
Rapid Development of Spoken Language

Understanding Grammars

Ye-Yi Wang and Alex Acero

Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA

Abstract

To facilitate the development of spoken dialog systems and speech enabled appli-
cations, we introduce SGStudio (Semantic Grammar Studio), a grammar author-
ing tool that enables regular software developers with little speech/linguistic back-
ground to rapidly create quality semantic grammars for automatic speech recogni-
tion (ASR) and spoken language understanding (SLU). We focus on the underly-
ing technology of SGStudio, including knowledge assisted example-based grammar
learning, grammar controls and configurable grammar structures. While the focus of
SGStudio is to increase productivity, experimental results show that it also improves
the quality of the grammars being developed.

Key words:
Automatic grammar generation, context free grammars (CFGs), example-based
grammar learning, grammar controls, hidden Markov models (HMMs), n-gram
model, automatic speech recognition (ASR), spoken language understanding
(SLU), statistical modeling, W3C Speech Recognition Grammar Specification
(SRGS)

1 Introduction

While speech-enabled applications and conversational systems have been stud-
ied in research labs for many years, such systems have yet to become main-
stream in the real world. One of the problems is the discrepancy between

Email address: {yeyiwang,alexac}@microsoft.com (Ye-Yi Wang and Alex
Acero).

Preprint submitted to Elsevier Science 5 July 2005

Speech Communication, vol. 48, no. 3-4, pp. 390-416, 2006



spoken dialog research and the reality in industry. Pieraccini (2004) compre-
hensively analyzed the “chasm” between SLU research and industrial applica-
tions. In SLU research, there are two paradigms. The first adopts a knowledge-
based approach. Domain-specific semantic grammars are manually developed
for spoken language applications. The semantic grammars are used by robust
understanding technologies [Allen et al. (1996); Wang (1999); Bangalore and
Johnston (2004)] to map input utterances to the corresponding semantic rep-
resentations. Such implementations have relied on the manual development of
domain-specific grammars, a task that is time-consuming and error-prone. It
requires combined linguistic and engineering expertise to construct a grammar
with good coverage and optimized performance. It takes multiple rounds to
fine tune a grammar, and it is difficult and expensive to maintain the gram-
mar and adapt it to new usages — an expert, ideally the original grammar
developer, has to be involved in the adaptation loop. The second research par-
adigm adopts a data-driven, statistical modeling approach. While it alleviates
the labor-intensive problem associated with the first paradigm, it requires a
huge amount of training data, which is seldom available for industrial applica-
tions. In fact, Pieraccini (2004) lists these difficulties and the potential areas
of improvement that the research community can provide:

(1) There is little data for training in the design/development phrase. Sys-
tems have to be developed with no data. This leaves the manual grammar
authoring the only choice for initial system deployment. Therefore, tools
for fast grammar handcrafting are very important. Other tools like those
for content word normalization/speech-ification are also very desirable.

(2) There is a huge amount of data available after deployment. It is extremely
difficult to manually analyze the data in order to find the problems in
the initial deployment. Tools for automatic or semi-automatic adapta-
tion/learning/system tuning are very useful for improving the system’s
performance.

In this article we introduce SGStudio (Semantic Grammar Studio), a grammar
authoring tool that aims at closing the research/industry gap for SLU. We
focus on the first problem of grammar authoring in this article, while we are
still working on the second problem of dialog system tuning and adaptation.

The principles underlying the design of SGStudio include

(1) using prior knowledge to compensate the dearth of data, and making it
easy to create such prior knowledge.

(2) making efficient use of data with supervised learning, and making it easy
to annotate data for the supervision.

(3) providing users with a spectrum of different solutions according to data
availability, with a possible tradeoff on understanding accuracy.

(4) tight coupling of ASR and SLU [Ringger (2000)], such that better SLU

2



Statistical HMM/CFG 
Composite Model (§2)

Domain Semantic 
Definition

(§2.1) CFG

Pr(M)
(§2.2)

Pr(W|M)
(§2.3)

Grammar for manual 
maintenance 

(§4.2.3)

Library Grammar 
Controls(§3)

Grammar Configuration(§4) Configuration
Parameter (§4.1)

Data for statistical 
training (§2.4)

Grammar for initial 
deployment w/o data 

(§4.2.1)

Grammar (statistical 
model) for call routing 

(§4.2.4)

Grammar for 
applications w/o slot 
ambiguity (§4.2.2)

Fig. 1. SGStudio architecture. Each component is marked with the section number
that describes it.

accuracy can be achieved by preserving the dependency between acoustic
observation and meaning, and developers do not have to be trained to
use two separate ASR and SLU recognizers.

