A Statically Verifiable Programming Model for
Concurrent Object-Oriented Programs

Bart Jacobs'*, Jan Smans'*, Frank Piessens', Wolfram Schulte?

! DistriNet, Dept. Computer Science, K.U.Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium
{bartj,jans,frank } @cs.kuleuven.be

2Microsoft Research
One Microsoft Way, Redmond, WA, USA
schulte@microsoft.com

Abstract. Reasoning about multithreaded object-oriented programs is
difficult, due to the non-local nature of object aliasing, data races, and
deadlocks. We propose a programming model that prevents data races
and deadlocks, and supports local reasoning in the presence of object
aliasing and concurrency. Our programming model builds on the multi-
threading and synchronization primitives as they are present in current
mainstream languages. Java or C# programs developed according to
our model can be annotated by means of stylized comments to make the
use of the model explicit. We show that such annotated programs can be
formally verified to comply with the programming model. In other words,
if the annotated program verifies, the underlying Java or C# program is
guaranteed to be free from data races and deadlocks, and it is sound to
reason locally about program behavior. We have implemented a verifier
for programs developed according to our model in a custom build of the
Spec# programming system, and have validated our approach on a case
study.

1 Introduction

Writing correct multithreaded software in mainstream languages such
as Java or C# is notoriously difficult. The non-local nature of object
aliasing, data races, and deadlocks makes it hard to reason about the
correctness of such programs. Moreover, many assumptions made by de-
velopers about concurrency are left implicit. For instance, in Java, many
objects are not intended to be used by multiple threads, and hence it
is not necessary to perform synchronization before accessing their fields.
Other objects are intended to be shared with other threads and accesses
should be synchronized, typically using locks. However, the program text
does not make explicit if an object is intended to be shared, and as a

* Bart Jacobs and Jan Smans are Research Assistants of the Fund for Scientific Re-
search - Flanders (Belgium) (F.W.0O.-Vlaanderen)

consequence it is practically impossible for the compiler or other static
analysis tools to verify if locking is performed correctly.
The contributions of this paper are as follows:

— We propose a programming model for concurrent programming in
Java-like languages, and the design of a set of program annotations
that make the use of the programming model explicit. For instance,
a developer can annotate his code to make explicit whether an object
is intended to be shared with other threads or not. These annota-
tions provide sufficient information to static analysis tools to verify if
locking is performed correctly: shared objects must be locked before
use, unshared objects can only be accessed by the creating thread.
Moreover, the verification can be done modularly, hence verification
scales to large programs.

— Our programming model ensures absence of data races and dead-
locks, and provides a sound approach for local reasoning about pro-
gram behavior.

— We have prototyped a verifier as a custom build of the Spec# pro-
gramming system [1,2], and in particular its program verifier for
sequential programs.

— Through a case study we show the model is usable in practice, and
the annotation overhead is acceptable.

Our programming model builds on and extends the Spec# programming
methodology [3] that enables sound reasoning about object invariants.
The rest of the paper is structured as follows. We introduce the method-
ology in three steps. The model of Section 2 prevents low-level data
races on individual fields. Section 3 adds deadlock prevention. The final
model, which adds prevention of races on data structures consisting of
multiple objects, is presented in Section 4. Each section consists of three
subsections, that elaborate the programming model, the program an-
notations, and the static verification rules, respectively. The remaining
sections discuss additional features, experience, and related work, and
offer a conclusion.

2 Preventing data races

A data race occurs when multiple threads simultaneously access the same
variable, and at least one of these accesses is a write access. Developers
can protect data structures accessed concurrently by multiple threads
by associating a mutual exclusion lock with each data structure and
ensuring that a thread accesses the data structure only when it holds
the associated lock. However, mainstream programming languages such
as Java and C# do not force threads to acquire any locks before accessing
data structures, and they do not enforce that locks are associated with
data structures consistently.

A simple strategy to prevent data races is to lock every object before
accessing it. Although this approach is safe, it is rarely used in practice
since it incurs a major performance penalty, is verbose, and is prone
to deadlocks. Instead, standard practice is to only lock the objects that
are effectively shared between multiple threads. However, it’s hard to

distinguish shared objects (which should be locked) from unshared ob-
jects based on the program text. As a consequence, a compiler cannot
enforce a locking discipline where shared objects can only be accessed
when locked without additional annotations.

An additional complication is the fact that the implementation of a
method may assume that an object is already locked by its caller. Hence,
the implementation will access fields of a shared object without locking
the object first. In such a case, merely indicating which objects are shared
does not suffice. The implementor of a method should also make his as-
sumptions about locks that are already held by the calling thread explicit
in a method contract.

In this section, we describe a simple version of our programming model
that deals with data races on the fields of shared objects. Later sections
develop this model further to deal with deadlocks and high-level races
on multi-object data structures.

2.1 Programming model

We describe our programming model in the context of Java, but it applies
equally to C# and other similar languages.

