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Abstract 
We propose a new discriminative learning framework, called 
soft margin estimation (SME), for estimating parameters of 
continuous density hidden Markov models. The proposed 
method makes direct usage of the successful ideas of soft 
margin in support vector machines to improve generalization 
capability, and of decision feedback learning in minimum 
classification error training to enhance model separation in 
classifier design. We attempt to incorporate frame selection, 
utterance selection and discriminative separation in a single 
unified objective function that can be optimized with the well-
known generalized probabilistic descent algorithm. We 
demonstrate the advantage of SME in theory and practice over 
other state-of-the-art techniques. Tested on a connected digit 
recognition task, the proposed SME approach achieves a 
string accuracy of 99.33%. To our knowledge, this is the best 
result ever reported on the TIDIGITS database. 

1. Introduction 
With the prevailing usage of hidden Markov models (HMMs), 
we have witnessed a rapid progress in automatic speech 
recognition (ASR) in the last two decades. Usually the HMM 
parameters are estimated by the traditional maximum 
likelihood estimation (MLE) method. MLE is known to be 
optimal for density estimation, but it often does not lead to 
minimum recognition error which is the goal of ASR. As a 
remedy, several discriminative training methods have been 
proposed in recent years to boost the ASR system accuracy. 
They are maximum mutual information (MMI) [1], minimum 
classification error (MCE) [2], and minimum word/phone 
error (MWE/MPE) [3]. MMI training separates different 
classes by maximizing the posterior probability. On the other 
hand MCE directly minimizes string errors, while MWE/MPE 
attempts to optimize the word/phone error rate of a string.  

If the training set matches well with the testing set, these 
discriminative training methods usually achieve very good 
performance in testing. However, such a good match can not 
always be expected for most practical pattern recognition 
problems. The power to deal with possible mismatches 
between the training and testing conditions can often be 
measured by the generalization ability of the machine 
learning algorithms. In particular, large margin classification 
tools, such as support vector machines (SVMs) [4] have 
demonstrated superior generalization ability over other 
conventional classifier learning algorithms. By securing a 
margin from decision boundaries, correct decision can still be 
made if the mismatched test samples fall within a tolerance 

region around the decision boundaries defined by the 
margin. For example, a combination of SVMs and HMMs 
was explored in [5] with discrete distributions. Adopting 
the concept of enhancing margin separation, large margin 
estimation (LME) [6][7] and its variant, large relative 
margin estimation (LRME) [8], of HMMs have been 
recently proposed, and shown to achieve very good results 
on the TIDIGITS [9] and ISOLET databases. In essence, 
LME and LRME update the models only with accurately 
classified samples as if the training set is indeed separable. 
However, it is well known that misclassified samples are 
also critical for training classifiers. In SVM learning, for 
the real inseparable cases, the misclassified samples are 
used to define a penalty, and a soft margin is found by 
minimizing a penalized objective function. LME ignores 
the misclassified samples, and the separation margin it 
achieved is often hard to be justified as a true margin for 
good generalization.  

In this paper, we integrate the concept of soft margin 
into HMM parameter estimation. We call this framework 
soft margin estimation (SME). The proposed SME method 
defines a unified objective function to integrate frame 
selection, sample selection and discriminative separation 
in a flexible framework. The algorithm gets the best result 
ever reported on the TIDIGITS database. Using 12-state 
digit models, SME achieves a 99.33% string accuracy 
using 32-component mixture Gaussian state observation 
densities. Even with 1-mixture SME models, the achieved 
string accuracy is better than that obtained with 32-mixture 
MLE models, although a single Gaussian model can not 
characterize the state distribution well. 