Fig. 1 shows a realization of these principles. At the center of this architecture
is a statistical model that adopts a pattern recognition approach to SLU. Given
the word sequence W , the goal of SLU is to find the semantic representation
of the meaning M that has the maximum a posteriori probability Pr(M |W ):

M̂ = arg max
M

Pr(M |W ) = arg max
M

Pr(W |M) × Pr(M) (1)

Two separate models exist in this framework. The semantic prior model Pr(M)
assigns a probability to an underlying semantic structure (meaning) M . The
lexicalization model Pr(W |M) assigns a probability to the surface sentence
(i.e., word/lexical sequence) W conditioned on the semantic structure. To
overcome the data sparseness problem typically associated with statistical
language modeling, a specific model under the framework of Eq. (1), the
HMM/CFG composite model is introduced. It integrates the knowledge-based
approach in the statistical framework in the following ways:

(1) The topology of the prior model, Pr(M), is determined by domain se-
mantics.

(2) Probabilistic context free grammar (PCFG) [Jelinek et al. (1990)] rules
that contain both domain-independent and domain dependent linguistic
knowledge are used as part of the lexicalization model Pr(W |M)).

To make it easy to include the prior knowledge, SGStudio adopts a sim-
ple frame-based semantic definition. It also provides a grammar library for
domain-independent CFG rules, and it introduces grammar controls for the

3



easy creation of PCFG rules for domain-dependent concepts. Grammar con-
trols can automatically generate high-quality knowledge-based ASR/SLU gram-
mars from high level specifications.

SGStudio uses supervised learning, which requires annotated data, to make
efficient use of limited amount of training data. To make the annotation easy
to perform without the requirement of linguistic expertise, SGStudio limits
the supervision at the semantic level and includes an annotation graphical
user interface (GUI) that adopts a bootstrapping strategy (Section 2.4).

Often the amount of available data at initial system development varies across
different applications. SGStudio can accommodate this difference with its con-
figurable model structure. In fact, this flexibility goes beyond data availability.
It also allows users to pick the model structure that best fits different applica-
tion scenarios, including data availability, task complexity, and the availability
of human resources in system maintenance, etc. The grammar configuration
module (Section 4) of SGStudio customizes the general HMM/CFG composite
model to fit these scenarios.

Fig. 2 shows the graphical user interface of SGStudio for prior knowledge
definition. The pane on the left lets users define the frame-like domain seman-
tics (Section 2.1) by adding frames (represented by the tabs in the GUI) and
adding slots (represented by the textboxs in the left pane). On the right users
can choose a filler grammar for the selected slot. The filler grammar can be
selected from a grammar library, or a grammar control that is going to be de-
fined in the “Grammar Control Definition” groupbox. In the example shown
in Fig. 2, the user is using the city name entries from a database table to pop-
ulate the filler grammar, and use the city code entries of the same table as the
normalized semantics that is going to be returned upon successful recognition
of a city name. The data table below shows the actual entries retrieved from
the database. We will later show another screen shot of SGStudio for training
data annotation in section 2.4.

SGStudio currently remains as a research prototype. It is mainly used inside
Microsoft, with some limited exposures to Microsoft partners. Some of its
component technologies will be included in the Resource Kit in the next re-
lease of Microsoft Speech Application Server. Communications with the speech
product group in Microsoft are currently going on for future adoption of the
technology in Microsoft Speech Application Software Development Kit.

The article is organized as follows. After a brief description of the related work
in the remaining part of this section, the technical details of the HMM/CFG
composite model, the grammar control technology and the grammar config-
urability issues are discussed. Fig. 1 includes the section numbers for these
topics. Following that, ongoing and future work is discussed in section 5, and

4



Fig. 2. SGStudio screen shot for prior knowledge definition.

section 6 concludes the article.

1.1 Related Work

While SLU research dates from the 70’s [Woods (1983)], spontaneous spoken
language understanding did not attract much attention until the early 90’s,
when multiple research labs from both academia and industry participated
in the DARPA sponsored Air Travel Information System (ATIS) evaluations
[Price (1990)]. The task in ATIS was to understand users’ spontaneous spoken
queries for air travel information. The systems investigated during this period
fall into two different paradigms, knowledge-based and data-driven.

