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ABSTRACT
In recent years there has been considerable research on au-
tomating the physical design in database systems. Current
techniques provide good recommendations, but are resource
intensive. This makes DBAs somewhat conservative when
deciding to launch a resource-intensive tuning session. In
this paper, we introduce an alerter that helps determin-
ing when a physical design tool should be invoked. The
alerter is a lightweight mechanism that provides guaranteed
lower (and upper bounds) on the improvement that a DBA
could expect by invoking a comprehensive physical design
tool. Moreover, it produces an accompanying recommen-
dation that serves as a “proof” for the lower bound. We
show experimentally that the alerter handles large work-
loads with little overhead, and help judiciously decide on
launching subsequent tuning sessions.

1. INTRODUCTION
Database management systems (DBMSs) support varied

and complex applications. As a consequence, physical design
tuning has become more relevant than ever before. Database
administrators (DBAs) presently spend considerable time
either tuning a suboptimal installation for performance or
maintaining a well-tuned installation over time. Most ven-
dors nowadays offer automated tools to tune the physical
design of a database as part of their products (e.g., [1, 8,
14]). Although each solution provides specific features and
options, all the tools address the following common problem:

Physical Design Problem: Given a query workload W
and a storage budget B, find the set of physical struc-
tures (or configuration), that fits in B and results in
the lowest estimated execution cost of W .

Current tools recommend various physical structures such
as indexes and materialized views, among others. As noted
in previous work [2, 15], automating the physical design of
a database is complex because (i) there is a combinatorial
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explosion of physical structures to consider, and (ii) these
structures strongly interact with each other. State-of-the-art
techniques provide good recommendations, but are resource
intensive. It is common for tuning sessions to run for a long
time before returning a useful recommendation.

For this reason, DBAs usually face the following dilemma.
On one hand, changes in workloads and data distributions
might result in the current configuration becoming subopti-
mal. DBAs therefore would like to periodically run a tuning
tool that recommends changes (if any) to the current config-
uration. On the other hand, unless the current configuration
is suboptimal, no changes would be necessary and the signif-
icant load on the server due to the tuning session is wasted.
Worse still, currently the only way to determine whether a
tuning session would be worthwhile is to actually run it!

Therefore, it is attractive to investigate if we can deter-
mine whether the current configuration is suboptimal a-
priori, i.e., before running an expensive tuning tool. In
this paper we present a technique, which we henceforth call
alerter, that answers this question. The alerter analyzes a
workload and determines whether a comprehensive tuning
session would result in a configuration significantly better
than the current one. It has the following characteristics:

- Low-overhead diagnostics: The alerter might be called
repeatedly, whenever the DBA suspects that changes
might be necessary, or at fixed time intervals. For
efficiency purposes, the alerter only works with the
information that was gathered when the workload was
originally optimized and does not rely on additional
optimizer calls.

- Reliable lower bound improvement: When the alerter
reports that certain improvement is possible, we can be
certain (under broad assumptions) that the improve-
ment achieved by a comprehensive tuning tool would
indeed be at least as large1. This is crucial since false
positives would defeat the alerting mechanism and are
therefore unacceptable.

- Upper bound improvement: Depending on the amount
of overhead that we are willing to tolerate during query
optimization, the alerter produces different levels of
tightness on upper bounds for improvement values.
This effectively reduces the chances of false negatives,
by bounding the best possible outcome of a compre-
hensive tuning tool.

1
The alerter outputs a valid configuration as a proof of the lower

bound. We can always implement this configuration if it is more
attractive than the best one found by the comprehensive tuning tool,
therefore guaranteeing the lower bound.
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Figure 1: Monitor-Diagnose-Tune cycle for the physical design problem.

Figure 1 illustrates how the alerter fits into the “monitor-
diagnose-tune” cycle for physical design tuning. As new
queries are optimized and executed, the DBMS internally
keeps information about the workload that would later be
consumed by the alerter. After a triggering condition hap-
pens, the alerter is launched automatically and diagnoses
the situation quickly. We do not take a position on the trig-
gering mechanism (it could be a fixed amount of time, an
excessive number of recompilations, or perhaps significant
database updates) but we believe that such triggering events
happen frequently enough that make it prohibitive to run a
comprehensive tuning tool after each triggering condition.
After the lightweight diagnostics, if the alerter determines
that running a comprehensive tuning tool would result in an
improvement beyond a certain pre-specified threshold, the
DBA is alerted and urged to proceed. As part of the alert,
the DBA gets lower and upper bounds for the improvement
that would result from a comprehensive tuning session, as
well as a valid configuration that serves as a proof of the
lower bounds. Thus, we believe that this alerting mech-
anism fills a gap in the automatic physical design tuning
cycle by ensuring that a subsequent physical tuning session
is appropriate.

The rest of the paper is structured as follows. In Sec-
tion 2 we explain a low-overhead mechanism to gather in-
formation during the normal operation of a database system.
Sections 3 and 4 discuss how to exploit this information to
obtain lower and upper bounds on the improvement in ex-
ecution time of the workload being analyzed. In Section 5
we discuss extensions to the basic techniques. We report
experimental results in Section 6 and discuss related work
in Section 7.

2. INSTRUMENTING THE OPTIMIZER
An alerting mechanism must be extremely lightweight to

be effective. Unlike comprehensive tools, we cannot issue
optimizer calls when the alerter is launched due to the over-
head that this would impose at runtime. Instead, our ap-
proach is to instrument the query optimizer itself so that it
gathers additional information during normal optimization
of queries2. Later, when the alerter is launched, we exploit
all this precomputed information without calling the opti-
mizer again. This model allows any workload model (such
as a moving window, a subset of the most expensive queries,
or just a sample) to be fed to the alerter without changes.
We now briefly review how a query optimizer chooses access
paths to implement logical sub-queries and then explain the
information that we gather during optimization.

2
This information can be maintained in memory and accessed pro-

grammatically [10], and also periodically persisted in a workload
repository [8].

2.1 Review of Access Path Selection
In this work we assume that the optimizer has a unique

entry point for access path selection (optimizers based on
System-R [11] or Cascades [9] frameworks are usually struc-
tured in this way). Specifically, there is one component in
the optimizer responsible for finding physical index strate-
gies (including index scans, rid intersections and lookups) for
logical sub-plans. During the optimization of a single query,
the optimizer issues several access path requests (henceforth
called index requests, or simply requests) for different sub-
queries. For each request (see Figure 2), an access path
generation module first identifies the columns that occur in
sargable predicates, the columns that are part of a sort re-
quirement, and the columns that are additionally referenced
in complex predicates or upwards in the query tree. Then,
it analyzes the available indexes and returns one or more
candidate physical plans for the input sub-query.
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Figure 2: Access path selection and request tagging.

