
N-Gram Based Filler Model for Robust Grammar Authoring

Dong Yu, Yun Cheng Ju, Ye-Yi Wang, Alex Acero

Speech Research Group, Microsoft Research
{dongyu, yuncj, yeyiwang, alexac}@microsoft.com

ABSTRACT

We propose a technique for rapid speech application development
that generates robust semantic context-free grammars (CFG) given
rigid CFGs as input. Users’ speech does not always conform to
rigid CFGs, so robust grammars improve the caller’s experience.
Our system takes a simple CFG and then generates a hybrid n-
gram/CFG that is written in the W3C SRGS format and thus can
run in many standard automatic speech recognition engines. The
hybrid network leverages an application-independent word n-gram
which can be shared across different applications. In addition, our
tool allows developers to provide a few example sentences to adapt
the n-gram for improved accuracy. Our experiments show the
robust CFG has no loss in accuracy for test utterances that can be
covered by the rigid CFG, but offers large improvements for cases
where the user’s sentence cannot be covered by the rigid CFG. It
also has a much better rejection for utterances that contain no slot
at all. With a few example sentences for adaptation, our robust
CFG can achieve the recognition accuracy close to the class-based
n-gram LM customized for the application.

1. INTRODUCTION

While we have seen great progress in speech recognition accuracy
over the last decade, building good telephony speech applications
is still expensive because of the long development cycle required
to get the application to a level accepted by callers. One of the
barriers in developing such applications is the development of
grammars that recognize the users’ input. In an automated movie
ticket line, a developer may use the prompt “Welcome to movie
line. How many tickets do you want to buy?”, and then build a
simple digits CFG. But some users may respond “I want to buy
two tickets” rather than simply saying “two”, which would not be
covered by the grammar and thus lead to higher error rates or
increased rejection. Sometimes the problem can be ameliorated by
careful choice of words in the prompt to instruct the user to stay
within the grammar (i.e. “Please say a number between 1 and 5”),
but other times the solution is to build grammars with increased
coverage.

Eq. (1) is the typical optimization performed by an automatic
speech recognition (ASR) system

() () (ˆ arg max | arg max |
w w

w p w A p A w p= =)w⋅ (1)

where A is the acoustics, and w is the word sequence hypothesis.
p(w) is usually referred to as the language model (LM) probability
and in telephony applications is typically specified by a
probabilistic context free grammar (PCFG).

Using the ticket booking application as an example, the
grammar shown in Figure 1 is typical for the dialog turn starting

with the prompt “How many tickets do you want to buy?”

Figure 1. A simple CFG example.

A speech expert who is also familiar with the domain may
include additional alternatives in the grammar as shown in Figure
2.

Figure 2. A version of the CFG in Figure 1 with better coverage.

Grammars authored this way are never guaranteed to work well
for two reasons. First, the grammar coverage is usually poor since
it’s impossible for the grammar author to think of all possible
callers responses. This is especially true at the early stage of the
application development when little real data is available. Second,
it’s not easy to manually construct the CFG when there are many
different ways of asking for the same thing.

Figure 3. Semantic slot spotting based grammar.

An alternative approach to achieving the same goal is semantic
(or keyword) spotting using the grammar structure shown in Fig. 3.
where fillers are used to model garbage words. Three categories of
filler models (FMs) have been proposed in the literature: acoustic
only FM [1-3], acoustic-LM FM [6,7], and LM based FM [4,5].
Acoustic only FMs are multi-state HMMs trained with garbage
words. Acoustic-LM filler models use the subword (phoneme or
syllable) LM on top of the acoustic fillers to improve the
performance. LM based FMs [10] use word n-gram LM to model
the words around the keyword. The latter models have been shown
to offer better accuracy but require a custom LM trained from
domain data. All these existing FMs usually require a likelihood
ratio based hypothesis test that is not always supported by
commercial recognizers. In this paper, we propose a novel n-gram
word LM based FM that can be shared by all applications, and can

International Conference on Acoustics, Speech, and Signal Processing., pp. I565-I568, Toulouse, France, 2006

achieve the recognition accuracy close to the n-gram LM FMs
customized for the application. Our FM does not require
hypothesis test built in the decoder, and thus can run in many
standard ASR engines.