1.1.1 Knowledge-based paradigm

In the knowledge-based paradigm, Seneff (1992) alleviated the authoring diffi-
culties by reusing the domain-independent part of a grammar. It was based on

5



the assumption that syntactic structures do not vary across different domains,
and thus a high level syntactic context free grammar (CFG) could be shared
by different applications. The domain specific knowledge was introduced to
the model by replacing the low level syntactic non-terminals with semantic
non-terminals. For example, noun phrases (NPs) could be replaced by domain-
specific concepts like HOTEL NAME. Dowding et al. (1993) adopted a similar
idea with the unification grammar that includes some domain-specific seman-
tic features. The difficulty with this approach is that the grammar developers
must have in-depth knowledge of both the syntactic grammar and the do-
main. Ward (1994) introduced the Phoenix system, which adopted a different
approach by modeling semantically. This limited the grammar rules that can
be shared. However, developers could fine tune a grammar without any lim-
itations imposed by a background syntactic grammar. The knowledge-based
approach requires combined linguistic and engineering expertise to create high
quality grammars.

1.1.2 Data-driven paradigm

In the data-driven SLU, most systems adopted a channel model that was
widely used in ASR. Both Pieraccini and Levin (1993) and Miller et al. (1994)
used a combination of hidden Markov models (HMMs) and n-gram models
to robustly model spoken languages. The models were automatically learned
from labeled training data. While the former used flat structures for meaning
representations, the latter handled embedded structures. Della Pietra et al.
(1997) introduced a model based on the study of statistical machine trans-
lation. Its distinct feature was that a concept in the semantic representation
could generate non-consecutive surface observations (words). Macherey et al.
(2001) introduced another SLU model based on statistical machine transla-
tion technology. He and Young (2005) investigated the use of HMMs in SLU,
where the probability of a Markov transition between two states was decom-
posed into the probabilities of the stack operations that transformed one state
to the other.

In addition to these statistical SLU efforts, grammar inference (or grammar
induction) research also studies the problem of data-driven grammar creation.
Fu and Booth (1975a) and Fu and Booth (1975b) surveyed the early work on
automatic learning of finite state automata (FSA) from training data. Vidal
et al. (1993) introduced an error-correction-based grammar induction algo-
rithm and investigated its use for speech recognition. Stolcke and Omohundro
(1994) attempted to use automatic induction of HMMs from training exam-
ples based on a Bayesian model merging algorithm. Wang and Waibel (1998)
used iterative clustering and sequence building operations to find the common
structures and applied them in a statistical spoken language translation sys-
tem. Wong and Meng (2001) and Pargellis et al. (2001) used similar algorithms

6



to semi-automatically find language structures for SLU.

The data-driven approaches suffer from a data sparseness problem. The afore-
mentioned statistical SLU systems address this problems with limited pre-
processing that converts substrings to domain related concepts (e.g., replacing
“Boston” with “Cityname” in the ATIS domain.) For those purely bottom-
up, data-driven grammar inference algorithms, the quality of the inducted
grammars could not be guaranteed, and language technology experts have to
manually examine them and assign proper semantics for the automatically
acquired structures.

1.1.3 Combining Knowledge-base and Data-driven Approaches

Recently there has been increased interest in combining the knowledge-based
approaches with data-driven statistical learning in the field of human language
technology. For language modeling, Wang et al. (2000) reported a unified
language model that included CFG rules in an n-gram model. Bangalore and
Johnston (2004) used domain knowledge as a supplement to the in-domain
data, or adapted the out-of-domain data with the help of domain knowledge.
Estéve et al. (2003) exploited the domain-dependent knowledge in the process
of speech decoding. For SLU, Schapire et al. (2005) investigated the inclusion
of prior knowledge in the statistical model for call-routing type of applications
[Gorin (1995); Carpenter and Chu-Carroll (1998); Kuo et al. (2002); Hakkani-
Tür et al. (2004)].

SGStudio combines knowledge-based and data-driven model for high-resolution
SLU tasks, which need to identify many slots in comparison to the call-routing
type of applications. Unlike the other statistical SLU models mentioned ear-
lier that use the prior knowledge for data manipulation in a preprocessing
step, SGStudio incorporates the domain knowledge as an integral part of the
statistical model, and does so to a larger extent for every slot in the frames
(Section 2.3). Because of this, it requires considerably less amount of training
data.