2. Soft Margin Estimation 
In the standard binary classification problem, one wants to 
predict the class labels based on a given vector of features. 
Let x denote the feature vector. The class label, y, is coded 
as +1 or -1. The purpose of classification is to construct a 
classifier f based on a set of training samples (x1, y1),…, 
(xn, yn). For a candidate function f, one can check for each 
sample (xi, yi) whether it is correctly classified by f, that is, 
whether yif(xi)>0. SVMs are unique in that they focus more 
on the generalization of the classification than the number 
of misclassifications. To formalize it, first consider the so-
called separable case where there exists a f such that 
yif(xi)>0 for all samples. In this situation, SVMs solve the 
following optimization problem 
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where ρ is often referred to as the margin. With this 
optimization objective, every mapped sample is at least away 
from decision boundary with a tolerance distance of ρ . If the 
mismatch between the training and testing sets only causes a 
shift less than this margin in the projected space, a correct 
decision can still be made. This is one way to characterize the 
generalization property for SVMs.  

For the inseparable case, in which there are some 
misclassified samples, the target function is to get a soft 
margin ρ  to make a tradeoff between maximization of the 
margin and minimization of the loss of possible misclassified 
samples, which can be measured as � iε in Figure 1, with iε  
defined as a positive slack variable to measure the distance 
between sample xi and the class support boundary 
corresponding to the decision function. If iε  exceeds the 
margin ρ , there will be a decision error as shown in Figure 1. 
The samples with positive iε  value have a tendency to be 
misclassified when the mismatch between the training and 
testing is greater than the margin. 

 

Figure 1: Soft margin classifier 

Although SVM has enjoyed a great success in the 
machine learning community, it can not be easily adopted to 
ASR modeling. The major reasons are that it does not work 
directly on temporal sequences and can not handle the hidden 
states. In this study, we propose SME to combine the 
advantages of HMMs and SVMs for ASR.  

2.1 Model separation measure and frame selection 

In order to get good generalization, we try to maximize the 
separation between different models. For every utterance, we 
need to define a separation measure, and impose a margin on 
those separation scores. A common choice is to use log 
likelihood ratio (LLR) or generalized LLR (GLLR). LLR is 
defined as: 
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where ),,( baπ=Λ is the parameter set denoting the state 
initial probability, transition probability and observation 
distribution. Wtarget and Wcomp are the target and the most 
competitive strings for the ith utterance Xi, respectively, while 
l(Xi|Wtarget) and l(Xi|Wcomp) are the corresponding likelihood 
functions. If di is greater than 0, the classification is correct, 
otherwise we get a wrong decision.  

In this following, we define a more precise model 
separation measure rather than using LLR. For every 
utterance, we select the frames that have different model 
labels in the target and competitor string. Only those frames 
can provide discriminative information for models. So we 
evaluate the frame LLR for those frames and average those 

frame LLRs as the model separation measure for a given 
utterance. We use ni to denote this number of different 
frames for utterance Xi. Then a separation of the models is 
defined as: 
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where I is an indicator function, Fi is the frame set that the 
inside frames have different labels in the competing strings 
and Xij is the jth frame for utterance Xi.  

Our separation measure definition is different from 
LME or MCE, in which the utterance LLR is used. We 
believe the normalized LLR is more discriminative, 
because the utterance length and the number of different 
models in the competing strings affect the overall 
utterance LLR value. For example, it is not easily justified 
that an utterance consisting of five different units in the 
target and competitive strings has more separation than 
another utterance with only 1 different unit because the 
former has a larger LLR value.  

2.2 SME objective and sample selection 

We define the overall objective function for SME as: 
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where ( )Λ,ii X�  is a loss function for utterance Xi and ρ  is 
the soft margin. N is the total number of training utterances 
and λ  is a coefficient to balance soft margin maximization 
and loss minimization of possible misclassified samples. A 
smaller λ  corresponds to allocating a higher penalty to the 
potential recognition errors. Similar to SVMs, the loss 
happens when the utterance separation measure is less than 
soft margin. We use a function ( )+ to define the loss 
function as:  
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Then Eq. (3) becomes: 
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where U is the set of utterances that have the separation 
measure less than the soft margin. With epoch based 
optimization we attempt to find the soft margin ρ and a set 
of parameter Λ to minimize Eq. (4). For a fixed ρ , it is 
clear that only utterances that have smaller separation 
scores than the soft margin contribute to the optimization 
process, i.e. SME focuses on difficult samples, which often 
have a tendency to be misclassified.  