The rest of the paper is organized as follows. In section 2, we
introduce the basic ideas behind our grammar authoring paradigm.
Specifically, we describe the grammar architecture and the n-gram
based FM. In section 3, we illustrate the algorithm that combines
the FM with additional context words provided by developers. We
evaluate our grammar authoring paradigm in section 4, and
conclude the paper in section 5.

2. HYBRID N-GRAM/CFG AUTHORING

In our basic authoring paradigm, a grammar is simply constructed
with pre-ambles, post-ambles, and slots as shown in Figure 4,
where pre-ambles and post-ambles are fillers modeled with word
n-grams, and p1 and p2 are the pre-amble and post-amble bypass
probability (or weight) respectively. In this construction, <slot>
carries semantic information such as numbers, a list of commands,
date, time, currency, and credit card number, etc.

Figure 4. A grammar constructed with pre-ambles, post-ambles, and
slots

We use Figure 4 as our basic grammar structure because the
semantic spotting problem can be formally described as:

0H : <slot> exists

aH : <slot> does not exist

And the null hypothesis is taken if ()<slot> |p A > T where T is a
threshold. Note that

,

,

(<slot> |) (<slot> |)

(| <slot>) (<slot>)

()

pre post

pre post

pre post
w w

pre post pre post
w w

p A p w w A

p A w w p w w

p A

=

=

∑

∑ (2)

where prew are the pre-amble words (can be empty), postw are the

post-amble words (can be empty), and (<slot>)pre postp w w is the
LM probability for an utterance containing <slot>. This posterior
probability can be computed from the ASR lattice and that is the
approach used in [11]. The approach we chose in this paper
considers only the top choice of the recognizer for simplicity.

Our approach does not use an explicit segmental likelihood
ratio test although we have knobs (p1 and p2) to balance accuracy
and rejections. The ASR engine only needs to pick up the best path
based on the overall likelihood score and the transitions are
automatically embedded in the path. One special benefit of our
approach is the high rejection rate to the out-of-grammar (OOG)
utterances since the best path of passing through the whole
grammar would have much lower score than the path that loops
within the pre-amble node. Note that unlike acoustic FMs, the
transitions inside our FM are constrained by the n-gram and so
better recognition accuracy can be achieved for the filler part.

Many commercial recognizers allow you to run either an n-
gram LM or a CFG but not a hybrid. To solve this problem, we
convert the n-gram LM to a determinizable PCFG using the
algorithm in [8]. As an example, Figure 5 illustrates a PCFG
converted from a two word bi-gram. In this example, the bi-
gram ()1| 2p w w is not covered by the training data. The
probability is smoothed with back-off via the back-off node:

() () ()1| 2 2 1p w w b w p w≈ . (3)

Similarly, ()| 1p e w is not in the PCFG and can be estimated as:

() () ()| 1 1p e w b w p e≈ . (4)

Figure 5. A PCFG converted from a two word bi-gram.

Although the n-gram LM could be trained using in-domain
utterances, this is not possible before the application has been built
and deployed. So, initially we use a generic n-gram LM built from
large amounts of application-independent data. This is a mismatch
where we want the n-gram LM to model pre-ambles and post-
ambles in real data, while the generic n-gram models complete
sentences. Among other problems, this mismatch indicates that the
sentence beginning and sentence end probabilities in the generic n-
gram are not reliable to predict the segment beginning and segment
end in the filler. i.e.,

() ()
() (
<slot> | <se> |

| <slot> | <ss>

p w p

p w p w

≠

≠)
w

where <ss> and <se> are sentence start and sentence end
respectively. To solve this problem, we removed all links from the
start node to the internal words and all links from internal words to
the end node, updated backoff weights accordingly, and rely on the
backoff node to estimate the segment beginning and end
probabilities. For example, the PCFG in Figure 5 becomes the
PCFG in Figure 6 after the above simplification. The PCFG
generated this way can then be used directly as the filler model in
constructing grammars shown in Figure 4.