Ringger (2000) discusses the issue of loose coupling and tight coupling in spo-
ken language dialog systems. Tight coupling allows more inter-module (like
ASR and SLU) dependency, but it is more difficult to engineer. Loose cou-
pling makes more independence assumptions, which is practically more attrac-
tive, but potentially less accurate. Most research dialog systems adopt a loose
coupling strategy, in which the dependency link between acoustic observation
and semantics is broken. To compensate this, an intermediate process is often
involved to correct ASR errors [Ringger (2000); Allen et al. (1996)] and/or
robust parsing technology is applied to forced-match recognition results to
domain semantics [Allen et al. (1996); Wang (1999); Bangalore and Johnston

7



(2004)]. In contrast, SGStudio’s integration of prior knowledge in the model
makes it possible for a tight ASR/SLU coupling, which is shown to improve
the overall understanding accuracy.

2 Knowledge-assisted Example-based Statistical Modeling

The HMM/CFG composite model is a generative statistical model under the
general framework of Eq. (1). Instead of writing grammars, developers are
asked to prepare annotated examples, a task that does not require linguistic
or engineering expertise. The HMM/CFG composite model learns from the
examples and creates a grammar automatically. Unlike the grammar inference
research that relies solely on the training sentences and infers the grammar
bottom-up, it integrates the domain semantics in the topology of its prior
model, and embeds the CFG rules, either from a grammar library or generated
by grammar controls, in its lexicalization model. This prior knowledge greatly
reduces the requirement of training data. In this section we first discuss the
representation of domain knowledge, then explain how the knowledge is used
in the prior and the lexicalization models. We will also present experimental
results on the HMM/CFG composite model.

2.1 Domain Semantics

The semantic structure of an application domain is defined in terms of Se-
mantic frames. Fig. 3 shows a simplified example of three semantic frames
in the ATIS domain. Each frame contains several typed components called
“slots.” For example, the semantic frame “Flight” contains the slots “DCity”
for departure city and “ACity” for arrival city. Both of them have the type
“City”, which means that the filler of the slots must be an object that has
the “City” type, for example, a city name or a city code. The “Void” type of
the “ShowFlight” and “GroundTrans” (for ground transportation) frames
indicates that they are the top level commands called “tasks”. The frame
“ShowFlight” takes two slots, the “subject” slot has to be filled with an
object that has the type “Subject” (e.g., FLIGHT or FARE), and the “flight”
slot needs a filler with the type “Flight” — an instantiation of the “Flight”
frame can be such a filler since the frame’s type is “Flight”.

Given a domain definition, the meaning of an input sentence is an instantia-
tion of the semantic frames. Fig. 4 shows the meaning representation for the
sentence “Show me the flights from Seattle to Boston.” The meaning repre-
sentation serves as an interface between linguistic modeling and application
logic development. As soon as the domain semantics are determined, linguistic

8



<frame name=“ShowFlight” type=“Void”>
<slot name=“subject” type=“Subject”/>
<slot name=“flight” type=“Flight”/>

</frame>
<frame name=“GroundTrans” type=“Void”>

<slot name=“city” type=“City”/>
<slot name=“type” type=“TransType”/>

</frame>
<frame name=“Flight” type=“Flight”>

<slot name=“DCity” type=“City”/>
<slot name=“ACity” type=“City”/>
<slot name=“DDate” type=“Date”/>

</frame>

Fig. 3. Examples of three simplified semantic frames defined in the ATIS domain.
The type attribute of a slot restricts the type of its filler object. An instantiation
of the “Flight” frame can be the filler of the “flight” slot of the “ShowFlight”
frame.

<ShowFlight type=“Void”>
<flight frame=“Flight” type=“Flight”>

<DCity type=“City”>Seattle</DCity>
<ACity type=“City”>Boston</ACity>

</flight>
</ShowFlight>

Fig. 4. The semantic representation for “Show me the flights from Seattle to Boston”
is an instantiation of the semantic frames in Fig. 3.

modeling and application development can proceed in parallel.

2.2 Semantic Prior Model

The HMM topology and the state transition probabilities comprise the seman-
tic prior model. The topology is determined by the domain semantics, and the
transition probabilities can be estimated from the training data (Section 2.4).