As shown in the formula in Eq. (4), we integrate frame 
selection (by ( )iij FXI ∈ ), utterance selection (by ( )UXI i ∈ ) 

and discriminative separation in a single unified objective 
function. This quantity provides a flexible framework for 
future studies. For example, for frame selection, we can 



 

 

define Fi as a subset with frames more critical for 
discriminating models instead of equally choosing distinct 
frames in the current study. As in [10], we can also 
approximate the indicator function with a smooth embedding 
for direct optimization of Eq. (4). 

2.3 Solution to SME 

Unlike SVMs, in which the solution to the soft margin 
optimization problem can be well formulated as a constrained 
quadratic programming problem, the direct optimization of 

SMEL in Eq. (4) is hard to solve.  
In this study, we search for a sub-optimal solution. First, 

we choose a margin ρ  heuristically. Because of a fixed ρ , 
we only need to consider the samples with separation smaller 
than the margin. Assume that there are a total of NC 
utterances satisfying this condition, we can minimize the 
following function with the constraint ρ<Λ)(SME

id : 
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Now, this problem can be solved by a generalized 
probabilistic descent (GPD) algorithm as in [10], with tα as a 

step size: 
t

sub
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3. Comparison with LME and MCE 
In the following, we compare SME with LME and MCE to 
illustrate SME’s advantages in better usage of training frames 
and samples, and discriminative objective for generalization. 

3.1 Difference between SME and LME  

In the class of discriminative training methods, LME and its 
variant LRME also try to handle the model generalization 
issue. These two methods are very similar, and LME was 
reported with better performance. Here, we first distinct SME 
from LME. LME uses utterance LLR as the model separation 
measure and maximizes the distance between the decision 
boundary and the nearest correctly classified samples, as: 

ρρ >ΛΛ
Λ
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However, this objective function neglects the misclassified 
samples, e.g., samples 1, 2, 3 and 4 in Figure 2. In this case, 
the margin obtained by LME is hard to be justified as a real 
margin for generalization. Consequently, LME often needs a 
very good preliminary estimate from the training set to make 
the influence of ignoring misclassified samples small. So it 
usually uses MCE models as the initial model.  

In contrast, SME works on all the training data, both the 
correctly classified and misclassified samples, as in Eq. (4). 
We believe those misclassified samples are important for 
classifier learning because they carry the information to 
discriminate models. 

In SME, model separation measure is carefully treated by 
a normalized LLR measure over only the set of different 
frames. With such normalization, the utterance separation 
scores can be more closely compared with a fixed margin ρ  
than an un-normalized LLR, without being affected by 
different numbers of distinct units and length of the 

utterances. The soft margin can now be defined with a 
value comparable with the average frame LLR. 

 

Figure 2: LME classifiers 

3.2 Difference between SME and MCE  

The misclassification measure in MCE is also a separation 
measure, defined as the negative of LLR or GLLR. 
Usually MCE transforms it with a sigmoid function to 
approximate the string error count. Because sigmoid 
function is monotonic, minimizing the approximate string 
error can be considered equivalent to minimizing the 
original misclassification measure. As a result, MCE is 
also good at enlarging model separation. 

Despite of this similarity, SME has some advantages 
over MCE and results in a better performance than MCE 
which will be demonstrated in the experiments in Section 
4 later. MCE uses LLR (or GLLR) as a separation measure 
while SME normalizes LLR with the number of frames 
with different target and competing models. The 
normalization factor makes the comparison of utterance 
separations more discriminate.  

In practice, there is another difference between SME 
and MCE. Because of the sigmoid function’s first order 
derivative is near 0 for the samples that are far away from 
the decision boundary, MCE doesn’t update parameters 
with those far away misclassified samples. Ignoring these 
difficult samples may restrict the learning methods from 
finding optimal model parameters. Consequently, in 
theory, SME is more flexible than MCE, because the latter 
does not effectively take into account the information 
embedded in difficult samples.  

