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Abstract
We study lattice rescoring with knowledge scores for automatic
speech recognition. Frame-based log likelihood ratio is adopted as
a score measure of the goodness-of-fit between a speech segment
and the knowledge sources. We evaluate our approach in two dif-
ferent applications: phone recognition, and connected digit con-
tinuous recognition. By incorporating knowledge scores obtained
from 15 attribute detectors for place and manner of articulation,
we reduced phone error rate from 40.52% to 35.16% using mono-
phone models. The error rate can be further reduced to 33.42% for
triphone models. The same lattice rescoring algorithm is extended
to connected digit recognition using the TIDIGITS database, and
without using any digit-specific training data. We observed the
digit error rate can be effectively reduced to 4.03% from 4.54%
which was obtained with the conventional Viterbi decoding algo-
rithm with no knowledge scores.

Index Terms: detection-based automatic speech recognition, lat-
tice rescoring, domain-independent speech recognition.

1. Introduction
A state-of-the-art automatic speech recognition (ASR) system is
often designed using data-driven methods, such as hidden Markov
model (HMM) [1]. Its performance is usually improved by col-
lecting more and more training data. The integration of additional
knowledge sources is considered to be beneficial to ASR robust-
ness [2], [3], [4], and [5]. An Automatic Speech Attribute Tran-
scription (ASAT) paradigm for speech recognition has recently
been proposed as a new way for integrating knowledge sources
into HMM-based systems [2]. This framework is based upon
detection of low level speech events, and integration of knowl-
edge sources into ASR is accomplished by extracting knowledge-
based front-end features, e.g. manner and place of articulation.
As a first attempt, frame-based event detectors were realized with
feed forward artificial neural networks (ANNs) [6]. The output of
the ANNs represents the knowledge scores, and they were used
to rescore phone-based n-best candidate lists provided by con-
ventional HMM-based systems. A problem with the ANN-based
scores is that they are likely to fluctuate [7], resulting in extra de-
tected speech segments. This work extends the n-best phone lists
rescoring algorithm and frame-based ANN knowledge scores in
[6], and herein we address the two issues by using segment-based
detectors and embedding alternative hypotheses into lattice struc-
tures. In addition, we validate the generality of the detector-based
approach by performing word lattice rescoring.
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We implement the HMM-based segment detectors as in [7],
propose knowledge scores based upon log likelihood ratio
R). Those scores can be computed at a segment, or frame
. We observed at the frame level a better separation between
peting models. Phone-level scores are then obtained as a non-
r mapping of LLR scores into the phone space. These phone

es are used to rescore lattices of alternative hypotheses, which
more detailed information than n-best lists.

We evaluate our approach on two different task. The first is a
inuous phone recognition using the TIMIT database [8]. By
rming knowledge based rescoring we achieve, in terms of
e error rate, a 13.23% improvement over our best context-

pendent (CI) baseline, and a 7.5% improvement over our best
ext-dependent (CD) baseline. In the second task, we build a
ain-independent connected digit recognition by training on the
IT database, and testing on the TIDIGITS database [9]. Using
ame rescoring algorithm, we reduce digit error rate to 4.03%
4.54% which is obtained with the conventional Viterbi de-

ng algorithm.
The rest of the paper is organized as follows. We first present

ledge scores computation in Section 2. Lattice rescoring is
ribed in Section 3. Experimental results are then presented in
ion 4. Finally, we discuss our findings in Section 5.

2. Knowledge-based scores
se articulatory information as knowledge source. The main
n for this choice is because these features are related to hu-
speech production, and they have shown their robustness

oise and cross-speaker variation [3]. Furthermore, standard
stic features, such as mel-frequency cepstrum coefficients
CCs) [10], and articulatory features, when combined, have
ed to be very useful for robust automatic speech recognition
[11]. ANNs are often adopted to map MFCCs into articulatory
mation, a reason is because their output can be interpreted as a
approximation of the a posteriori probability of observing an

ulatory attribute for the given input, for instance as in [5], and
Indeed, in this work we build segment-based detectors which
ore reliable in spotting segments of speech. This assumption

pported by the findings reported in [7]. We build a bank of 15
ctors realized with HMMs [7] which map a segment of speech
one of the articulatory classes. We also propose frame-level