Fig. 5 shows the topology of the underlying states in the statistical model for
the semantic frames in Fig. 3. The left part of the diagram shows the top
level network topology, and the right part shows a zoomed-in sub-network
for state 2, which represents the embedded Flight frame for the “flight”
slot of the “ShowFlight” frame. The initial state transition probabilities
π1 = Pr(ShowFlight) and π5 = Pr(GroundTrans) comprise the prior distri-
bution over the top level tasks. The transitional weights a12 and a13 comprise

9



the initial slot distribution for the “ShowFlight” frame. The transitional
weights a56 and a57 comprise the initial slot distribution for the “Ground-
Trans” frame, and the transitional weights aC9, aCA and aCB in the sub-
network comprise the initial slot distribution for the “Flight” frame.

a67 a76

<s> </s>

1: ShowFlightInit

3: Subjecta13 a34

1

a12

4: ShowFlightFinal

a24

a23 a32

5: GroundTransInit

7: TransType
a57 a78

a56
6: City

8: GroundTransFinal

a68

2: Flight

 aB9

  a9B

C: FlightInit A: DCityaCA aAD

aC9

9:ACity

D: FlightFinal

a9D

aAB aBA

B: DateaCB aBD

a9A  aA9

Fig. 5. The HMM/CFG composite model’s state topology, as determined by the
semantic frames in Fig. 3.

In Fig. 5, states 1 and 5 are also called the precommands for the ShowFlight
and the GroundTrans frames, respectively. States 4 and 8 are called the post-
commands for the ShowFlight and the GroundTrans frames, respectively.
States 2, 3, 6, 7, 9, A and B represent slots. They are actually a three state
sequence — each slot is bracketed by a preamble and a postamble (represented
by the dots) that serve as the contextual clue for the slot’s identity.

Given this topology, the semantic prior for the structure underlying the mean-
ing representation in Fig. 4 is the product of the Markov transition probabil-
ities across the different levels in the semantic hierarchy (the thick path in
Fig. 5):

Pr(M) =Pr(ShowFlight) × Pr(Subject|<s>;ShowFlight)
×Pr(Flight|Subject;ShowFlight)
×Pr(DCity|<s>;Flight) × Pr(ACity|DCity;Flight)
×Pr(</s>|ACity;Flight) × Pr(</s>|Flight;ShowFlight)

=π1a13a32aCAaA9a9Da24 (2)

Generally,

Pr(M) =
|M |+1∏

i=1

Pr (CM(i)|CM(i − 1)) × Pr (M(i)) (3)

Here |M | is the number of the instantiated slots in M . CM(i) is the name
of the i-th slot in M , (CM(0) =<s> and CM(|M | + 1) =</s> stand for the
beginning and the end of a frame, respectively) and M(i) is the sub-structure

10



that fills the i-th slot in M . Eq. (3) recursively calculates the prior probabilities
of the sub-structures and includes them in the prior probability of the parent
semantic structure.

2.3 Lexicalization Model

A fundamental problem in SLU is the tradeoff between model robustness
and accuracy. A model needs to be relaxed, i.e., some restrictions imposed
by the model may need to be loosened, in order to accommodate the extra-
grammaticality that occurs in spontaneous speech. However, this may result
in ambiguities and over-generalizations, which in turn may result in lower ac-
curacy. The HMM/CFG composite model attempts to strike a balance on this
issue. PCFG models, which impose relatively rigid restrictions, are used to
model the slot fillers, which are more crucial for correct understanding. The
knowledge introduced by the PCFG sub-models also compensates the data
sparseness problem — there is no need for data to learn these ground level
grammar structures. On the other hand, the sub-languages for precommands,
postcommands, preambles and postambles, which glue different slot fillers to-
gether, are often domain dependent, subject to more variations and hard to
pre-build a grammar for. For example, in ATIS domain, even though the task
“ShowFlight” is a typical “Request for Information” type of sentence and can
be naturally modeled with domain-independent rules such as “Show me ...”,
“I’d like to see ...”, etc., there are also many domain dependent variations, e.g.
“I want to fly from ...”. The same problem exists for preambles and postam-
bles. For example, it is natural to model a destination slot with the preamble
“to” across different domain. However, in the ATIS domain, domain specific
variations such as “the destination city is ...” and “arriving at ...” are also fre-
quently observed. To cover these variations, we model these states as n-grams.
N-gram models, when properly smoothed, are more lenient and robust. Fig. 6
shows a state alignment for the phrase “departing from Boston on Christ-
mas Eve” according to the “Flight” network topology in Fig. 5. The original
preambles and postambles are replaced by rounded rectangles that represent
the n-gram models, and the slot fillers are replaced by rectangles that repre-
sent the PCFG models. Since a slot is always bracketed by its preamble and
postamble (though both of them may cover empty strings), the probabilities
for the transitions between a preamble and the corresponding slot filler and
between a slot filler and its postamble are always 1.