Figure 6. A simplified version of the grammar in Fig 5 after removing
links from words to the end node, and from the start node to the words.

3. EXAMPLE-BASED GRAMMAR ADAPTATION

The grammar shown in Figure 4 is usually a good start as a robust
grammar using n-gram based FM. To build such a grammar,
developers only need to provide a slot grammar (e.g., a name list,
cardinal or ordinary number, and date time, etc) and plug it into

the structure shown in Figure 4. The slot grammar can be from a
reusable library grammar or created with grammar controls [9].

However, developers’ domain knowledge can provide
additional context information in the grammar. For example, in the
ticket booking case, developers may anticipate that callers are
likely to say “tickets” or “please” after the <integer> slot.
Integrating these context words into the per-amble and/or post-
amble can make the grammar perform more accurately.

We allow developers to provide sample phrases like
“…<integer> tickets” and “… buy <integer> tickets”. The
developer provided phrases, together with the default phrase “…
<integer> …”, are used to improve the grammar. The eclipses in
the phrases are treated as “[filler]” (where [] means it’s optional).
These phrases are then converted into a training set. For example,
the above phrases would give us the following training set: <s>
<integer> <e> | <s> <filler> <integer> <e> | <s> <integer>
<filler> <e> | <s> <filler> <integer> tickets <e> | <s> <integer>
tickets <e> | <s> buy <integer> tickets <e> | <s> <filler> buy
<integer> tickets <e>. We used a standard n-gram training
algorithm to build the grammar shown in Figure 7.

Figure 7. PCFG generated using filler models and additional context
cues.

Note that the samples provided by developers are usually not
enough to accurately estimate the probabilities in Figure 7. We
have noticed, however, that recognition accuracy is not sensitive to
such probability estimation errors, and the customized context
significantly improves accuracy.

4. EXPERIMENTAL RESULTS

We have conducted a series of experiments to evaluate the
effectiveness of the grammars authored using the approaches
described above. Our test cases are from SALA II dataset (cellular
telephony) and ATIS dataset and are separated into four sets:

• SO (slot only): the utterances only contain the slot part. We
have 500 command utterances (SOC) and 500 time utterances
(SOT) in this category.

• PP (pre-amble and post-amble): the utterances contain pre-
ambles and/or post-ambles around slots. We have 25
command utterances (PPC) and 500 time utterances (PPT) in
this category. The preambles in this category are simple
words such as “at”, “about”, and “approximately”.

• OOG (out of grammar): the utterances are completely off the
topic. We have 500 utterances in this category.

• TS (two slots): the utterances contain two slots plus pre-
ambles and post-ambles. TS test cases are from ATIS dataset.
We have 669 utterances in this category.

The command slot consists of 24 different commands, many of
them are acoustically confusing, such as “start” and “restart”,

“call” and “all”. The time slot allows users to say a time in their
favorite ways.

The grammars used in the evaluation are also separated into
several categories:
• SO (slot only): the grammar contains only the slot part.

• AFP & AFS (acoustic FM): the grammar uses context
independent phone loop based acoustic FM. AFP is the
parallel version as shown in Fig. 3; AFS is the sequential
version as shown in Fig. 4..

• NFP & NFS (n-gram FM): the grammar uses n-gram FM.
NFP is the parallel version as shown in Fig. 3; NFS is the
sequential version as shown in Fig. 4 respectively.

When evaluating the performance, we use the slot accuracy (SA)
for the SO, PP, and TS test sets, and rejection rate (RR) for the
OOG test set, since word error rate (WER) is not appropriate for
the slot recognition tasks. SER and RR are defined as:

of correct slots
total # of slots

SA = , (5)

of rejected utterances with default threshold
total # of utterances

RR = . (6)

 SO AFP AFS NFP NFS

SOT 78.2% 76.6% 77.2% 78.0% 79.8%

SOC 92.0% 92.2% 91.2% 91.6% 92.0%

Table 1. Slot accuracy for utterances that only contain slots for time
(SOT) and commands (SOC) evaluated with slot-only grammars (SO),
acoustic fillers (AFS and AFP) and n-gram fillers (NFS, NFP).

