < [; < 1. Rather than using linear programming [7], w
use an approximation by recursive least square estima@prs
that is more efficient. The result of this algorithm is a s

of selectivity values that minimize the relative error oeth dicat ¢ h st t0 heel - k) st if
input constraintsassuming independence among predicates. brecicale, we expect each stage to alel - k) s eps. I
the largest number of distinct values on any attribute in a

Once such selectivity valués are obtained, we calculate the . . . .
algorithm’s initial state as shown in Figure6(a). parametric predicate is, there will be at mostog(n) stages
per attribute, therefore resulting ®(d- k-log(n)) steps before

while (step decreases error netric)
use step that nobst decreases error
sz = sz/ 2.

OO~ WNE

Main Algorithm: The main algorithm is summarized in
Figure 7. We start with step sizez=1. When the algorithm
cannot find a step that decreases the error irdjne is halved
in line 6. This halving is done until the final step size can
distinguish a single distinct value, guaranteeing cornvecg
to a local minima of the error function. Let a single stage of
the algorithm be the execution of lines 4-5 with a constant
sz. In practice we observe that at any stage the number of

teps in a direction made for a single parameter is at most
0. Otherwise, a larger step would have been made in the
revious stage whegz was double its current value. Thus, if
ere arek parametric predicates andl types of steps per

[ Predicate | Initialization states | the algorithm converges.
p< Ra s—1_1 Other Optimizations: We additionally use optimizations
p1 < R.a < ps | s=(s1,s1 + 1), wheres;=Random@..1 — [) for efficiency and robustness, such as starting with meltipl
Ra<p s=1 initial points to avoid local minima, pruning some steps at
(a) Initializing parameters for selectivity each iteration depending on the query, and decomposing a
[‘Original state] Resulting states | big query into smaller problems when certain properties are
3 (5 +52), (5 — 52) satisfied.
(s1, 82) (51 + sz,82), (s1,82 + s2),
(51— 52,52), (51,52 — s2), VI. EXPERIMENTAL EVALUATION
(s1+sz, 852+52), (81 — 82,82 — 82) ) ] )
(s1-52, S2+82), (s1 + s2, 52 — $2) We next report an experimental evaluation of our technique
(b) Steps in the state space. of Section V to generate queries with cardinality constsain
We generated a synthetic database that consists of thies,tab
Fig. 6. Details of the hill-climbing-based algorithm. ranging from10% to 10° tuples, joined via (quasi) foreign

keys. Attribute values are generated with different degree

Seps: Following a hill-climbing approach, weanove, of skew and correlation, and joins do not satisfy referéntia
at each iteration, towards the region in the state space thegrity. We then generated query specifications using the
reduces the error metric the most. Specificallystep is a following encoding. For integera,, no, andns, we denote
change in the parameter’s state. Let the step size be dendigd/,, P,,,C,, a specification of a query witln; joins,
by sz (0 < sz <1). From a state in the parameter space, we, parametric predicates, and, cardinality constraints. For
consider two steps for single-sided predicates and eigipsstinstance,/; P, Cs represents a specification of a two-way join
for double-sided predicates as shown in Figure 6(b). (If@ny query with a single parametric predicate and three caritijnal
the final state values fall outside, 1] they are rounded to the constraints.
boundary point, and if the left parameter value become®targ Figure 8 shows the average relative error during the execu-
than the right parameter value in a double-sided preditia¢e, tion of our hill-climbing-based algorithm for different qry
step is discarded.) For multiple parameters, we consi@psst specifications. In most cases the initial average relativer e
along a single parameter at a time (i.e., we do not considsrvery large, sometimes above 10000%. This means that the
diagonal steps). This pruning technique reduces the seargheries we are interested in significantly deviate from inde
time fromd™ to d - m evaluations ford types of steps anth  pendence among their parametric predicates. Local minima a
predicates. The rationale for this pruning is that if theoerr not uncommon, and sometimes these solutions have relative
metric were continuous and the current state were not a loeators that are significantly larger than the ones repomed i
minima, at least one partial differential (a step on a singthe figure. Our approach leads to a more robust strategy by
parameter) would show a decrease in the relative error, a@nging multiple initial points. In all cases, the final avgea
pruning would not compromise quality. relative error is below 1.09 (i.e., 9% of average difference



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?NO. ?, SEPTEMBER ? 6

100

—e—J1P1C1
—=—J1P2C3
—+—J1P3C7 | _

e

0 10 20 30 40 50
Seconds

(a) Sinale-table aueries.

[y
o
I

Average Relative Error

=

1000

——J2P1C2
——J2P2C4
—a— J2P3C6

Average Relative Error

1 T T T
0 200 400 600
Seconds
(b) Two-way join queries.
10000

——J3P6C1

1000 #- - Japecs |~

—— J3P6C6

100 A

10 4

Average Relative Error

1 " .
0 500 1000
Seconds

(c) Three-way join queries.

VII. CONCLUSIONS ANDFUTURE WORK

In this work we considered the problem of generating
gueries with cardinality constraints. We showed that inggah
the problem is computationally hard, and developed hécsist
that efficiently return approximate results. It is impottam
investigate whether our techniques can be complemented by
specific data generation tools (i.e., generating both datab
and query instances might be a competitive alternative if we
are not constrained to use a specific data source).

REFERENCES

[1] N. Bruno and S. Chaudhuri, “Flexible database genesdtdn Pro-
ceedings of the 31th International Conference on Very Large Databases
(VLDB), 2005.

[2] A. Neufeld, G. Moerkotte, and P. C. Lockemann, “Genemgtconsistent
test data for a variable set of general consistency consraVLDB J.,
vol. 2, no. 2, 1993.

[3] D. R. Slutz, “Massive stochastic testing of SQL,” Rroceedings of the
24th International Conference on Very Large Databases (VLDB), 1998.

[4] M. Poess and J. M. Stephens, “Generating thousand ber&hqueries
in seconds,” inProceedings of the 30th International Conference on Very
Large Databases (VLDB), 2004.

[5] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sténtroduction
to Algorithms (Second Edition). MIT Press, 2001.

[6] V. Poosala, Y. E. loannidis, P. J. Haas, and E. J. Shelitaproved his-
tograms for selectivity estimation of range predicates,Pioceedings of
the ACM International Conference on Management of Data (SGMOD),
1996.

[7] V. Chvatal, Linear Programming. W. H. Freeman, 1983.

[8] S. Haykin, Adaptive Filtering Theory (Chapter 9). Prentice Hall, 2002.

Fig. 8. Average relative error over time for different quepecifications.

between the desired and actual constraints). Not surghsin

the more constraints that are present in the query speaficat

or the more complex the constraints, the longer it takes to
converge because there are fewer states in the search space
that are relatively accurate. If the right indexes are prese

the system, we obtained an efficiency improvement of an order
of magnitude (we omit these results due to space constyaints
While there is room for improvement (our techniques can take
seconds, and sometimes minutes to return query instances),
we believe that in our context this can be tolerated. In fact,
the objective is not to generate large workloads but queries
with specific characteristics to evaluate and pinpoint demp
behavior in a system.