Consider for instance an index request for the query frag-
ment below (where τ specifies an order by clause):

τb �Πc(σa=10(T ))�
In this case, the optimizer identifies column a in a sargable
predicate, column b as a required order, and column c as
an additional column that is either output or referenced up-
wards in the tree. This information allows the optimizer to
identify the indexes that might be helpful to implement an
efficient sub-plan for the sub-query. Suppose that an index
on column T.a is available. The optimizer then generates
a plan that uses an index seek on such index to retrieve
all tuples satisfying T.a=10, fetches columns T.b and T.c
from a primary index, and finally sorts the resulting tuples
by T.b. Depending on the cardinality of T.a=10, an index
on columns (T.b, T.a, T.c) might be more attractive. Scan-
ning this index (in b order) and filtering on the fly the tuples
that satisfy T.a=10 might be more efficient because it avoids
sorting an intermediate result. A cost-based optimizer con-
siders these alternative plans and returns the most efficient
physical access plan with respect to the available indexes.



Note that this approach is also used to generate index-
nested-loops plans (which implement joins between an arbi-
trary outer relation and a single-table inner relation that is
repeatedly accessed using an index to obtain join matches).
In this case, the access path generation module works with
the inner table only, and the joined column in the table is
considered as part of a sargable (equality) predicate. For in-
stance, suppose that the logical sub-plan is (Q ./Q.x=T.y T ),
where Q represents an arbitrary complex expression that re-
turns the outer relation in the index-nested-loop join. Con-
ceptually, the optimizer passes to the access path selection
module the single-table expression σT.y=?(T ), and proceeds
as usual, considering T.y a column in a sargable predicate
with an (unspecified) constant value.

2.2 Intercepting Index Requests
To gather information at optimization time, we instru-

ment the optimizer by augmenting the technique in [3] (see
Figure 2). During plan generation, each time the optimizer
issues an index request we obtain the information that is
relevant to such request and store it at the root of the orig-
inating logical plan. Specifically, for each index request we
store the tuple (S, O, A, N), where S is the set of columns
in sargable predicates and the predicate cardinalities, O is
the sequence of columns for which an order has been re-
quested, A is the set of additional columns used upwards in
the execution plan, and N is the number of times the sub-
plan would be executed (N is greater than one only if the
sub-plan is the inner portion of an index-nested-loop join)3.
Intuitively, each request encodes the properties of any index
strategy that might implement the sub-tree rooted at the
corresponding logical operator (or its right sub-tree in the
case of requests originating from joins). This fact will later
allow us to make inferences about changes in the physical
design without issuing additional optimization calls.

Figure 3(a) illustrates this procedure for a three-way join
query. In the figure we can see a fragment of the search
space that the optimizer considers for the query (only logi-
cal alternatives are shown in the figure). Along with some of
the logical operators we show the index requests that were
generated. As an example, request ρ1 is attached to the se-
lection condition on table T1 and specifies that (i) there is
one sargable column T1.a returning 2500 tuples, (ii) there is
no order requested, (iii) the columns that are required are
T1.a, T1.w and T1.x, and (iv) the sub-plan would be exe-
cuted once at runtime. Similarly, request ρ2 was intercepted
when the optimizer tried to generate an index-nested-loop
alternative with T1 and T2 as the outer and inner relations,
respectively. Request ρ2 specifies that T2.y is a sargable col-
umn which would be sought with 2500 bindings and produce
500 rows overall. Therefore, the average number of tuples
matched and returned from T2 is 0.2 per binding (hence
the 0.2 cardinality value for ρ2). There is no request for
the logical join at the top-right node in Figure 3(a) because
an index-nested-loop join requires the inner table (the right
operand in the figure) to be a base table.

In contrast to the techniques in [3], we gather additional
information on a subset of the above index requests that
would later help us obtain improvement bounds. Specifi-
cally, after plan generation we traverse the resulting execu-

3
We additionally store the request table, the final cardinality of the

request, and the type of sargable predicate for each element in S, but
omit such details to simplify the presentation.
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(a) Fragment of the search space.
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(b) Final execution plan.
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(c) Original AND/OR request tree.
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(d) Normalized AND/OR request tree.

Figure 3: Gathering information during optimiza-
tion.

tion plan and associate each physical operator p with the
index request (if any) that corresponds to the logical sub-
tree that was implemented by p. We denote such requests
the winning requests, because they are associated with the
operators in the optimal plan found by the optimizer. Fig-
ure 3(b) illustrates this step, where the winning requests are
{ρ1, ρ2, ρ3, ρ5}. For instance, ρ1 is associated with the fil-
ter operator over table T1 because ρ1 was attached to the
logical sub-tree σT1.a=5(T1). We note that a request ρi is
not necessarily associated with the physical operator imple-
mented from ρi. For instance, ρ2 is associated with the
hash join operator, even though originally ρ2 was generated
in the context of an index-nested-loop alternative. Since at
this stage optimization is finished, we augment the winning
requests with the cost of the execution sub-plan rooted at
the corresponding physical operator (see Figure 3(b)). If



BuildAndOrTree(T :Execution Plan) =
IF (T .isLeaf) // Case 1

RETURN T .request
ELSE IF (T .request is null) // Case 2

RETURN AND( BuildAndOrTree(T .child1),
...,
BuildAndOrTree(T .childn) )

ELSE IF (T .isJoin) // Case 3
RETURN AND( BuildAndOrTree(T .leftChild),

OR( T .request,
BuildAndOrTree(T .rightChild)))

ELSE // Case 4
RETURN OR( T .request,

BuildAndOrTree(T .child))

Figure 4: Generating the AND/OR request tree.

the request is associated with a join operator, such as ρ2 in
the figure, we additionally store the cost of its left sub-plan
(in these situations, the left sub-plan would be the same
for hash-join and index-nested-loop alternative plans, so we
implicitly store the “remaining” cost of the whole sub-plan
without counting the common left sub-plan).

It is important to note that some winning requests might
conflict with each other. For instance, requests ρ3 and ρ5 in
Figure 3(b) are mutually exclusive. In other words, if a plan
implements ρ3 (that is, contains an index-nested-loop join
with T3 as the inner table), it could not simultaneously im-
plement ρ5. As another example, request ρ5 in Figure 3(b)
would conflict with a request ρ6=(∅, ∅, {T3.b, T3.z}, 1) rooted
at the Scan(T3) operator (we do not show ρ6 in Figure 3 to
keep the example simple). The reason is that any execu-
tion plan uses one access path for each table in the query.
Therefore we can implement either ρ6 (by scanning some in-
dex on T3 and filtering T3.b = 8 on the fly) or ρ5 (by directly
seeking the valid tuples in T3), but not both.