as knowledge scores to measure the goodness-of-fit between
ech segment and the corresponding knowledge sources. LLR
lready proved its usefulness in rejecting unlikely hypotheses
veral speech tasks. For example, in [12], LLR is used in the
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verification stage to prune unlikely hypotheses. A one-pass de-
coder to produce multiple theories entirely based upon LLR was
proposed in [13]. Additionally, in [14] a hybrid decoder based on
a generalized confidence score was proposed, and LLR proved
useful in rejecting low confidence local path. A LLR verification
score is proposed in [15] to perform speech understanding based
on key-phrase detection and verification. In this study we adopt
a feed forward ANN to combine LLR scores into phone scores.
The scores at the phone level are then used in the rescoring phase
which will be discussed in section 3. In the following sections
we present the procedure to compute LLR and knowledge-based
scores.

2.1. Computing LLR scores

When segment-based detectors are implemented with HMMs,
LLR can be computed at a segment level, LLR(s), or at a frame
level, LLR(f). In the first case only the long term knowledge
(broad level) is generated, and so much of the information is
smeared out. This information manifests itself with only one score
for the entire segment. In contrast, LLR(f), which carry short
term knowledge (local level), provides a more detailed informa-
tion which is conveyed to us as a sequence of scores. We think
that this local information is beneficial to discriminate between
target model and the corresponding competing model. To validate
this assumption, we use the well-known generalized log likelihood
ratio (GLLR) measure [16]. In Figure 1, LLR(s) and LLR(f) for
the vowel class are compared. In the top panel the GLLR plot us-
ing segment-based scores is shown. The bottom panel shows the
GLLR plot using frame-based scores. It is evident that the over-
lap region in the top panel is larger than that in the bottom panel,
and so LLR(s) is more likely to generate false alarms, and false
rejections than LLR(f). Our findings are in line with the results
presented in [14], in which log likelihood is combined with LLR
to address several decoding problems. It was found that the use
of LLR(f) yields a higher recognition rate than the use of phone-
level and word-level LLR.
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Figure 1: LLR Model separation. The y-axes scale is linear with
0% at the base and 100% at the top.

Usually LLR(f) can be computed in several way. Here we
adopt the formulation presented in [14], i.e. the LLR(f), gener-
ated by an observation vector ot in state i at time t, is defined as,

LLR
(f)
i (ot) = log

P (ot|λi)

P (ot|λa
i )

(1)

where λi is the target HMM model of the articulatory class ending
in state i, and λa

i is its corresponding competing model. In this
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me two potential difficulties can arise. The first is the selec-
of the competing model for each articulatory class. Defining
ompeting model is not easy for certain classes such as the si-

e and superfluous sounds. In this study, we address the issue
aining the competing model on data which do not correspond
e target model, for instance, all of the ”non-nasal” data are
to generate an HMM for ”non-nasal” unit. The second dif-

ty is the selection of the path in order to synchronize the log
ihood computation of the target model and of the competing
el. Since we assume that target and competing models have
ame HMM topology, a single optimal state sequence is de-
d and assumed to be the same state sequence for the target
el and its corresponding competing model, as in [14]. Fur-

ore, LLR
(f)
i (ot) scores for the given segment are computed

g a well defined state sequence, so they are not independent
to the other. As a result, these scores do not fluctuate as the
-based scores presented [6], and they generate less number of
g segments.

Figure 2 compares segment and frame detectors for the frica-
manner. For the segment detector both LLR(s) and LLR(f)

ction curves are presented. The LLR(s) is computed by av-
ing over the number of frames in the segment. The top panel
s the spectrogram. The middle panel shows the reference seg-

ts. The bottom panel shows the detection curves. In order to
rt all the scores to the same range of values, we apply a sig-

limiter to the LLR scores as in [14]. The detected segment,
eved by the segment detectors in the bottom panel, is more
lar to the reference segments. For the ANN-based scores, we
rve extra segment due to noisy scores if we set a threshold
5 (shown as the dashed line). Another property that makes

more appealing than ANN-based scores is its proved ability
uning unlikely hypotheses during the decoding, for instance
, and [15].
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re 2: Detection Curves for the fricative attribute. In the bot-
panel, the dashdot, the solid, and the dashed lines represent
-based, LLR(f), and LLR(s) scores respectively

Phone-Level scores

rder to come up with phone level scores which will then be
in the lattice rescoring phase, we use a non-linear function

zed by a feed forward ANN with one hidden layer with 100
en nodes. We stop the training phase when the error rate
he validation set reaches a plateau. The ANN is fed with

LR
(f)
i (ot) output of the 15 articulatory detectors, and it is



trained in a frame-wise way. Its output can be thought as an es-
timate of the a posteriori probability of the phone Phj at time t,
pt(Phj |LLRi(ot)) (j = 1, ..., P ; where P is the total number of
phones). The ANN output is a sequence of classes at frame level
for each feature stream.