In our programming model, accesses to shared objects are synchronized
using Java’s synchronized statement. A thread may enter a synchronized
(o) block only if no other thread is executing inside a synchronized (o)
block; otherwise, the thread waits. In the remainder of the paper, we
use the following terminology to refer to Java’s built-in synchronization
mechanism: when a thread enters a synchronized (o) block, we say it
acquires 0o’s lock or, as a shorthand, that it locks o; while it is inside the
block, we say it holds o’s lock; and when it exits the block, we say it re-
leases 0’s lock, or, as a shorthand, that it unlocks o. Note that, contrary
to what the terminology may suggest, when a thread locks an object,
the Java language prevents other threads from locking the object but it
does not prevent other threads from accessing the object’s fields. This
is the main problem addressed by the proposed methodology. While a
thread holds an object’s lock, we also say that the object is locked by
the thread.

An important terminological point is the following: when a thread t’s
program counter reaches a synchronized (o) block, we say the thread
attempts to lock o. Some time may pass before the thread locks o, specif-
ically if another thread holds o’s lock. Indeed, if the other thread never
unlocks o, t never locks o. The distinction is important because our pro-
gramming model imposes restrictions on attempting to lock an object.
Our programming model prevents data races by ensuring that no two
threads have access to a given object at any one time. Specifically, it
conceptually associates with each thread ¢ an access set t.A, which is
the set of objects whose fields thread ¢ is allowed to read or write at
a given point, and the model ensures that no two threads’ access sets
ever intersect. Access sets can grow and shrink when objects are created,
objects are shared, threads are created, or when a thread enters or exits
a synchronized block. Note that these access sets do not exist at run

time: we use them to explain the programming model, and to implement
the static verification.

— Object creation. When a thread creates a new object, the object is
added to the creating thread’s access set. This means the constructor
can initialize the object’s fields without acquiring a lock first. This
also means single-threaded programs just work: if there is only a
single thread, it creates all objects, and can access them without
locking.

— Object sharing. In our model, the program state is extended with
a new state variable for each object, called the object’s sharing mode.
This variable has two possible values: unshared and shared. Sharing
modes, like access sets, are conceptual: they are not present at run
time, but used to explain the model and implement the verification.
A new object is initially in the unshared state. Threads other than
the creating thread are not allowed to access its fields. In addition, no
thread is allowed to attempt to lock an object in the unshared state:
our programming model does not allow a synchronized(o){...} op-
eration unless o is shared. In our programming model, objects that
are not intended to be shared are never locked.

If, at some point in the code, the developer wants to make the object
available for concurrent access, he has to indicate this through an
annotation (the share o annotation). From that point on, the object
o is in the shared state, and threads can attempt to acquire the
object’s lock. When transitioning from the unshared to the shared
state, the object is removed from the creating thread’s access set.
If, subsequent to this transition, any thread, including the creating
thread, wishes to access the object, it must acquire its lock first.
Once shared, an object can never revert to the unshared state.

— Thread creation. Starting a new thread transfers the accessibility
of the receiver object of the thread’s main method (i.e. the Runnable
object in Java, or the ThreadStart delegate instance’s target object
in the .NET Framework) from the starting thread to the started
thread. Otherwise, the thread’s main method would not be allowed
to access its receiver.

— Acquiring and releasing locks. When an object transitions to
the shared state, it is removed from the creating thread’s access set.
Since the object is now not part of any thread’s access set, no thread
is allowed to access it. To gain access to such a shared object, a thread
must lock the object first. When a thread acquires an object’s lock,
the object is added to that thread’s access set. And vice versa, when
a thread releases the lock, the object is removed from its access set.

As illustrated in Figure 1, an object can be in one of three states:
unshared, free (not locked by any thread and shared) or locked (locked
by some thread and shared). Initially, an object is unshared. Some ob-
jects will eventually transition to the shared state (at a program point
indicated by the developer). After this transition, the object is not part
of any thread’s access set and is said to be free. To access a free object, it
must be locked first, changing its state to locked and adding the object
to the locking thread’s access set. Unlocking the object removes it from
the access set and makes it free again.

shared

new

unlock

Fig. 1. The three states of an object.

Let’s summarize. Threads are only allowed to access objects in their
corresponding access set. A thread’s access set consists of all objects
whose lock it holds, and the objects it has created but not shared yet.
Our programming model prevents data races by ensuring that access sets
never intersect.

2.2 Program annotations

In this section we elaborate on the annotations needed by our approach
by means of the example shown in Figure 2. The example consists of a
program that observes events from different sources and keeps a count of
the total number of events observed. Since the count is updated by mul-
tiple threads, it is subject to data races unless precautionary measures
are taken. Our approach ensures that it’s impossible to “forget” to take
such measures.

In our prototype implementation (see Section 6), annotations are written
as stylized comments. But to improve readability, we use a language
integrated syntax in this paper.

The program shown in Figure 2 is a Java program augmented with a
number of annotations (indicated by the gray background). More specif-
ically, three sorts of annotations are used: share commands, shared
modifiers and method contracts.