To explicitly represent these relationships, we encode the
winning requests in an AND/OR tree, where internal nodes
indicate whether the respective sub-trees can be satisfied
simultaneously (AND) or are mutually exclusive (OR)4. The
AND/OR tree is built by traversing the execution plan in post-
order. A recursive functional specification of this procedure
for an input execution plan T is given in Figure 4. Intu-
itively, if T is a single node, we return a simple AND/OR tree
with the request (if any) of such node (Case 1 in Figure 4).
Otherwise, if T ’s root node has no requests, we AND together
the trees generated for each of T ’s execution sub-plans, since
these are orthogonal (Case 2). Otherwise, if the root of T
has a request, the answer depends on the type of node. If it
is a join, its request ρ corresponds to an attempted index-
nested-loop alternative. We know that ρ and the requests
on T ’s right sub-plan are mutually exclusive (see ρ3 and ρ5

in Figure 3(b)). However, these requests are orthogonal to
the requests in T ’s left sub-plan, and thus we return the
AND/OR tree of Case 3. Finally, if the root T is not a join
node, the request ρ conflicts with any request in a sub-plan
of T (we cannot implement both alternatives) and therefore
we return the AND/OR tree of Case 4.

Figure 3(c) shows the resulting AND/OR tree for the winning
requests of Figure 3(b). As a final step, we normalize the
AND/OR tree so that it contains no empty requests or unary
intermediate nodes, and strictly interleaves AND and OR nodes

4
We use AND/OR trees based on the common interpretation in the

context of memo structures and query optimization, but not in the
strict logical sense.

(by possibly introducing n-ary internal nodes). In our ex-
ample (see Figure 3(d)), the normalized tree consists of an
AND root node whose children are either base requests, or
simple OR nodes. Due to the specific nature of execution
plans and requests, this is true in general, as we prove next.

Property 1. The normalized AND/OR request tree for an
input query is either (i) a single request, (ii) a simple OR

root whose children are requests, or (iii) an AND root whose
children are either requests or simple OR nodes.

Proof (Sketch): By structural induction on the spec-
ification of BuildAndOrTree. For a single-node execution
sub-plan (Case 1), BuildAndOrTree returns a single request,
which satisfies (i). Suppose that input sub-plan is a join tree
with root T and sub-trees TL and TR, and T has a request
(Case 3). Then, it must be the case that TR is either a base
table or a selection on a base table (this is a condition for
the index-nested-loop join alternative that generated the re-
quest on T ). Therefore, the recursive call for TR would use
Cases 1 or 4, returning either a single request (i) or a simple
OR node (ii) (i.e., no AND nodes). By inductive hypothesis,
the recursive call for TL satisfies (i), (ii) or (iii). We can
then verify case by case that the resulting trees can again
be normalized to either (i), (ii) or (iii). A similar procedure
can be used to verify Cases 2 and 4.

Since requests for different queries are orthogonal and can
be satisfied simultaneously, we combine the AND/OR request
trees of a given workload by using an AND root node. Normal-
izing this combined tree, we obtain, for an arbitrary input
workload, an AND/OR request tree that satisfies Property 1.
This normalized tree would be used by the alerter to make
inferences about the workload in the presence of physical
design changes without issuing additional optimization calls
(which is crucial for performance).

3. LOWER BOUNDS FOR IMPROVEMENT
We now describe how to obtain a lower bound on the im-

provement that would be obtained by running a comprehen-
sive tuning tool. Of course, if we just ran the comprehensive
tuning tool, we would directly obtain the best possible con-
figuration, and therefore the actual improvement. But this is
precisely what we are trying to avoid (i.e., running an expen-
sive tool without some assurance that it would be beneficial).
Our goal is to very efficiently obtain a (relatively tight) lower
bound on the workload improvement. The improvement of a
configuration is defined as 100% · (1− costafter/costcurrent),
where costcurrent and costafter are the estimated costs of
the workload for the original and recommended configura-
tions, respectively. The larger the improvement value, the
more attractive is the recommended configuration. A lower
bound on the improvement is equivalent to an upper bound
on costafter (because costcurrent is a constant value). We
then need to provide (without calling the optimizer) an up-
per bound on the cost of each query in the workload over
all permissible physical design configurations.

3.1 Locally Transforming Plans
In this section we explain how we can use the AND/OR tree

generated when the workload was originally optimized (see
Section 2) to make inferences about query execution plans
for varying physical designs, and do so without making ad-
ditional optimizer calls.



As explained in the previous section, each request en-
codes the requirements of any index strategy that might
implement the sub-tree rooted at the corresponding oper-
ator (or its right sub-tree for the case of join operators).
Additionally, each request reports the cost of the best exe-
cution plan found by the optimizer to implement the logical
sub-query associated with the request. As an example, con-
sider ρ1=({(T1.a, 2500)}, ∅, {T1.a, T1.x, T1.w}, 1) and a cost
of 0.08 time units in Figure 3(b). This information implies
that any index-based sub-plan rooted at the corresponding
Filter operator would need to seek 2500 tuples from ta-
ble T1 using an equality predicate on column T1.a, and re-
turn a projection of these tuples (in no particular order) on
attributes T1.a, T1.x and T1.w. It also specifies that the
best execution plan found by the optimizer using the origi-
nal configuration is estimated to execute in 0.08 time units.
Similarly, ρ2 specifies that the corresponding sub-tree needs
to join 2500 tuples on column T2.y from its left sub-tree
with 0.2 tuples (on average) on table T2. The cost of the
best execution plan found by the optimizer for this sub-tree
(without the left sub-tree cost) is 0.23-0.08=0.15 time units.

The examples above suggest that if we produce any phys-
ical sub-plan p that implements a given request ρ, we can lo-
cally replace with p the original physical sub-plan associated
with ρ, and the resulting plan would be valid and equivalent
to the original one. A sub-plan implements ρ=(S,O, A, N)
if it returns the columns in A sorted by O and filtered by
the predicates over columns in S for as many bindings as N
specifies (if applicable). If we calculate the cost of the new
sub-plan p, we can obtain the difference in cost between the
original and new index strategies (i.e., how much would the
original execution plan improve or degrade if we replaced
the given sub-tree with a equivalent one).

Of course, if we keep the configuration fixed, no alterna-
tive would result in a more efficient plan since, by definition,
the optimizer returns the most efficient overall execution
plan. Suppose, however, that we create a new index in the
database and would like to predict how this index would
affect the execution plans of queries in the workload. We
could re-optimize the queries under the new configuration
and obtain a precise answer, but that would be too expen-
sive. Instead, we can check whether the newly added index
can implement some request ρ more efficiently that what the
optimizer found originally, and in this way decrease the over-
all cost of the corresponding query (Section 3.2.1 explains
in detail how this procedure works).

Note that the best we can do by following this approach
is to obtain a locally-optimal execution plan. That is, we
replace the physical sub-plans associated to each winning
request in the original plan with alternatives that are as ef-
ficient as possible. We would not be able to, say, obtain a
plan with different join orders, or other complex transfor-
mation rules that optimizers apply during plan generation.
In that sense, we are giving up some opportunities to obtain
the globally optimal execution plan but avoid expensive op-
timization calls and are able to ensure low overhead. The
cost of the plan that we obtain by local changes is there-
fore an upper bound of the global optimal plan that the
optimizer would find under the new configuration.