3. Lattice rescoring
A speech lattice generated by a set of HMMs can be defined as a
graph, G(N, A), with N nodes, and A arcs. The timing informa-
tion is embedded into the nodes; while the arcs carry the symbol
along with the scores information. The basic idea behind lattices
is that they represent a great number of alternative theories in a
compact way. As already stated, their advantage over n-best lists
is that lattices provide a wider searching space, and they also avoid
the drawback of representing many identical theories in competing
strings, for the given spoken utterance. In order to illustrate the
above concept, we compute upper bound accuracies of n-best lists
and lattices generated by a continuous phone recognizer using CI,
and CD models [6]. We compute the upper bound accuracies pre-
tending to have perfect phone level scores (pt(Phj |LLRi(ot))).
The results are listed in Table 1, with n equal to 100. These results
indicate that lattices give higher upper bound accuracies in both
coarse and detailed models, as expected.

Table 1: Upper Bound Accuracies.
CI 100-Best CI lattice CD 100-Best CD lattice

66.43% 87.86% 71.10 % 88.07%

Because we do not perform an exhaustive search and since
we do not have perfect models, the lattices do not always con-
tain the target string. Therefore, we consider the string with the
highest score as the best approximation to the target string. This
means that we have an upper-bound on accuracy that constrains
the rescoring performance. Thus it is easy to understand that more
room for improvement will allow us, in the future, to achieve
higher performance if we develop better rescoring techniques.

In the next section, we present rescoring performances of
phone and word lattices. We denote the rescored log likelihood
value as Sn for the given arc, and compute it as,

Sn = wps ∗ PSn + wl ∗ Ln (2)
where Ln is the log likelihood of the n-th arc; PSn is a linear
combination of PSn,m for each arc, with PSn,m being a non lin-
ear transformation of the score of the m-th frame for the n-th arc
(logarithm operation on pt(Phj |LLRi(ot)) discussed in Section
2.2). We do not perform weight tuning, and wps, and wl are both
set to be equal.

4. Experimental results
All the experiments were carried out by training on the TIMIT
database, which is a high quality speech corpus labeled at both the
phone and word levels. The training set is composed of 3696 utter-
ances. The HMM-based detectors and the combining ANN were
trained on a subset of 3504 randomly selected utterances, while
the remaining 192 utterances were used as a validation set. HMM-
based detectors for 15 speech attribute, namely fricative, vowel,
stop, nasal, approximant, low, mid, high, labial, coronal, dental,
velar, retroflex, glottal, and silence were obtained as in [7]. There-
fore, a pair of CI target and competing models were trained for
every event of interest. Each HMM has 3 states with 32 Gaussian
mixture components per state.
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Phone lattice rescoring

[17] is used to build the CI and CD baseline phone recogni-
systems, as in [6]. The HVite tool of HTK allows the genera-
of a lattice of hypotheses, for each given utterance. We gener-
wo phone lattices, based on monophone and triphone models,
ectively.
The performances for continuous phone recognition task are
rted in Table 2 in terms of phone error rate. In the mono-
e case the relative improvement is 13.23%. Furthermore,
e triphone case the relative phone error rate improvement is
. When the baseline is more detailed, there is a decrease
lative performance improvement. For the sake of complete-
, we also report lattice rescoring performances obtained using
-based scores, computed as in [6]. These performances are

% and 35.14% for monophone and triphone models respec-
y. The results indicate that LLRi(ot)-based rescoring outper-
s the ANN-based rescoring under all work condition.

Table 2: Phone lattice rescoring performance
Phone error rate CI Phone CD Phone

Baseline 40.52% 36.13%
Rescore 35.16% 33.42%

Word lattice rescoring

that we have proved that LLR-based knowledge scores are
r than ANN-based ones and that lattices give more margin of
ovement, we want to show that the ASAT paradigm based on
ction of low level events can be easily plugged into the rescor-
f more complicated lattices, such as word lattices. In this ses-

, we provide evidence of detection-based approach rescoring
lattices.