— The share command makes an unshared object available for concur-
rent access by multiple threads. In the example, the counter object
is shared between all sessions.

— Fields and parameters can be annotated with a shared modifier,
indicating they can only hold shared objects. The field counter of
Session is an example of a field with a shared modifier.

— Method contracts are needed to make modular verification possible.
They consist of preconditions and postconditions. A precondition
states what the method implementation assumes about the current
thread’s access set (denoted as tid.A) and about the states of rele-
vant objects. For instance, the precondition of the run method re-
quires the receiver to be part of the current thread’s access set.
Postconditions state properties of access sets and object states which
must hold when the method returns. For example, the postcondition
of Session’s constructor guarantees that the new object is in the cur-
rent thread’s access set and that the new object is still unshared.

class Counter {
int count;
Counter()

ensures this € tid. A A this.sharingMode = unshared,;

{
}

class Session implements Runnable {
shared Counter counter;
int sourceld;
Session(Counter counter, int sourceld)
requires counter.sharingMode = shared;

ensures this € tid.A A this.sharingMode = unshared,;
{

this.counter := counter;

this.sourceld := sourceld;

public void run()
requires this € tid.A;

{
for (;;) {
// Wait for event from source sourceld (not shown)
synchronized (counter) {
counter.count+-+;

}
}
}
}

class Program {
static void start() {
Counter counter := new Counter();
share counter;
new Thread(new Session(counter,1)).start();
new Thread(new Session(counter,?2)).start();

}
}

Fig. 2. Example program illustrating the approach of Section 2.

Note that our annotations are entirely erasable, i.e. they have no effect
whatsoever on the execution of the program.

The example program is correctly synchronized, and the annotations en-
able our static verifier to prove this. We discuss in the next subsection
how this is done. If the developer forgets to write the synchronized
block in the run method, the program is no longer correctly synchro-
nized. Specifically, the access of counter.count in method run violates
the programming model, since object counter is not in the thread’s ac-
cess set.

Thread creation To verify the example, we also need the method
contracts of all library methods used by the program. These are shown
in Figure 3.

The method contracts shown in Figure 3 encode the programming model’s
rules regarding thread creation.

— The Thread constructor requires its Runnable argument to be in the
calling thread’s access set. The constructor removes the Runnable
object from the access set and associates it with the Thread object.
Indeed, the constructor’s postcondition does not state that in the
post-state, the Runnable object is still in the access set, and therefore
the caller cannot assume this and can no longer access the Runnable
object.

— When method start is called, a new thread is started and the Runnable
object associated with the Thread object is inserted into the new
thread’s access set. Method run’s precondition allows the method to
assume that its receiver is in the access set.

public interface Runnable {
void run();

requires this € tid.A;

}

public class Thread {
public Thread(Runnable runnable)

requires runnable € tid.A;

ensures this € tid. A A this.sharingMode = unshared;
public void start()

requires this € tid. A;

(...}

Fig. 3. Contracts for the library methods used by the program in Figure 2.

2.3 Static verification

We have explained our programming model informally in the previous
sections. In this section we define the model formally, and show how
we can statically verify adherence to the model in a modular (i.e. per-
method) way.

We proceed as follows: a program P enriched with our annotations is
translated to a verification-time program P’ enriched with assertions and
classical method contracts. This translation defines the semantics of our
annotations, and is the formal definition of our programming model: the
original annotated program P is correct according to our model, if and
only if the translated program P’ is correct with respect to its assertions
and classical method contracts. To check if the translated program P’ is
correct, we use an existing automatic program verifier for single-threaded
programs. Our experiments show (Section 6) that state-of-the-art veri-
fiers are capable of verifying realistic programs in this way.

The contributions of this paper are in the design of the annotation syntax
(for the multithreading-specific annotations) and the translation of the
annotated program; we use existing technology [2] for sequential program
verification. The translation involves two things. In a first step, we in-
sert additional verification-only fields and variables into the program (so
called ghost fields and ghost variables) to track the state necessary to do
the verification. The ghost variable tid.A represents the current thread’s
access set, and each object o is extended with a ghost field o.sharingMode,
whose possible values are unshared and shared. We denote sets of objects
as arrays of booleans indexed by objects. For example, S[o] < true adds
object o to set S.

Then, in a second step each method of the original program is translated
in such a way that the translated method can be verified modularly. The
method contracts that the developer writes in annotations are classical
method contracts on the ghost state introduced in the first step. The
code and other annotations written by the developer are translated into
verification-time code and proof obligations (written as assertions) for the
verifier. The essence of the translation of code and annotations is shown
in Figure 4. It is a formalization of the programming model rules intro-
duced in Section 2.1. We ignore the fact that object references can be null
to reduce clutter. The verification-time code for a synchronized block
includes a havoc operation that assigns an arbitrary value to all fields
of the object being locked. This reflects the fact that other threads may
have modified these fields. Source program assignment and verification-
time assignment are shown as := and «—, respectively.