 SO AFP AFS NFP NFS

PPT 38.8% 36.0% 44.2% 50.0% 60.2%

PPC 52.0% 60.0% 56.0% 60.0% 68.0%

Table 2. Slot accuracy for utterances only contain slots with
pre/postambles for time (PPT) and commands (PPC) evaluated with
slot-only grammars (SO), acoustic fillers (AFS and AFP) and n-gram
fillers (NFS, NFP).

 SO AFP AFS NFP NFS

OOGT 11.2% 54.0% 16.8% 96.6% 91.2%

OOGC 0.4% 1.0% 0.6% 56.6% 26.2%

Table 3. Rejection rate for out-of-grammar (OOG) utterances in the
time and command scenarios evaluated with slot-only grammars (SO),
acoustic fillers (AFS and AFP) and n-gram fillers (NFS, NFP).

4.1. Performance Evaluation
Tables 1, 2, 3 and Fig. 8 compare the performance of different
grammars using different test sets. In Table 1 we see that NFP and
NFS grammars perform as well as SO grammars for SO test sets,
and even perform slightly better due to their ability to absorb the
noises before and after the utterances. In Table 2 we see that for
the test sets with pre or postambles, the NFS grammar consistently
performs significantly better than other grammars, with relative
SA improvement of 58% for the PP-time set, and 31% for the PP-

command set comparing to the SO grammar. In Table 3 we see
that NF grammars reject many more OOG utterances than the SO
and AF grammars. Note that, NFP grammar has higher rejection
rate on the OOG utterances than the NFS grammar. However,
since the number of OOG utterances in a typical application is
much less than the PP utterances, NFS grammar performs better
overall.

0%

10%

20%

30%

40%

SOT PPT OOGT SOC PPC OOGC

C
PU

 (%
 re

al
 ti

m
e)

SO AFP AFS NFP NFS

Figure 8. Comparison of different grammars in CPU time.

Fig. 8 indicates that the gain of NF grammars come with costs:
the CPU time is about 3-5 times as what needed for the SO or AF
grammars. We have also evaluated the sensitivity of the accuracy
and CPU cost to the bypass probability p1 (from 0.5 to 0.999) used
in Fig. 4, and the bi-gram size (from 0K to 280K). Our
experiments show that the accuracy is not sensitive to either the
bypass probability or the n-gram size, although increasing the bi-
gram size usually boosts the accuracy a little bit. However, more
CPU time is needed when the bypass probability becomes smaller
or the n-gram size becomes larger. The rejection rate also increases
when the n-gram size becomes larger for the OOG test sets.
4.2. N-gram Filler Adaptation
Table 4 compares the performance of the grammars with and
without small adaptation. The test cases used in this experiment
are from the TS set where the callers can say things containing two
slots like “I’d like to book a ticket from Seattle to Boston”. An
utterance is considered correctly recognized if both slots (cities)
are correctly recognized. Two training phrases (with context
words) “… flight from <fromCity> to <toCity>” and “… between
<fromCity> and <toCity>” are used to generate the adapted NFS
grammar, and the domain n-gram filler is trained using a large
amount of ATIS training data. Table 4 shows that the NFS
grammar has significantly higher slot accuracy than the AF
grammar and adding context words in the grammar can further
improve the accuracy by 5.23% absolute or reduce the slot error
rate by 56%. This accuracy is close to what we can get using the
grammar trained with the domain data.

Filler type AF NFS Adapted
NFS

Domain
n-gram

SA 2.4% 90.7% 96.0% 96.0%

Table 4. Slot accuracy for the acoustic filler and n-gram fillers without
and with adaptation. The slots were cities in the ATIS data. Adapting
the n-gram filler with just two sentences cuts the error rate by a factor
of 2.