3.2 The Alerter Main Algorithm
The core idea of our lower-bound technique is to iter-

ate over different configurations, generating valid alterna-

tive execution plans for the input workload by means of
local changes as described above. For any explored config-
uration, we calculate an upper bound on the cost of the
workload under such configuration, which in turn results in
a lower bound on the improvement that could be obtained
by a comprehensive tuning tool.

3.2.1 Impact of a Hypothetical Configuration
A crucial component in our techniques is the ability to cal-

culate the difference in cost of the workload when we make
a local change in a query execution plan by implementing
a given request differently from what was originally opti-
mized. Consider a request ρ=(S, O, A, N). Suppose that we
want to calculate the cost of an alternative sub-plan that
uses an index I over columns (c1, . . . , cn) to implement ρ.
Let Iρ be the longest prefix (c1, . . . , ck) that appears in S
with an equality predicate, optionally followed by ck+1 if
ck+1 appears in S with an inequality predicate. We then
implement ρ by (i) seeking I with the predicates associ-
ated with columns in Iρ, (ii) adding a filter operator with
the remaining predicates in S that can be answered with all
columns in I , (iii) adding a primary index lookup to retrieve
the missing columns if S ∪O∪A 6⊆ {c1, . . . , cn}, (iv) adding
a second filter operator with the remaining predicates in S,
and (v) adding an optional sort operator if O is not satisfied
by the index strategy. As a simple example, consider ρ1 in
Figure 3(b) and I1 = (T1.a, T1.x). The execution sub-plan
obtained as explained above is an index seek over I1 return-
ing 2500 rows, followed by 2500 primary index lookups to
retrieve the missing column T1.w. If instead we consider the
same request and index I2 = (T1.x, T1.w, T1.a) the resulting
plan consists of an index scan over I2 (retrieving all tuples)
followed by a filter for column T1.a that results in 2500 rows.

Note that for costing purposes, we only need a skeleton
plan with physical operators and cardinality values at each
node. In fact, we do not need to execute the resulting plan,
so for our purposes the exact predicates associated with the
requests are not needed (e.g., T1.a = 5 for request ρ1). The
AND/OR request tree therefore provides the minimal informa-
tion required to obtain cost differences. We can use the
optimizer’s cost model effectively over the skeleton plan to
estimate its execution cost (let us denote this cost Cρ

I ). If
the original cost of the sub-plan associated with the request
ρ was Cρ

orig, we define ∆ρ
I = Cρ

orig − Cρ
I . Then, ∆ρ

I is the
local difference in cost if we implement ρ with an index strat-
egy based on I rather than the one used originally by the
optimizer. Note that ∆ρ

I need not be positive; a bad choice
of I can result in a sub-plan that is more expensive than the
one originally obtained by the optimizer.

Multiple Indexes, Multiple Requests
A configuration generally contains multiple indexes defined
over the table of a given request. In principle, we could use
more than one index to obtain a physical sub-plan that im-
plements a request (e.g., by using index intersections). As
a design choice, we rule out those alternatives since they
would increase the processing time of the alerter with mod-
est gains in quality. We then calculate the difference in cost
by implementing a request ρ with the best index strategy
from a configuration C as ∆ρ

C = minI∈C ∆ρ
I (if I and ρ are

defined over different tables, we define ∆ρ
I=∞).

In general, the workload is encoded as a AND/OR request
tree and OR nodes rule out multiple simultaneous requests in



a query plan. The difference in cost for an AND/OR request
tree and a configuration C is defined inductively as5:

∆T
C =

��
�

∆
request(T )
C if T is a leaf node�
i
∆T .childi

C if T is an AND node

mini ∆T .childi

C if T is an OR node

The value ∆T
C is therefore the difference in the workload

execution cost between C and the original configuration. We
note again that ∆T

C values are lower bounds on such differ-
ence, since we obtain feasible (perhaps suboptimal) plans
that the optimizer would find for C.

3.2.2 Initializing the Search Strategy
The alerter efficiently searches a space of configurations

for one (or some) that fits in the available space and is as ef-
ficient as possible. Similarly to the work in [3, 4], we perform
a relaxation-based approach that starts with the best lo-
cally optimal configuration and progressively relaxes it into
smaller and less efficient ones. The initial configuration is
obtained as the union of the indexes that implement the best
strategy for each request in the AND/OR request tree.

Consider a request ρ=(S,O, A,N) where each element in
S contains a column, a predicate type (i.e., equality or in-
equality), and the cardinality of the predicate. We obtain
the index that leads to the most efficient implementation of
ρ (i.e., the best index for ρ) as follows:

1. Obtain the best “seek-index” Iseek consisting of (i) all
columns in S with equality predicates, (ii) the remain-
ing columns in S in descending cardinality order, and
(iii) the columns in (O ∪ A) − S. (Note that if the
DBMS supports suffix columns [3], only columns in (i)
and the first column in (ii) are key columns and the
rest are suffix columns.)

2. Obtain the best “sort-index” Isort with (i) all columns
in S with single equality predicates (they would not
change the overall sort order), (ii) the columns in O,
and (iii) the remaining columns in S ∪ A.

3. Return minargI∈{Iseek,Isort}∆
T
I .

As an example, consider request ρ3 in Figure 3. This re-
quest has no sort columns, so the best overall index is in
this case the “seek-index” (T3.z, T3.b) obtained as described
above. We repeat this procedure for each index request and
combine the resulting indexes into the initial configuration
C0={(T1.a, T1.x, T1.w), (T2.y), (T3.z, T3.b), (T3.b, T3.z)}. We
can guarantee that this configuration results in the most
efficient locally optimal execution plans among all possible
configurations because each request is implemented as effi-
ciently as possible. At the same time, this configuration is
usually very large. The reason is that each request is as-
sociated with a very specific index. It is likely that many
indexes in C0 are unique (i.e., they implement optimally a
single request) and therefore the size of the locally optimal
configuration C0 tends to be rather large.

3.2.3 Relaxing Configurations
Once we obtain the initial, locally optimal configuration,

we gradually relax it to obtain alternative ones that might

5
Note that we overload the definition of ∆ depending on the input

parameters (e.g., requests or AND/OR request trees), but the usage is
clear from the context.

be more attractive from a cost-benefit point of view. Specifi-
cally, we transform each configuration into another one that
is smaller but less efficient. Since the alerter needs to be
very fast, we made the following design choices for this ex-
ploratory step:

1. Use index-deletion and index-merging [3, 4, 7] as the
only transformations (we do not consider index reduc-
tions [4] since they significantly increase the search
space while marginally decreasing execution costs)6.

2. Perform a greedy search, in which we move from one
configuration to the next one using the locally most
promising transformation.