3 Lock levels for deadlock prevention

The approach of Section 2 prevents data races but it does not prevent
deadlocks. In this section, we introduce our approach to deadlock pre-
vention.

For the purpose of this paper, we define a deadlock to be a cycle of
threads such that each thread is waiting for the next thread to release

o:=new C; =
0 — new C;
o.sharingMode < unshared;
tid. A[o] « true;

share o; =
assert o € tid.A;
assert o.sharingMode = unshared;
tid. Afo] < false;
o.sharingMode < shared;

r:=o.f; =
zsiezt; € tid.4; synchronized (0) S =
o assert o.sharingMode = shared;
of =z = havoc o0.x;
assert o € tid. A; gd’A[o] o true;

if (f is declared shared)
assert x.sharingMode = shared;
o.f «— x;

assert o € tid. A;
tid. Afo] < false;

Fig. 4. Translation of source program commands to verification-time commands.

some lock. Formally, a deadlock is a sequence of threads to, ..., t,—1 and
a sequence of objects oo, ...,0on—1 such that ¢; holds o0;’s lock and is
trying to acquire o(;11) mod »’s lock. Threads involved in a deadlock are
stuck forever.

The prototypical way in which a developer can avoid deadlocks is by
defining a partial order over all shared objects, and by allowing a thread
to attempt to acquire an object’s lock only if the object is less than all
objects whose lock the thread already holds.

There are different common strategies for defining such a partial order.
A first one is to define the order statically. This approach is common in
case the shared objects protect global resources: code will have to acquire
these resources in the statically defined order. A second strategy is to de-
fine the order based on some field of the objects involved. For instance to
define a transfer operation between accounts, the two accounts involved
can be locked in order of the account number, thus avoiding deadlocks
while locking account objects.

In some cases the developer of a particular module may only wish to
impose partial constraints on the locking order or may wish to abstract
over a set of objects. For instance the developer of the Subject class in
the Subject-Observer pattern may wish to specify that Observers should
be locked before locking the Subject and not vice-versa. In other words,
all Observers are above the Subject in the deadlock prevention ordering.

3.1 Programming model

Our programming model is designed to support all three scenarios out-
lined above. The developer can indicate his intended ordering through
the intermediary of lock levels. A lock level is a value of the new primitive
type (existing only for verification purposes) locklevel. A new lock level
can be constructed between given existing lock levels using the construc-
tor between({/{,... ;Y {¢Z,. .. £B}), where 0 < m,n, provided that

each specified lower bound is below each specified upper bound; formally,
foreach 1 <7 <mand 1< j <n, 4 < Kf. The new value is above
0,02 and below €8, ... 0B There is no other way to construct a
lock level, which ensures that the less-than (<) relation on lock levels is
always a partial order.

In the model, a lock level is associated with an object the moment the
object is shared. This defines the lock order: for shared objects 01 and o2,
we have 01 < o2 iff 01.lockLevel < o2.lockLevel. A thread is only allowed
to lock an object if the object is less than the objects whose lock the
thread already holds.

The level of indirection introduced by the lock levels provides an easy
way to abstract over sets of objects. In the Subject-Observer example
discussed above, all Observer objects can be given the same lock level
(that should be above the Subject lock level).

3.2 Program annotations

In a concurrent Java or C# program, a lock ordering adopted by the
developers of a program for the purpose of deadlock prevention is not
explicit in the program text, although it can be documented informally in
comments. We propose annotations that make it possible for a developer
to document the intended ordering formally. As a consequence, static
verification of adherence to the ordering is possible (Section 3.3).

Three kinds of annotations are important. We discuss them using the
example of the Dining Philosophers program in Figure 5. The program
implements a deadlock-free solution to the Dining Philosophers prob-
lem with three philosophers. Our annotations explain formally why the
program is deadlock-free.

The first kind of annotation is the creation of a lock level using the
between constructor. The example defines the lock levels and their or-
dering statically in class Program’s start method. Three linearly ordered
levels are defined: levell < level2 < level3.

The second kind of annotation associates lock levels with shared objects.
The share annotation is extended to accept a lock level as the second
argument. Again, this happens three times in the example: each of the
forks is shared with its associated lock level. As a consequence, fork
objects are totally ordered, with forkl < fork2 < fork3. Hence, forks
can only be locked in descending order.

The third kind of annotations are the method contracts that make mod-
ular static verification possible. Method contracts make explicit what
assumptions the method makes about the ordering of parameter objects,
or about locks already held by the current thread. For instance the con-
structor of Philosopher expects its first argument to have a lower lock
level than the second argument, and the run method requires that the
current thread holds no locks.

These annotations enable a formal static verification of deadlock-freeness.

3.3 Static verification

Static verification is again done by translating the annotated program P
into a program P’ enriched with proof obligations for a static verifier (in

class Fork {

class Philosopher implements Runnable {
shared Fork forkl;
shared Fork fork2;

Philosopher(shared Fork forkl, shared Fork fork2)
requires forkl.lockLevel < fork2.lockLevel;

ensures this € tid. A A this.sharingMode = unshared,;

{
this.fork1 := forkl,

this.fork2 := fork2;

public void run()
requires this € tid.A;

requires tid.lockStack.isEmpty();

{
for (;5) {
synchronized (fork2) {
synchronized (fork1) {
// Use the forks to eat...