Formally, the lexicalization probability in the composite model is

Pr(W |M) =
∑

π:|π|=|M |
P (W, π|M) =

∑

π:|π|=|M |

|π|∏

i=1

Pr(πi|Mi)

11



City DatePreDCity PostDCity PreDate PostDate DaCA 1.0 1.0 aBD1.0 1.0aABC

ondeparting from Boston Christmas Eve

A B

: n-gram :PCFG

Fig. 6. A zoomed-in view of a state alignment for the phrase “departing from Boston
on Christmas Eve” according to the network topology in Fig. 5. The output distri-
bution of a rectangle state follows a PCFG, and that for a rounded rectangle state
follows an n-gram model.

=
∑

π:|π|=|M |

|π|∏

i=1

Pgi
(πi) (4)

Here π is the segmentation that partitions W into |M | segments 1 , where |M |
is the number of states in the path that M intersects with the model, like the
path in Fig. 6. Each segment πi corresponds to a state in the intersected path.
Pgi

is an n-gram model if Mi is a preamble or a postamble state, or a PCFG
if Mi is a slot filler. It is possible that for some i �= j, Pgi

= Pgj
. For example,

the PCFG grammar for “cityname” is shared by the fillers for the DCity and
ACity slots.

2.4 Model Training

For the prior model, the probabilistic distribution for the transitions from a
state is estimated with maximum likelihood (ML) training by simply count-
ing/normalizing the transitions in the annotated training data similar to the
one illustrated in Fig. 4. A single prior count is used to smooth all distrib-
utions for the transitions from different states. This smoothing parameter is
estimated with held-out data.

The n-gram lexicalization model can also be estimated with ML training. How-
ever, it is more complicated than a simple counting of the relative frequencies
as in conventional n-gram training. For the n-grams of the non-filler states in
the HMM/CFG composite model, the word sequences that a state emits are
not marked in the training example for the sake of simplicity and efficiency.
The only information that can be harvested from the training examples is the
alignment of word sequences to state sequences as illustrated by Fig. 7, for
the sentence “show me the flight that flies to Boston.” The annotation for
this sentence, as shown in Fig. 4, pegs the words “flight” and “Boston” to the
specific states in the HMM topology. The alignment between the remaining
words and model states is hidden and restricted by the annotation to small

1 A segment may contain an empty string.

12



CityPreACity

Bostonthat flies toShow me the

ShowFlightInit PreSubject Subject PostSubject PreFlight

flight

Fig. 7. The annotation restricts the word/state alignments in local regions. The
exact word alignment to individual states can be learned with the EM algorithm.

regions. For example, the word sequence “show me the” has to be aligned with
the state sequence “ShowFlightInit PreSubject”. To obtain the alignment of
words to an individual state (thus the aligned words serve as the example
“sentence” to train the n-gram for that state), the EM algorithm [Dempster
et al. (1977)] is applied, which enumerates all possible word sequences aligned
to each state, computes the expected count for each of these word sequences
with the current model parameterization, and use the word sequences with
the expected counts to estimate the n-gram model for the state. The detailed
mathematical derivation of the algorithm can be found in Wang et al. (2005).

The training of both the semantic prior model and the lexicalization model
requires annotated data. SGStudio has a graphical user interface for easy
data annotation, illustrated in Fig. 8. The tool works with a bootstrapping
strategy. It uses the model (initially using the PCFG rules for the slots and
the uniform distributions for the parameters) to analyze a sample sentence
and output the hypothesized semantic structure. Users then make necessary
modifications by clicking on a node for alternative interpretations. The models
then get updated with the new samples. Fig. 8 shows that a user is changing
the interpretation for “June fourteenth” from DepartDate to ArriveDate. With
the tool, an experienced user can annotate ∼1500 samples in a working day.
It is much faster than the speed (200 sentences/day) reported in Miller et al.
(1994), which required the annotation of not just the semantic structures but
also the alignments between words and preamble/postambles.