4.3. Discussion
When compared to other filler models, our approach has six
advantages. First, our FM can be directly integrated into a PCFG
and thus can be applied to any PCFG based ASR engine (many

commercial engines support W3C’s SRGS for specifying CFGs).
Second, the transitions between FMs and the semantic slots in our
approach are automatically determined by the ASR’s search
algorithm (i.e. there is no need to use segmental likelihood ratio
based hypothesis test in the decoding process). Third, our FM is
more robust and accurate than other FMs due to our novel
grammar structure. Fourth, our FM provides higher rejection rate
for out-of-grammar (OOG) utterances than other FMs. Fifth, our
FM can be shared across all applications and dialog turns and so
can be efficient memory wise. Sixth, our FM can benefit from
example sentences provided by developers to further improve
accuracy.

In addition, since the ASR engine outputs actual words (instead
of just a generic symbol such as <garbage> in the acoustic FM
case), systems that rely on natural language input, such as a call-
routing system, can rely on the text to make decision.

5. SUMMARY

In this paper, we proposed a robust grammar authoring paradigm,
in which n-gram based FM is used to model the garbage words
between slots. We discussed issues related to making the FM
sharable across the applications, and showed our approach to
simplifying the FM, and to integrating it with example sentences
provided by developers. We demonstrated that the grammars
constructed with the proposed paradigm are superior in many
aspects. Preliminary experiments confirmed that the paradigm has
great potential, especially in rejecting OOG utterances and
recognizing utterances with pre-ambles or post-ambles.

At the current stage, our word n-gram is trained using written
text mainly from Wall Street Journal. We perceive that the
performance of our model can be further improved if we can train
the n-gram using real data collected from a variety of spoken
dialog applications.

6. REFERENCES
[1] A.S. Manos, V. W. Zue, “A segment-based wordspotter using

phonetic filler models”, in Proc. ICASSP-1997, pp. 899-902.
[2] R. Rose, and D. Paul, “A hidden Markov model based keyword

recognition system”, in Proc. ICASSP-1990, pp129-132.
[3] J. Wilpon, L. Rabiner, and C.-H., Lee, “Automatic recognition of

keywords in unconstrained speech using hidden Markov models”,
IEEE Trans. ASSP 38, pp. 1870-1990.

[4] Q. Lin, D. Lubensky, M. Picheny, and P. S. Rao, "Key-phrase
spotting using an integrated language model of n-grams and finite-
state grammar", In Proc. of Eurospeech -1997, pp. 255-258.

[5] M. E. Hennecke, “and G. Hanrieder, “Easy Configuration of Natural
Language Understanding Systems”, in Proc. VOTS, COST 249, 2000.

[6] R. Meliani, and D. O’Shaugnessy, “Accurate keyword spotting using
strictly lexical fillers”, in Proc. of ICASSP-1997, pp. 907-910.

[7] R. C. Rose, “Keyword Detection in Conversational Speech Utterances
Using Hidden Markov Model Based Continuous Speech
Recognition”, J. CSL, vol. 9 (1995), pp. 309-333.

[8] G. Riccardi, R. Pieraccini, and E. Bocchieri, “Stochastic Automata for
Language Modeling”, J. CSL, vol. 10(4), pp. 265-293, 1996.

[9] Y. Wang and A. Acero, "SGStudio: Rapid Semantic Grammar
Development for Spoken Language Understanding." In Proc. Of
Eurospeech 2005. September 2005.

[10] M. Weintraub, “Keyword-spotting using SRI’S DECIPHER large-
vocabulary speech recognition system,’’in Proc. ICASSP-1993, pp.
463-466, 1993.

[11] C. Chelba and A. Acero. “SPEECH OGLE: Indexing Uncertainty for
Spoken Document Search”, in Proc. of ACL. Ann Arbor, June, 2005.

	1. INTRODUCTION
	2. HYBRID N-GRAM/CFG AUTHORING
	3. EXAMPLE-BASED GRAMMAR ADAPTATION
	4. EXPERIMENTAL RESULTS
	4.1. Performance Evaluation
	4.2. N-gram Filler Adaptation
	4.3. Discussion
	5. SUMMARY
	6. REFERENCES