}
}
}
}
}

class Program {
static void start() {

locklevel levell := between({}, {});
locklevel level2 := between({levell}, {});

locklevel level3 := between({level2}, {});
Fork forkl := new Fork();
share (forkl,levell);
Fork fork2 := new Fork();
share (fork2, level2);
Fork fork3 := new Fork();
share (fork3,level3);
new Thread(new Philosopher(forkl, fork2)).start();
new Thread(new Philosopher(fork2, fork3)).start();
new Thread(new Philosopher(forkl, fork3)).start();
}
}

Fig. 5. Deadlock prevention for the Dining Philosophers

the form of classical method contracts and assertions). The translation
adds ghost fields and variables to track the necessary state. To track the
lock level of objects, we add to each object a ghost field called lockLevel,
whose value is either null or a lock level and whose initial value is nuli.
The field is written only once: when the object is shared a non-null
lock level is assigned to this field. This way, each shared object has an
immutable association with a lock level.

To track the locks that the current thread holds, we introduce a ghost
variable tid.lockStack, which is a stack containing the objects whose
lock the thread holds. Whenever a thread acquires an object’s lock, the
object is pushed onto the stack. Note that it follows that the top of the
stack is always the least of all objects on the stack. A thread is allowed
to acquire an object o’s lock only if the lock stack is empty or o’s lock
level is strictly less than the lock level of the object at the top of the
stack. We denote this condition as o < tid.lockStack.

The essence of the translation of an annotated program is summarized
in Figure 6.

share (o,1); =
assert o € tid.A;
assert o.sharingMode = unshared;
tid.A[o] < false;
o.sharingMode — shared;
o.lockLevel « ;

o:=new (; =
o0 < new C}
o.sharingMode < unshared;
tid. Afo] « true;

T:=o.f; = . _
assert o € tid. 4; synchronized (0) S =
7 — o.f; assert o.sharingMode = shared;
e assert o < tid.lockStack;
of = a = tid.lockStack.push(0);

havoc o.x;

assert o € tid. A; tid. Afo] — true;

if (f is declared shared)
assert x.sharingMode = shared;

assert o € tid.A;
o.f «— x;

tid. Afo] < false;
tid.lockStack.pop();

Fig. 6. Translation of source program commands to verification-time commands.

4 Invariants and Ownership

The approach as described in the preceding sections ensures absence of
low-level data races and deadlocks. However, it does not prevent higher-
level race conditions, where the programmer protects individual field
accesses, but not updates involving accesses of multiple fields or objects
that are part of the same data structure. As a result, accesses may be
interleaved in such a way that the data structure’s consistency is not
maintained.

4.1 Programming model

To prevent race conditions that break the consistency of multi-object
data structures, we integrate the Spec# methodology’s object invariant
and ownership system [3] into our approach, to obtain the final pro-
gramming model of this paper. This model supports objects that use
other objects to represent their state, and object invariants that express
consistency constraints on such multi-object structures.

The programming model requires the programmer to designate a subset
of each class’s fields as the class’s rep fields. The objects pointed to by
an object o’s non-null rep fields in a given program state are called o’s
rep objects. An object’s rep objects may have rep objects themselves,
and so on; we refer to all of these as the object’s transitive rep objects.
The fields of an object, along with those of its transitive rep objects, are
considered in our approach to constitute the entire representation of the
state of the object; hence the name. As will be explained later, a shared
object o’s lock protects both o and its transitive rep objects.

In addition to a set of rep fields, the programming model requires the
programmer to designate, for each class C, an object invariant, denoted
Invc (o) when applied to an object o of C. Invc(0) is a predicate that
may depend on the state of o, i.e. the fields of 0 and of its transitive rep
objects.

The object invariant for an object o need not hold in each program state;
rather, the programming model associates with each object a boolean
state variable called its inv bit." The programming model requires the
object invariant to hold only when the inv bit is true.

The programming model requires an object’s inv bit to be true when a
thread shares the object or unlocks it, i.e. when the object becomes free.
It follows that each free object’s inv bit is true and its object invariant
holds. As a result, when a thread locks an object, it may assume that
the object’s inv bit is true and its object invariant holds.

At the start of an object’s constructor, its inv bit is false. The pro-
gramming model requires the programmer to designate the regions of
code where an object’s invariant is supposed to hold by designating the
points where pack o; and unpack o; operations occur. The former sets
o’s inv bit to true, and the latter sets it to false.

To ensure that whenever an object’s inv bit is true, its object invariant
holds, the programming model imposes the following restrictions:

— A thread may assign to an object’s fields only when the object is in
the thread’s access set and the object’s inv bit is false. Furthermore,
the remaining restrictions ensure that whenever an object’s inv bit
is true, then so are those of its transitive rep objects. As a result, an
object’s state does not change while its inv bit is true.