4. Experiment 
We evaluated our proposed framework on the TIDIGITS 
database. To our knowledge, the best result on this 
database was reported in [7] by using LME. We used the 
same configuration as that in [7]. There are 11 whole-digit 
HMMs, one for each of the 11 English digits, including the 
word “oh”. Each HMM has 12 states and each state 
observation density is represented by a mixture Gaussian 
density. The input features are 12MFCCs + energy, and 
their first and second order time derivatives.  

We first use HTK to build the baseline HMMs with 
MLE. We also trained MCE models for comparison. It 
gave slightly better results than the MCE results reported 
in [7]. Our SME models were initiated with the MLE 
models. This is a clear contrast with the LME models, 
built on top of the well-performed MCE models [7].  

Table 1 compares different training methods with 
various number of mixture components. Only string 
accuracies are listed in Table 1. We believe at this high 



 

 

level of performance in TIDIGITS, the string accuracy is a 
strong indicator of model effectiveness. Clearly SME 
significantly outperforms MLE and MCE, and is consistently 
better than LME. For 1-mixture SME models, the string 
accuracy is 98.64%, which is better than that of the 32-
mixture MLE models. The goal of our design is to separate 
the models as far as possible, instead of modeling the 
observation distributions. With SME, even 1-mixture models 
can achieve satisfactory model separation. 

We believe a string accuracy of 99.33% listed in the 
bottom row of Table 1 represents the best result ever reported 
on the TIDIGITS task. The excellent SME performance is 
attributed to the well defined model separation measure, good 
objective function for generalization and better handling of 
difficult training samples than conventional MCE.  

Figure 3 plots the histograms of the separation measure 
of the testing utterances for the 32-mixture MLE, MCE and 
SME models, respectively. Usually the larger the separation 
measure, the better the models are. The separation used here 
is defined in Eq. (2) with the normalized LLR. As the right 
most curve in Figure 3, SME gets significant better 
separation than MLE and MCE, because of direct model 
separation maximization. 

Table 1: String accuracy comparison with different methods 

 MLE MCE LME [7] SME 
1-mix 95.20 96.94 96.94 98.64 
2-mix 96.90 97.40 98.51 98.90 
4-mix 97.80 98.24 98.80 99.10 
8-mix 98.03 98.66 99.14 99.23 
16-mix 98.36 98.87 99.20 99.24 
32-mix 98.51 98.98 99.28 99.33 

 

 

Figure 3: Testing utterance separation 

5. Conclusion 
We have proposed a novel discriminative training method, 
called SME, to achieve both high accuracy and good model 
generalization. By combining the advantages in SVM and 
MCE it directly maximizes the separation of competing 
models to enhance the testing samples to approach a correct 
decision if the deviation from training models is within a safe 
margin. Frame and utterance selections are integrated into a 
unified framework to select the training utterances and 
frames critical for discriminating competing models. We 
have compared SME with LME, a recently proposed 
discriminative training method, both in theory and in 
experiment to show the effectives of our proposed method. 
Tested on the TIDIGTS database, even 1-mixture model can 
well separate different words and produce better string 

accuracy than that with 32-mixture MLE models. SME’s 
performance is consistently better than that of LME, and 
significantly better than those of MLE and MCE. 

This paper only presents our initial study, we are now 
working on many related research issues to further 
complete the theory of SME. The first is to design a good 
optimization method. Current solution is to choose the soft 
margin in advance, which is too heuristic and suboptimal. 
If we can optimize the soft margin and HMM parameters 
simultaneously, better performance is expected. Second, 
we only select the most competitive string to define the 
separation measure. N-best list and lattice can also be 
incorporated to enrich the competing alternatives. Finally, 
we will extend our current work to large vocabulary ASR. 
We have already done some experiments on the TIMIT 
database for phone recognition and our preliminary results 
have shown SME’s advantage over MCE. Further results 
will be reported later. 
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