The concept of index merging has been proposed before
as a way to eliminate redundancy in a configuration with-
out losing significant efficiency during query processing [4,
7]. We define the (ordered) merging of two indexes I1 and
I2 as the best index that can answer all requests that either
I1 and I2 do, and can efficiently seek in all cases that I1 can
(some requests that can be answered by seeking I2 might
need to scan the merged index, though). Specifically, we
define the merging of I1 and I2 as a new index that contains
all the columns of I1 followed by those in I2 that are not
in I1. For example, merging I1=(a, b, c) and I2=(a, d, c) is
I1,2=(a, b, c, d). We note that index merging is an asymmet-
ric operation (i.e., in general merge(I1,I2) 6= merge(I2,I1)),
so we need to consider both cases.

When transforming a configuration C we have many al-
ternatives. We can delete each index in C, or we can merge
any pair of indexes defined over the same table. To rank
the transformations, we use the penalty of transforming a
configuration C into C′ by an index deletion or index merge
(see [3]). Penalty values measure the increase in execution
cost per unit of storage that we save in C′ compared to C.
For a AND/OR request tree T ,

penalty(C, C′) =
∆T

C − ∆T
C′

size(C) − size(C′)

3.2.4 Putting all Together
Figure 5 shows a pseudo-code of the main algorithm for

the Alerter. Recall from Figure 1 that during normal op-
eration, the DBMS gathers relevant information about the
execution plans that are processed. This information is con-
solidated in the form of an AND/OR request tree. When a pre-
specified triggering event happens, the alerter is launched.
The inputs to the alerter are the AND/OR request tree, space
bounds Bmin and Bmax that are acceptable for a new config-
uration, and the minimum percentage improvement P that
we consider important enough to be alerted. We first ob-
tain the locally optimal configuration C0 in line 2 (see Sec-
tion 3.2.2). We then progressively transform the current
configuration until the resulting size is below the minimum
storage constraint or the expected improvement is below the
minimum we deem necessary for an alert (lines 3-7). At
each step, we choose the transformation TR (index merging
or deletion) with the smallest penalty value and create a
new configuration (lines 5-6). After we exit the main loop,

6
These transformations tend to generate wide indexes, which are com-

monly used in decision support systems. In other scenarios (e.g.,
OLTP systems), these indexes might be too expensive to maintain,
and thus we should also consider index reductions [4] to generate
narrow indexes.



Alerter (T:AND/OR request tree,
Bmin, Bmax:storage constraints,
P:minimum percentage improvement)

1 R = ∅; i=0
2 Obtain locally optimal configuration C0

3 while (size(Ci)>Bmin and

100% · ∆T
Ci

/costcurrent > P)

4 if (size(Ci)<Bmax)
R = R∪ Ci

5 Pick transformation TR that minimizes
penalty(Ci , TR(Ci))

6 Ci+1 = TR(Ci)
7 i=i+1
8 if (R 6= ∅)

ALERT(R)

Figure 5: Pseudo-code for the Alerter.

in line 8 we check whether some configuration satisfies all
the constraints, and in such a case, we issue an alert. The
alert contains the list of all configurations (C) that fit in
the available space (i.e., Bmin ≤ size(C) ≤ Bmax) and are
estimated to have at least P improvement. The DBA can
then analyze the alert and proceed as appropriate.

4. UPPER BOUNDS FOR IMPROVEMENT
In the previous section we explained how the alerter ob-

tains a lower bound on the improvement that a comprehen-
sive tuning tool would recommend. Although the alerter
avoids false positives which would waste valuable resources,
we still face the problem of false negatives. In other words,
there could be cases in which our techniques do not alert the
DBA because the expected improvement is not significant.
This can be due to a lower bound that is not sufficiently
tight, and therefore we might miss a good tuning opportu-
nity. To mitigate these situations, in this section we explain
how the alerter can also generate upper bounds on the po-
tential improvement. This additional information can help
DBAs refine policies to trigger tuning sessions (e.g., alert me
if the minimum improvement is 25% or there is potential for
75% improvement). We next present a fast mechanism that
produces upper bounds for improvements and requires al-
most no changes to the query optimizer. Then, we discuss
an alternative approach that produces tighter bounds but
incurs more overhead during optimization.

4.1 Fast Upper Bounds
In Section 2 we discussed how the optimizer issues mul-

tiple index requests during the processing of each query.
These requests in turn are used to generate index strate-
gies which are weighted and combined in the final execution
plan. While we do not know what index strategy will be
used under the best possible configuration, we are certain
that, for each table in the query, some request would be im-
plemented in the final execution plan7. We now extend the
approach of Section 2 as follows. In addition to returning
the winning requests (i.e., those requests that are associ-
ated with the final execution plan), we generate a list of the
remaining candidate requests considered during query opti-
mization. We return this information grouped by the table
over which each request is defined. Then, for each table in
the query, we compute the cost of the best index strategy for

7
This step assumes that the query is normalized before optimization

and redundant tables are eliminated.

each request as explained in Section 3.2.2. Finally, we keep
the most efficient alternative for each table and add all the
estimated costs together. Note that this is necessary work
that any execution plan would have to perform for the given
query and therefore to a lower bound of the query itself.

Consider again the example in Figure 3(a) (recall that it
represents only a portion of the search space, but the gen-
eral ideas still apply). The requests grouped by table are
T1 → {ρ1}, T2 → {ρ2}, and T3 → {ρ3, ρ4, ρ5}. We do
not know whether the execution plan for the best possible
configuration implements ρ3 or ρ4 for table T3 (performing
a nested-loop-join with T1 or T1 ./ T2, respectively, as the
outer relation) or even ρ5 (seeking tuples for which T3.b = 8).
We know, however, that some of these alternatives would be
necessary. We then calculate a lower bound on the cost of
the query as the sum of costs of the sub-plan that imple-
ments ρ1, the sub-plan that implements ρ2, and the most
efficient alternative among the sub-plans that implement ρ3,
ρ4 and ρ5. We thus obtain a lower bound on the cost of any
execution plan for the input query, and therefore an upper
bound on any recommended improvement.

This procedure is very efficient since it simply outputs ad-
ditional information used during optimization with minimal
additional computation. However, by definition, it returns
a loose upper bound. One reason is that we only consider
necessary work for the leaf nodes in the execution plans,
but we do not assign any cost to intermediate nodes such as
joins or aggregates (we chose not to exploit these additional
sources of information to keep the overhead low). Addition-
ally, we do not pay attention to storage constraints, which
often restrict the space of feasible configurations and there-
fore diminish the best possible improvement.

4.2 Tighter Upper Bounds
We now describe a technique that requires additional over-

head during optimization but produces tighter upper bounds
by extending the interception mechanism used in [3]. The
idea is to intercept all index requests as we do in Figure 2,
but instead of just tagging the logical operators with the
requests, we (i) suspend optimization and analyze the re-
quest, (ii) calculate the index that result in the most effi-
cient plan for such request, (iii) simulate the index in the
system catalogs (see [6]), and (iv) resume optimization so
that the newly simulated index is picked. We repeat this
procedure with each index request so the optimizer gets the
best indexes to implement each logical plan.