— A thread is allowed to perform a pack o; operation only when 0’s
object invariant holds, its inv bit is false, and the inv bits of 0’s rep
objects are true. Furthermore, besides setting o’s inv bit to true, the
operation removes 0’s rep objects from the thread’s access set.

! Like the sharing mode, the inv bit is not a field in the actual program; it is a state
variable introduced only to explain the programming model.

— A thread is allowed to perform an unpack o; operation only when
0’s inv bit is true. The operation sets o’s inv bit to false and adds
o’s rep objects to the thread’s access set.

We say that an object owns its rep objects whenever its inv bit is true. It
follows from the above restrictions that an object has at most one owner.
Note that our approach supports ownership transfer; a rep object can be
moved from one owner to another by first unpacking both owners and
then simply updating the relevant rep fields.

4.2 Program annotations

The example in Figure 7 shows the annotations required by our final
methodology. A Rectangle object is used to store the bounds of an ap-
plication’s window. The Rectangle’s state is represented internally using
two Point objects, that represent the location of upper-left and lower-
right corner, respectively. If the user drags the window’s title bar, the
window manager moves the window, even if the application is painting
the window contents. Our methodology ensures that the application sees
only valid states of the Rectangle object.

Developers designate a class’s rep fields using the rep modifier, they
define a class’s object invariant using invariant declarations, and they
insert pack and unpack commands in method bodies. Additionally,
developers may denote an object o’s inv bit in method contracts, using
the o.inv notation.

4.3 Static verification

Figure 8 shows the translation of source program commands to input for
the sequential program verifier.

Note that the verification-time commands for a synchronized (o) block
havoc all objects that are not in the thread’s access set, rather than
just object o. This is necessary since other threads may have modified
not just o, but o’s transitively owned objects as well. Also, the assump-
tion encoded by the assume statement is justified by the programming
model, as explained above.

The verifier is additionally made aware of the following properties:

(Vo e 0.inv = Inv(o))
(Vo,p ® 0.inv A p € repobjects(o) = p.inv)

These are guaranteed to hold in each program state by the programming
model, as explained above.

5 Additional features

In this section we briefly describe how our approach supports subclassing,
and how it supports sharing immutable objects without synchronization.

class Point {
int z,y;
void move(int dz,int dy)
requires this € tid. A A this.inv; ensures this € tid.A A this.inv;
{ unpack this; z:=xz + dz; y:=y+ dy; pack this; }

}

class Rectangle {

rep Point ul,lr;

invariant ul.z < lr.x A ul.y < Ir.y;

void move(int dz,int dy)
requires this € tid. A A this.inv; ensures this € tid.A A this.inv;

{ unpack this; ul.move(dz, dy); Ir.move(dz, dy); pack this; }

int getHeight()
requires this € tid. A A this.inv; ensures this € tid.A A this.inv;
ensures 0 < result;

{ unpack this; int h:=lr.y — ul.y; pack this; return h; }

}

class Application {
shared Rectangle windowBounds;
void paint()
requires tid.lockStack.isEmpty();
requires this € tid. A A this.inv; ensures this € tid.A A this.inv;

{
int height;
synchronized (windowBounds) {
height := windowBounds.getHeight();

}

=
}

class WindowManager {

shared Rectangle windowBounds;
void mouseDragged (int dz,int dy)

requires tid.lockStack.isEmpty();
requires this € tid. A A this.inv; ensures this € tid.A A this.inv;

{

synchronized (windowBounds) {
windowBounds.move(dz, dy);
}

}
}

Fig. 7. An example illustrating our data race and deadlock prevention strategy, com-
bined with object invariants and ownership.

o:=new C; = o.f =z =

0 «— new () assert o € tid. A;
o.sharingMode < unshared; assert —o.inv;
tid. Afo] «— true; if (f is declared shared)
0.inv «— false; assert x.sharingMode = shared;
o.f «— x;
pack o; =
assert o € tid.A; share (o,1); =
assert —o.inv assert o € tid. A;
assert (Vp € repobjects(o) @ assert o.inv;
p € tid. A A p.inv); assert o.sharingMode = unshared;
assert Inv(o); o.lockLevel «— I;
0.1V «+— true; o.sharingMode < shared;

foreach (p € repobjects(o)) tid. Afo] < false;
tid. A[p| — false;

synchronized (0) S =

unpack o; = assert o.sharingMode = shared;
assert o € tid. A; assert o < tid.lockStack;
assert 0.inv; tid.lockStack.push(o);
o.inv — false; foreach (p ¢ tid.A) havoc p.x;
foreach (p € repobjects(o)) tid. A[o] — true;
tid. A[p] «— true; assume 0.inv;
S
r:=o.f; = assert o € tid. A;
assert o € tid. A; assert o.inv;
x — o.f; tid. Afo] < false;

tid.lockStack.pop();

Fig. 8. Translation of source program commands to verification-time commands (with
invariants and ownership).