2.5 Converting the Model to the SRGS Grammar

Almost all statistically learned SLU models investigated in the research com-
munity require a specialized second pass analyzer, either called a parser or a
decoder, to map the text output by the first recognition pass to a structured
semantic representation. SGStudio, on the other hand, can convert the model
it learned to the format of the industry standard described in the W3C speech
recognition grammar specification (SRGS) [Hunt and McGlashan (2002)], such
that the semantic representation can be constructed during the process of
speech recognition. The grammar standardization makes it possible to cre-
ate a single grammar for different speech recognition engines, and allows the
dependency between acoustic observations and semantics (detailed discussion
follows in section 2.6) in a tightly coupled ASR/SLU system.

13



Fig. 8. SGStudio screen shot for example annotation.

2.5.1 The SRGS Grammar Format

The SRGS adopts an XML or a Backus Normal Form (BNF) representation
format for grammars. Fig. 9 shows a simple example of the more frequently
used XML representation. In the grammar, the items inside a <one-of> XML
element specifies the alternates, with optional weights to specify the proba-
bilities (or other weighting scores) for the alternates. The <ruleref> element
makes reference to sub-rules. An important feature of SRGS is the semantic
interpretation (SI) tag, which includes scripts inside the <tag> element that
can be used to create semantic representations. In the SI tags, “$” represents
the semantic structure that should be returned after the match with the cur-
rent rule, and “$.foo” represents the “foo” field in the semantic structure for
the current rule. “$$” represents the semantic structure returned from the
sub-rule just being matched. The SI tags are ostensibly simple in this exam-
ple. It becomes much more complicated when multiple SI tags from different
sub-rules with alternative definitions work together to form the meaning of the
current rule. The SI tags in the example grammar normalize a recognized text
into its canonical semantic representation. Fig. 10 shows the representation

14



<rule id=“ATIS” scope=“public”>
<one-of>

<item weight=“0.8”>
<ruleref uri=“#ShowFlight”/>
<tag>$.ShowFlight=$$</tag>

</item>
<item weight=“0.2”>

<ruleref uri=“#GroundTrans”/>
<tag>$.GroundTrans=$$</tag>

< /item>
< /one-of>

< /rule>
<rule id=“ShowFlight”>

<ruleref uri=“#ShowFlightInit”/>
<ruleref uri=“#Flight”/><tag>$.Flight=$$</tag>

</rule>
<rule id=“Flight”>

from <ruleref uri=“#CityName”/><tag>$.DepartCity=$$</tag>
to <ruleref uri=“#CityName”/><tag>$.ArriveCity=$$</tag>
<item repeat=“0-1”> on <ruleref uri=“#Date”/>

<tag>$.DepartDate=$$</tag>
</item>

< /rule>
<rule id=“CityName”>

<one-of>
<item>New York City<tag>$=“NYC”</tag> </item>
<item>Seattle <tag>$=“SEA”</tag></item>
. . . . . .

< /one-of>
< /rule>

Fig. 9. A simplified and incomplete example of grammar for the ATIS domain.

for the utterance “Show me the flights from New York City to Seattle.”

The SRGS grammar with SI tags allows tight ASR/SLU coupling — semantic
structures can be constructed by the scripts in the SI tags in the process of
ASR decoding. To be able to construct such semantic structures, the topology
of the grammar must assign different structures (rules) to different meanings,
so an appropriate SI tag can be associated with each rule. Because of this, n-
gram language models for ASR, which do not model the structure difference,
are not for tight ASR/SLU coupling.

15



<ShowFlight>
<Flight>

<DepartCity>NYC</DepartCity>
<ArriveCity>SEA<ArriveCity>

<Flight>
< /ShowFlight>

Fig. 10. The semantic representation created by the scripts inside the SI tags of the
SRGS grammar during the recognition of the utterance “show me the flights from
New York City to Seattle.”

2.5.2 Model Conversion

SGStudio supports the SRGS grammar format. The HMM/CFG composite
model is converted to the SRGS CFG as follows: the overall topology, as il-
lustrated in Fig. 5, is basically a probabilistic finite state machine, which is a
sub-class of the PCFG. The efficient conversion of the n-gram lexicalization
model follows the work in Riccardi et al. (1996), and the CFG lexicalization
model components can be directly included in the CFG language model. Fur-
thermore, since each state in the model topology bears semantic meaning, the
CFG rules for the state can be associated with SI tags as in the above example,
such that a semantic representation can be automatically constructed during
the process of recognition.