As explained in [3], this procedure returns the optimal ex-
ecution plan for each input query over the space of all pos-
sible configurations. In other words, assuming that no stor-
age constraint is given, we obtain the tightest possible upper
bound for the improvement of each optimized query, which
is precisely our goal. Unfortunately, the plan obtained as
described above is not necessarily executable, since it might
refer to hypothetical indexes. For that reason, we would
require a second optimization of the query, this time using
only the existing indexes. In this way, after two optimiza-
tion calls we obtain both the best hypothetical plan when
all possible indexes are present and the best “executable”
plan that only uses available indexes. Since optimizing each
query twice during normal operation is expensive, we next
show how to interleave the two optimization calls and simul-
taneously obtain both execution plans with less overhead
(see Section 6 for experimental results).



For that purpose, we modify the optimizer by adding a
new sub-plan property, which we call feasibility. A sub-plan
is feasible if it does not refer to hypothetical indexes in any
of its physical operators. Additionally, we extend the access
path generation module so that after generating all the tra-
ditional index strategies, it produces a new candidate with
the best hypothetical index. This last index strategy (by
definition) is the most efficient alternative, so in a normal
situation we would immediately discard the remaining in-
dex strategies as being suboptimal. Instead, we exploit the
feasible property analogously to interesting orders in a tra-
ditional System-R optimizer or the notion of required prop-
erties in Cascades-based optimizers. The net effect is that
we maintain suboptimal, feasible plans. As a consequence
of applying this strategy, at the end of query optimization
we obtain both the best feasible and overall plans, which
correspond, respectively, to the best execution plans when
no hypothetical indexes are present, and when all possible
hypothetical indexes are available. The best feasible plan
is the same that would have been obtained by a traditional
optimizer, so we use it for query execution. The best overall
plan correspond to the optimal execution plan over all pos-
sible configuration, and we use it to obtain an upper bound
on the improvement of a comprehensive tool.

In summary, we introduced two techniques to obtain up-
per bounds on the improvement of a comprehensive tool.
These approaches trade off efficiency during with tightness
of the bound. In Section 6 we contrast these alternatives.

5. EXTENSIONS TO THE BASIC MODEL
We now discuss some extensions to the techniques de-

scribed earlier that take into account important factors such
as query updates and materialized views.

5.1 Update Queries
So far we implicitly focused on discussing workloads com-

posed entirely of SELECT queries. In reality, most workloads
consist of a mixture of select and update queries, and phys-
ical design tool must take into consideration both classes to
be useful. The main impact of an update query is that some
(of all) indexes defined over the updated table must also be
updated as a side effect.

Similarly to [3], we conceptually separate each update
query into two components: a pure select query (which
we process as before), and a small update shell (which we
process separately). For instance, the following query:

UPDATE T SET a=b+1, c=c*2 WHERE a<10 AND d<20

is seen as (i) a pure query and (ii) an update shell:

(i) SELECT b+1, c*2 FROM T WHERE a<10 and d<20

(ii) UPDATE TOP(k) T SET a=a, c=c

where k is the estimated cardinality of the corresponding
select query. We next explain how the different components
in the alerter are extended to handle updates.

Instrumenting the Query Optimizer
In addition to the AND/OR tree discussed in Section 2 for
select queries, we also gather information for the update
shells during optimization. Specifically, for each update
query we store (i) the updated table, (ii) the number of
added/changed/removed rows, and (iii) the query type (i.e.,
insert, delete or update). We note that this is the only infor-
mation required to calculate the update overhead imposed

by a new arbitrary index. By using the optimizer cost model,
we can accurately calculate the cost of any update shell for
a given index. The difference in cost of an AND/OR request
tree for a given configuration C is extended for the case of
updates as ∆T

C +
�

I∈C

�
u∈update shells updateCost(I, u).

The Alerter Main Algorithm
The presence of update queries requires two changes to the
algorithm of Figure 5. First, we need to relax the predicate
on line 3 by removing the condition on the minimum im-
provement P . The reason is that when updates are present,
we can transform a configuration into another that is both
smaller and more efficient. This happens when the indexes
that we are removing or merging have large update overhead
and relatively smaller benefits for query processing. For that
reason, we cannot stop the loop in lines 3-7 after the first
configuration with an improvement below P because a later
configuration might again put the improvement above P .

For the same reason, some configurations in R might dom-
inate others (i.e., a configuration in R can be both smaller
and more efficient than another in R). This cannot hap-
pen unless updates are present because each transformation
decreases both the size of the configuration and its perfor-
mance. As a postprocessing step, we eliminate the domi-
nated configurations from R so that the alert does not con-
tain redundant information and is easily analyzable.

Upper Bounds for Improvement
When updates are present, we refine the upper bounds of
Section 4 by adding the necessary work by any update shell
(i.e., the cost of each update shell for all the indexes that
must be present in any configuration). We note that this
extension makes the upper bound discussed in Section 4.2
loose, since there might be no configuration that meets the
upper bound even without storage constraints.

5.2 Materialized Views
Physical design tools not only recommend indexes but also

materialized views. One of the main challenges of extending
our techniques to handle materialized views is the increased
overhead at virtually every step in our algorithms. We next
discuss extensions to our techniques that address material-
ized views and their associated overhead issues.

Similar to the access path selection module illustrated in
Figure 2, query optimizers rely on a view matching compo-
nent that, once invoked with a sub-query, returns zero or
more equivalent rewritings of such query using an available
view in the system. We can instrument the optimizer to an-
alyze such requests and tag the root of every sub-query that
is passed to the view matching mechanism as in the case of
index requests. These view requests are more complex than
index requests, since we have to encode the view expression
itself (which might contain joins, grouping clauses and com-
puted columns). However, the idea is still the same, and at
the end of query optimization we return an AND/OR tree that
contains both index and view requests8, along with the cost
of the best execution sub-plan found by the optimizer (which
might or might not use materialized views). As a simple ex-
ample extending Figure 3, an additional view request ρV

with definition ΠT1.w �σT1.a=5(T1) ./x=y T2� is attached to

8
The resulting request tree is not necessarily simple anymore as in

Property 1 due to the different places that the optimizer might invoke
the view matching component.



the join node that currently contains ρ2. The cost associ-
ated with ρV would be 0.23 time units, since that is the
cost for the best sub-plan found by the optimizer. When
creating the AND/OR tree, we extend the algorithm in Fig-
ure 4 by ORing each node that contains a view request with
the original AND/OR tree that would result if no view requests
are present. The reason is that we can either implement
the index requests in the sub-trees or the view request, but
not both. In the example, the normalized request tree is
AND( OR( AND(ρ1, ρ2), ρV ), OR(ρ3, ρ5)), which is not sim-
ple anymore as in Property 1.