5.1 Subclassing

All fields of a shared object are protected by the object’s lock, even if
those fields are not all declared by the same class.

Each class may declare an object invariant, so if an object is an instance
of multiple classes, multiple object invariants apply to it. We adopt the
Spec# methodology’s approach [3] by allowing an object to be fully
packed, which means all object invariants need to hold, fully unpacked,
which means none need to hold, or partially packed down to class C,
which means all object invariants declared by class C' and those declared
by its direct and indirect superclasses need to hold.

Our approach enforces the property that objects that are shared but not
locked (i.e., objects that are free) are fully packed.

5.2 Immutable objects

If after an object is shared, it is only ever inspected and never mutated,
then there’s no need to synchronize accesses. Our approach supports

this by splitting a thread’s access set into a read set and a write set, and
by splitting the shared sharing mode into a lockprotected mode and an
immutable mode. Correspondingly, the share command is replaced with
a share_lockprotected command and a share_ immutable command.
Sharing an object as immutable requires that it is unshared and in the
current thread’s write set. It removes the object from the write set and
adds it to each thread’s read set (even if the thread has not yet been
started). If the object has rep objects, they are recursively shared as
immutable and added to all read sets.

Whether an object is shared as lock-protected or as immutable, it must
be fully packed in both cases. As a result, an immutable object’s invariant
holds at all times.

Our approach supports writing classes that allow client code the freedom
to use some of the class’s objects as thread-local (unshared) objects, to
share some and protect them by their lock, and to share some as im-
mutable. Such a class typically provides inspector methods and mutator
methods. Only inspector methods can be called on immutable objects.
The unpack o; command requires o to be in the thread’s write set. To
allow an inspector method to access its receiver’s rep objects, regardless
of whether the receiver is writable or only readable, our approach includes
a read (o) block that adds o’s rep objects to the thread’s read set for
the duration of the block. It also temporarily removes o itself from the
write set (but not the read set); this is required for soundness.

6 Experience

To verify the applicability of our approach to realistic, useful programs,
we implemented it in a custom build of the Spec# program verifier [2]
and used it to verify a chat server application written in C# with annota-
tions inserted in the form of specially marked comments. The application
verifies successfully; this guarantees the following:
— The program is free from data races and deadlocks
— Object invariants, loop invariants, method preconditions and post-
conditions, and assert statements declared by the program hold
— The program is free from null dereferences, array index out of bounds
errors, and typecasting errors
— The program is free from races on platform resources such as network
sockets. This is achieved by enforcing concurrency contracts on the
relevant APT methods.
Table 1 shows the annotation overhead of four programs which we anno-
tated and verified. Programs chat and phone were derived from the ones
used in [4].
The prototype verifier and the sample programs are available from the
first author’s web site at http://www.cs.kuleuven.be/~bartj/.

7 Related Work

The Extended Static Checkers for Modula-3 [5] and for Java [6] attempt
to statically find errors in object-oriented programs. These tools include

Lines Lines
Program of Code | Changed or Added Overhead
chat 344 117 34%
phone 222 50 23%
prod-cons 84 24 29%
philosophers| 64 21 33%

Table 1. Annotation overhead

support for the prevention of data races and deadlocks. For each field,
a programmer can designate which lock protects it. However, these two
tools trade soundness for ease of use; for example, they do not take into
consideration the effects of other threads between regions of exclusion.
Moreover, various engineering trade-offs in the tools notwithstanding,
the methodology used by the tools was never formalized enough to allow
a soundness proof.

Method specifications in our methodology pertain only to the pre-state
and post-state of method calls. Some systems [7, 8] additionally support
specification and verification of the atomic transactions performed during
a method call. We focus on verification of object invariants, which does
not require such specifications.

A number of type systems have been proposed that prevent data races
in object-oriented programs. For example, Boyapati et al. [4] parame-
terize classes by the protection mechanism that will protect their objects
against data races. The type system supports thread-local objects, ob-
jects protected by a lock (its own lock or its root owner’s lock), read-only
objects, and unique pointers. However, the ownership relationship that
relates objects to their protection mechanism is fixed. Also, the type
system does not support object invariants.

Boyapati et al. prevent deadlocks by allowing the developer to declare
a fixed set of lock levels. Lock levels are assigned to objects as type
arguments. Additional expressiveness is gained by supporting locking
the nodes of a mutable tree data structure or an immutable DAG data
structure, and by ordering the objects of designated classes at run time.
We enable sequential reasoning and ensure consistency of aggregate ob-
jects by preventing data races. Some authors propose pursuing a different
property, called atomicity, either through dynamic checking [9], by way of
a type system [10], or using a theorem prover [11]. An atomic method can
be reasoned about sequentially. However, we enable sequential reasoning
even for non-atomic methods, by assuming only the object invariant for
a newly acquired object (see Figure 8). Also, in [10] the authors claim
that data-race-freedom is unnecessary for sequential reasoning. It is true
that some data races are benign, even in the Java and C# memory mod-
els; however, the data races allowed in [10] are generally not benign in
these memory models; indeed, the authors prove soundness only for se-
quentially consistent systems, whereas we prove soundness for the Java
memory model, which is considerably weaker.