We use the connected digit recognition task as our first at-
t of word lattice rescoring with knowledge scores. We have
cognize only 11 words, yet the task is made more challeng-
by training on TIMIT and testing on TIDIGITS, that is, by
lating a domain-independent environment. From this cross-

base setup many problems arise since the two databases have
ferent sampling rate, were built for different purposes (task
atch), and the data were collected in different acoustical envi-
ents, for instance, different microphones and different sound
s (acoustical mismatch). In the current setup TIDIGITS was
ned for evaluating speaker independent recognition algorithm

onnected digit strings, and the data were collected with a
Hz sampling rate; on the other hand, TIMIT was built to in-
orate sufficient variability to analyze the acoustic realization
onetic segments in terms of contextual dependencies, syntac-

ffects, and speaker-specific factors, and the data were sampled
KHz.

We cope with the acoustic mismatch issues by performing
e preliminary signal conditioning on data sets. In particular,
ownsampled TIDIGITS utterances to 16KHz, and reduced the
g acoustic discrepancy by constraining the training and test-
FCCs features to vary in the same range of values. The last

ation is implemented with a speaker-by-speaker zero mean
unit variance normalization of the MFCCs features. More-
, mean normalization is performed only to the static coeffi-
ts, and variance normalization applies to both static and dy-
ic coefficients. We address the task mismatch issue by using
MM-based system with CI phones models as described in sec-
4.1. Finally, we want to point out that in this first study, we



do not investigate other possible normalization approaches, such
as utterance by utterance normalization, nor do we explore other
methodology to better handle cross-database issues.

As we stated, the normalization process mitigates the acous-
tic discrepancies issue, yet it induces a mismatch between the in-
put domain of the manner and place detectors and of the CI phone
models. As a result, if we were to use directly the scores computed
in Section 2.2 in the word lattice rescoring procedure, the perfor-
mance would be very poor. To lessen this secondary effect, we
retrain the detectors. This operation needs not be performed in the
absence of such cross-database problems. The phone-level scores
are computed as in Section 2.2. HVite is again used to generate
the word lattices. Nevertheless, standard HVite provides only one
level of model alignment, in this particular case at a word level.
In order to perform rescoring at the phone level, we also generate
phone level alignment for each arc of the lattice. Finally, since
phone-level scores can be too sensitive to the change at the bound-
aries of consecutive phones, we define another score at the end of
each word, Wn, to provide a smoothing effect. Wn is a non-linear
combination of PSn,m at a word level. The new weighted rescor-
ing formula is defined as follows,

Sn = wps ∗ PSn + wwrd ∗ Wn + wl ∗ Ln. (3)

where the three weights are set to have a weighting power of 20%,
40%, and 40% respectively.

The rescoring performance, presented in Table 3, indicate a
11.23% word error rate (WER) improvement over the baseline.
We also compute the WER upper bound, which is equal to 1.69%.
It is clear that our detection-based approach strategy outperforms
the conventional decoding scheme in all the proposed tasks. Fi-
nally, for the sake of completeness, we want to point out that if
digit-specific database is used, TIDIGITS task usually results in
better WER than the presented one. Nevertheless, we purposely
introduced a mismatched condition to illustrate that our approach
is task and domain independent.

Table 3: Word lattice rescoring performance
WER CI Phone

Baseline 4.54%
Rescore 4.03%

5. Summary
We propose a lattice rescoring procedure based on knowledge
scores generated with a bank of 15 detectors for manner and place
of articulation. LLR(f)s are used as scores, and it is shown that
from frame-based information a higher separation between com-
peting model is achieved. In addition, we show that LLR(f)

scores do not fluctuate as much as ANN-based scores, and thus
the number of wrong speech segment is reduced. The experimen-
tal results that detection-based approach outperforms conventional
ASR systems in all of the presented task. Moreover, this is the
first attempt to improve the WER of ASR systems in the ASAT
project. We believe that our performance can be further improved
by adjusting the parameters of the knowledge extracting module.
Finally, we intend to explore other knowledge scores and rescoring
strategies, such as non-linear combination of different scores, and
study new detector architectures to combine multiple spatial and
temporal events aiming at improving the ASR performance.
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