When view matching succeeds, the optimizer rewrites the
corresponding sub-query with the view, and subsequently
issues index requests to obtain physical sub-plans with in-
dexes over materialized views. View requests are inherently
less precise than index requests, since we usually have no in-
formation on what index strategies would be requested over
the corresponding views if these are not matched during op-
timization. However, as explained in Section 3, our lower
bound techniques only require that we generate valid sub-
plans rooted at requests. In those situations, we can simply
generate the naive plan that sequentially scans the primary
index of the materialized view and filters all the relevant
tuples. This would be a loose bound in general, because
specialized indexes over the materialized views can evalu-
ate the same sub-query more efficiently. However, in many
situation this technique provides reasonable approximations
(specially for aggregate views that return a few tuples after
performing complex computation).

Full processing of materialized views might be too expen-
sive for an alerting mechanism as described in this work,
because the new search space becomes larger and more com-
plex. However, the simple extensions described in this sec-
tion might be a good compromise between the quality of
improvement bounds and the overhead required to obtain
them. We believe that an interesting piece of future work
is to evaluate the techniques of this paper for the case of
materialized views and extend the ideas to other physical
design features (e.g., partitioning).

6. EXPERIMENTAL EVALUATION
In this section we report an experimental evaluation of

our proposed techniques over both synthetic and real data-
bases (see Table 1 for a summary of the experimental set-
ting). We implemented the client component of the alerter
in C++ and modified Microsoft SQL Server 2005 to support
our extensions of Section 2 and 4. When experiments require
a comprehensive tuning tool, we use Microsoft SQL Server
Database Tuning Advisor [1]. The aim of this section is
to show that the alerter results in very efficient executions
with good quality upper and lower improvement bounds.
The metric to evaluate a recommendation is improvement,
defined as:

improvement(CI , CR, W ) = 100% · �1 −
cost(W, CR)

cost(W, CI) �
where CI is the initial configuration, CR is the recommended
configuration, and cost(W,C) is the expected cost of evalu-
ating all queries in the workload W for configuration C.

6.1 Single-Query Workloads
We first evaluated the simplest scenario for our techniques:

returning lower and upper improvement bounds for single-
query workloads and no storage constraints. Specifically, we

Database Size #Tables #Queries
TPC-H (Synthetic) 1.2 GB 8 24
Bench (Synthetic) 0.5 GB 6 144
DR1 (Real) 2.9 GB 116 30
DR2 (Real) 13.4 GB 34 10

Table 1: Databases and workloads evaluated.

ran the main alerter algorithm with each of the 22 queries of
the TPC-H benchmark [12]. Figure 6 shows the results, where
each bar corresponds to a different query and reports the
lower bound, fast upper bound and tight upper bound im-
provements obtained using the techniques of Section 3 and 4.
Since each workload consists of a single query and we do not
specify any storage constraint, the tight upper bounds agree
with the optimal improvement that a comprehensive tuning
tool would recommend.
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Figure 6: Lower and upper bounds for TPC-H.

We see that in virtually all cases (except for Q4) the lower
bound improvement obtained by our techniques is relatively
tight (less than 20% worse than the tight upper bound, or
global optimum improvement). This shows that the lower
bound technique is adequate to obtain good configurations
by only analyzing local plan changes according to winning
requests. The difference between the lower and tight upper
bounds represents the difference in cost between the locally
optimal execution plan obtained by implementing each win-
ning request as efficiently as possible and the globally opti-
mal execution plan obtained by fully optimizing the query
with all possible indexes. We see in the figure that about
half of the queries agree between locally and globally opti-
mal plans. In such cases, our lower bound technique is as
tight as possible. Finally, the difference between the tight
and fast upper bounds represents the loss in quality that we
incur when obtaining upper bounds very efficiently (without
changing the query optimizer). In most of the cases the dif-
ference is modest (from 0% to 10%), but there are cases with
a 30% and even 40% gap. These situations correspond to
query plans that contain expensive intermediate operators.
Our fast upper bounds do not account for such operators
and therefore underestimate the best cost of the queries.

6.2 Multi-Query Workloads
We next evaluate the main alerter algorithm. For that

purpose, we used the synthetic and real databases of Ta-
ble 1. The original physical design for each database con-
sisted of all the primary indexes and, for the real databases,
additional secondary indexes (databases DR1 and DR2 had an
average of 2.1 and 4.2 indexes per table, respectively). For
each experiment, we executed the respective query work-
loads and then passed the information gathered during query
optimization to the client alerter application. Figure 7 re-
ports the results of this experiment, showing the lower, fast
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(a) TPC-H data set.
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(b) Bench data set.
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(c) DR-1 data set.
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(d) DR-2 data set.

Figure 7: Complex workloads and storage con-
straints.

upper, and tight upper bounds returned by our techniques,
and also the improvement obtained by running a compre-
hensive tuning tool. In all cases, the alerter returned the
skyline of lower and upper bounds in less than a second.

We did not specify any storage constraints, so the alerter
returned all configurations with positive improvement re-
gardless of their sizes. Specifically, we range the config-
uration sizes from the minimum possible (i.e., when only
the primary indexes are present) to the maximum possible
(when the best indexes for all the requests in the AND/OR tree
are available). We see that the alerter returns useful lower
bounds. In the figure, when the size of the configuration is
two to three times that of the smallest possible one (a rea-
sonable storage constraint) , the lower bounds returned by
the alerter are just 10% to 20% below the best configurations
found by a comprehensive tuning tool.

In Figure 7(c) the difference between lower and upper
bounds is smaller than for the other workloads since in this
scenario index merging is very effective and therefore we can
reduce the storage significantly without losing efficiency. In
general, upper bounds present the following behavior: when
no storage is given, the difference between the lower and
tighter upper bound comes from locally versus globally op-
timal plans as discussed in Section 3.1. Since we do not
perform any search for upper bounds, these values are in-
dependent of the storage constraint. Therefore, the smaller
the space constraint, the larger the difference between upper
and lower bounds.

Varying the Initial Physical Design
In this section we vary the initial physical design for a given
fixed workload, and analyze the behavior of the alerter when
the database is already (at least partially) tuned. For that
purpose, we took the original TPC-H database with only pri-
mary indexes and triggered the alerter with the input work-
load (see Figure 7(a), repeated in Figure 8 with the C0 la-
bel). We then implemented the recommended configuration
for 1.5GB of storage as C1 in the database, re-executed the
workload, and triggered the alerter once again. We contin-
ued in this way, obtaining C2 as the recommended configura-
tion for 2GB when starting from C1, C3 as the recommended
configuration for 2.5GB when starting from C2, and so on.
Figure 8 shows the results of the alerter for the same work-
load and different initial configurations. We can see that
when using a better initial configuration than C0, the over-
all gains returned by the alerter are smaller, because there
are fewer opportunities for optimization. Also, if we keep
the storage constraint fixed, we can see that the expected
improvement of an already tuned workload is close to zero,
as expected. For instance, there is virtually no expected
improvement for C1 and 1.5GB, because C1 was the config-
uration that the alerter recommended from C0 for 1.5GB.