Abrahdm-Mumm et al. [12] propose an assertional proof system for
Java’s reentrant monitors. It supports object invariants, but these can
depend only on the fields of this. No claim of modular verification is
made.

The rules in our methodology that an object must be consistent when it is
released, and that it can be assumed to be consistent when it is acquired,
are taken from Hoare’s work on monitors and monitor invariants [13].
There are also tools that try dynamically to detect violations of safe
concurrency. A notable example is Eraser [14]. It finds data races by
looking for locking-discipline violations. The tool has been effective in
practice, but does not come with guarantees about the completeness nor
the soundness of the method.

In the straightforward implementation proposed in this paper, mutual ex-
clusion is achieved through coarse-grained locking. However, the method-
ology allows one to use other semantically equivalent techniques that
may be more appropriate for particular contention patterns, while pre-
serving the same reasoning framework and safety guarantees. Possible
alternatives include fine-grained locking of the objects within an owner-
ship domain, or a form of optimistic concurrency, such as transactional
monitors [15].

The present approach evolved from the approach originally published in
[16]. It improves upon it by directly supporting platform-standard lock-
ing primitives, by preventing deadlocks, by adding support for immutable
objects, and by reporting on experience gained using a prototype imple-
mentation.

8 Conclusion

We propose a programming model for concurrent programming in Java-
like languages, and the design of a set of program annotations that make
the use of the programming model explicit and that enable automated
verification of compliance. Our programming model ensures absence of
data races and deadlocks, and provides a sound approach for local rea-
soning about program behavior. We have prototyped the verifier as a
custom build of the Spec# programming system. Through a case study
we show the model is usable in practice, and the annotation overhead is
acceptable.

Our verification approach is sound; the proof of soundness is largely
analogous to the one given in [17] for an earlier version of the approach.
We are currently further extending the programming model to encompass
static fields, lock re-entry, and read-write locks.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming
system: An overview. In: CASSIS. Volume 3362 of LNCS., Springer
(2004)

10.

11.

12.

13.

14.

15.

16.

17.

Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.:
Boogie: A modular reusable verifier for object-oriented programs.
In: Proceedings of the Fourth International Symposium on Formal
Methods for Components and Objects (FMCO 2005). (2006) To ap-
pear.

Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.M., Schulte, W.:
Verification of object-oriented programs with invariants. Journal of
Object Technology 3(6) (2004) 2756

Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In: OOPSLA 2002.
Volume 37 of SIGPLAN Notices., ACM (2002) 211-230

Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static
checking. Research Report 159, Compaq Systems Research Center
(1998)

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B.,
Stata, R.: Extended static checking for Java. In: PLDI 2002. Vol-
ume 37 of SIGPLAN Notices., ACM (2002) 234-245

Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in
concurrent programs. In: POPL 2004. Volume 39 of SIGPLAN No-
tices., ACM (2004) 245-255

Freund, S.N., Qadeer, S.: Checking concise specifications for multi-
threaded software. Journal of Object Technology 3(6) (2004) 81-101
Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker
for multithreaded programs. In: POPL 2004. Volume 39 of SIGPLAN
Notices., ACM (2004) 256-267

Flanagan, C., Qadeer, S.: A type and effect system for atomicity.
In: PLDI 2003, ACM (2003) 338-349

Rodriguez, E., Dwyer, M., Flanagan, C., Hatcliff, J., Leavens, G.T.,
Robby: Extending sequential specification techniques for modu-
lar specification and verification of multi-threaded programs. In:
ECOQOP 2005. Volume 3586 of LNCS., Springer (2005) 551-576
Abrahém—Mumm, E., de Boer, F.S., de Roever, W.P., Steffen, M.:
Verification for Java’s reentrant multithreading concept. In: FoS-
SaCS 2002. Volume 2303 of LNCS., Springer (2002) 5-20

Hoare, C.A.R.: Monitors: An operating system structuring concept.
Communications of the ACM 17(10) (1974) 549-557

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.:
Eraser: A dynamic data race detector for multi-threaded programs.
ACM Transactions on Computer Systems 15(4) (1997) 391-411
Welc, A., Jagannathan, S., Hosking, A.L.: Transactional monitors
for concurrent objects. In: ECOOP 2004. Volume 3086 of LNCS.,
Springer (2004)

Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concur-
rency for aggregate objects with invariants. In: Proc. Int. Conf. Soft-
ware Engineering and Formal Methods (SEFM 2005), IEEE Com-
puter Society (2005) 137-146

Jacobs, B., Leino, K.R.M., Piessens, F., Schulte, W.: Safe concur-
rency for aggregate objects with invariants: Soundness proof. Tech-
nical Report MSR-TR-2005-85, Microsoft Research (2005)