Figure 8 shows that, for a given storage constraint and
minimum improvement, the alerter would trigger an alarm
only for certain configurations. For instance, if the original
configuration is C5 and the minimum improvement is 30%,
the alerter would not trigger any alarm independent of the
storage constraint, since C5 is already a good configuration.
For a 20% improvement and 3GB of maximum storage, the
alerter would only trigger alarms for C0, C1, and C2. Con-
trast this behavior with that of Figure 7, in which the alerter
would (correctly) trigger an alarm for all the workloads for a
storage constraint twice as large as the size of the (untuned)
databases and a minimum improvement of 30%.

Figure 8 also indirectly shows the effect of locally optimal
plans discussed in Section 3.1. We can see that the im-
provement for C4 around 4.5GB-5GB is larger than that of
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Figure 9: Varying workloads.

C3. The reason is that the improvement for C3 is measured
with respect to the best locally optimal plan. Of course,
when considering C4, the execution plans for the queries
in the workload might be even better than the best locally
optimal ones with respect to C3, and therefore might new
optimization opportunities. These opportunities are only
captured when optimizing the workload under C4.

Varying the Workload
In this section we analyze our techniques when we vary the
query workload. For that purpose, we generated a work-
load W0 consisting of random instances of the first 11 query
templates of the TPC-H workload, and tuned the database us-
ing a comprehensive tuning tool (the resulting configuration
was around 2.5GB). Then, we generated three workloads:
W1 (which consists of additional random instances of the
first 11 queries of the TPCH-H workload and therefore follows
W0), W2 (which consists of random instances of the last 11
queries of the TPC-H workload and therefore is different from
W0), and W3 = W1 ∪ W2. Figure 9 shows the results of the
alerter when triggered for each of W1, W2 and W3. We can
see that if the workload characteristics do not change (W1)
the tuned configuration is already optimal and the alerter
would not issue an alarm. On the other hand, workload W2

results in the alerter giving over a 60% improvement when
no storage is given. Note that for W2 the alerter gives posi-
tive benefit even below the size of the original configuration
(i.e., 2.5GB) but it does not give any improvement below
2GB. The reason is that some of the indexes of the original
configuration do help the queries in W1, and below 2GB we
cannot find anything better than a subset of what was al-
ready present initially. Finally, W3 results in an expected
intermediate behavior.

6.3 Client/Server Overhead
In this section we report the overhead of our techniques

for different databases and workloads. Table 2 shows the ex-
ecution time of the alerter (without counting the workload
gathering step). We see that even for hundreds of input
queries the alerter executes in the order of seconds (in many
cases, in less than one second). We note that the number of
queries in Table 2 refers to the number of distinct queries in
the workload. In fact, if the same query is executed multiple
times, we scale up the costs of the AND/OR request tree but
do not augment the tree with additional information. The
execution cost of the alerting client is therefore proportional
to the number of distinct queries in the workload. For com-
pleteness, we also tuned the same workloads with a commer-
cial physical design tool (we only tuned for indexes using the
commercial tool, to avoid comparing different feature sets).
In these situations, the alerting mechanism was several or-
ders of magnitude more efficient than comprehensive tools,
and thus a valuable addition to the DBA’s toolkit.

Database Queries Requests Alerter

TPC-H 22 113 0.21 secs.
100 662 0.33 secs.
500 3344 1.25 secs.
1000 6680 4.25 secs.

Bench 60 215 0.37 secs.
DR1 11 114 0.12 secs.
DR2 11 215 0.36 secs.

Table 2: Client overhead for the alerter.

Figure 10 shows the server overhead when gathering work-
load information. Specifically, we took each of the 22 TPC-H

queries, and measured the increase in optimization time
when we additionally gathered the information required for
obtaining both lower bounds and either fast or tight upper
bounds. We see that if we use the fast upper bounds the
overhead over traditional optimization is very low (below 1%
for all but one query which results in 3% overhead). When
using the tighter upper bound technique, the overhead sig-
nificantly increases (reaching as high as 40% overhead for
some complex queries). We analyzed these cases and a
significant portion of the overhead comes from redundant
work that our prototype executes during query optimiza-
tion. While we believe that a more careful implementation of
the techniques of Section 4.2 would significantly reduce the
overhead in Figure 10, it would still be considerably higher
than that of the fast upper bounds. We believe that both
mechanisms can be useful since they balance the overhead
at optimization time and the resulting quality of the upper
bounds. Upper bounds are an important addition that re-
duces the chances of false negatives, but the crucial aspect
of the alerter is the ability to give robust lower bounds. If
we eliminate any upper bound mechanism in the server, the
overhead drops below 1% in all cases.

7. RELATED WORK
In recent years there has been considerable research on

automating the physical design in database systems. Sev-
eral pieces of work (e.g., [2, 5, 7, 13, 15]) present solutions
that consider different physical structures, and some of these
ideas started appearing in commercial products (e.g., [1, 8,
14]). This line of work, while successful, fails to address the
scenarios discussed in the introduction. Specifically, DBAs
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Figure 10: Server overhead for the alerter.

do not know when tuning a workload would result in a sen-
sible improvement short of running expensive tuning tools.
In this paper we complement such techniques by providing
a lightweight alerting mechanism that identifies when an ex-
pensive tuning session would be useful.

Previous work in the literature presents transformations
that can be exploited for physical database design. Refer-
ence [7] introduces the concept of index merging. Similarly,
reference [2] exploits a few transformations to combine the
information in materialized views. Reference [4] considers
a unified approach of primitive operations over indexes and
materialized views that can form the basis of physical design
tools. In this work we leverage these ideas and select a sub-
set of transformations that balance the overhead at runtime
and the quality of the resulting configurations.

Some of the ideas in this work are inspired by [3]. We share
with this reference the goal of transforming a given config-
uration into another one that fits in the available storage,
using for that purpose an instrumented optimizer. However,
our focus is significantly different from that of [3]. Specifi-
cally, our goal is not to produce an optimal physical design.
Rather, the focus of the current work is to produce lower
and upper bounds very efficiently. This trade-off resulted
in a significantly different technique presented in the cur-
rent paper. Specifically, we generate (suboptimal) configu-
rations that are relatively close to the ones obtained by the
techniques in [3], and we produce such solutions orders of
magnitude more efficiently that the techniques in [3]. This
is achieved by a novel interception mechanism to extract ad-
ditional information from the optimizer and thus avoid opti-
mization calls completely when executing the alerter (in con-
trast, the relaxation-based approach in [3] repeatedly calls
the optimizer during its search phase). The techniques in [3]
are indeed an example of a comprehensive tuning tool that
would be invoked after receiving an alert based on the tech-
niques of this work.

8. CONCLUSIONS
Motivated by the complexity of today’s automated physi-

cal design tools, in this paper we propose a new architecture
for the automatic physical design cycle in a DBMS. Specifi-
cally, we developed a crucial component, the alerter, which
is a low-overhead procedure that runs periodically during
normal operation of a DBMS and alerts DBAs if the current
configuration is suboptimal. The alerter reports lower and
upper bounds on the improvement that could be obtained
if a comprehensive tuning tool is launched, and justifies the
lower bounds by generating feasible configurations.
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