2.6 Experiments

We expect that the inclusion of the domain knowledge would reduce the
amount of data required to train the proposed model. In the first experiment,
we investigate the effect of different amounts of training data on the model’s
accuracy. We applied the model to the manual transcriptions of the ATIS 93
category A 2 test set. The standard ATIS evaluation for spoken language was
performed and database query results were compared with the reference re-
sults. Fig. 11 plots the overall end-to-end system error rate of the HMM/CFG
composite model on text input, with respect to the amount of the training
data used.

Fig. 11 shows that it took about half of the annotated ATIS3 training sentences
to achieve the accuracy close to what the system can achieve with more data.
With a couple of samples per task, the system had a semantic accuracy 3

higher than 60%, and the error rate drops significantly for the first couple

2 The utterances whose interpretations are independent of the context.
3 The percentage of the returned flight information that with the fields fall into the
“MinMax” set specified by the references, an ATIS specific evaluation method.

16



0%

5%

10%

15%

20%

25%

30%

35%

40%

0 200 400 600 800 1000 1200 1400 1600 1800

Number of training samples

Sy
st

em
 E

rr
or

 R
at

e

Fig. 11. End-to-end system error rate on text input vs. amount of the training data.

hundreds of samples. Using all the ATIS3 training data (∼1700 sentences),
the end-to-end error rate is 5.3%. It is comparable to the performance of
the best system (5.5%) in the 1993 ATIS evaluation, which used a semantic
grammar manually developed by a spoken dialog expert who had access to the
entire ATIS2 and ATIS3 training data (∼6000 sentences). As a reference point,
Miller et al. (1994) reported that the Hidden Understanding Model, which is
closest in spirit to the HMM/CFG composite model but used limited prior
knowledge in a preprocessing step, had an error rate 4 at 26% with a model
trained with ∼6000 sentences. This clearly demonstrates that the inclusion of
domain knowledge in the statistical model reduces the requirement of training
data.

One of the advantage of the HMM/CFG composite model over the previous
methods is that the prior knowledge is incorporated directly into the model,
and SRGS grammar can be obtained as described earlier for tight ASR/SLU
coupling. In contrast, using the prior knowledge in a preprocessing step results
in a model that can only “generate” the nonterminals in the preprocessing
grammar instead of the terminal words that are covered by the nonterminals.
This is not suitable for LM-based decoding in ASR. Hence most statistical
learning systems use an n-gram language model in the first pass ASR, apply
a preprocessor to map some substrings to domain concepts, and then apply a
statistical SLU model to obtain semantic representations. This loose coupling
approach can be formalized as the search for

M̂ =arg max
M

Pr(M |Ŵ )

= arg max
M

Pr(M | arg max
W

Pr(O|W )× Pr(W ))

= arg max
M

Pr(arg max
W

Pr(O|W )× Pr(W )|M) × Pr(M) (5)

4 The paper claimed that around half of the errors were due to simple programming
issues.

17



Table 1
The ASR word error rate and the SLU error rate (slot ins-del-sub) of the trigram
model and the HMM/CFG composite model.

Recognizer N-gram HMM/CFG Transcription

MS Commercial WER 8.2% 12.0% —

Recognizer SLUER 11.6% 9.8% 5.1%

HapiVite WER 6.0% 7.6% —

SLUER 9.0% 8.8% 5.1%

In this two-pass solution, the dependency link between the observed speech
O and the meaning M via the word sequence W is broken. Instead, O is
generated via a language model Pr(W ) and an acoustic model Pr(O|W ) that
have nothing to do with M . In an extreme case where Pr(W ) = 0 whenever
Pr(W |M) �= 0, no optimal solution can be found. A better solution should
retain the dependency between O and M , as:

M̂ = arg max
M

Pr(M |O) = arg max
M

Pr(O|M) × Pr(M)

= arg max
M

∑

W

Pr(O, W |M) × Pr(M)

= arg max
M

∑

W

Pr(O|W, M) Pr(W |M) × Pr(M)

≈ arg max
M

max
W

Pr(O|W )× Pr(W |M) × Pr(M) (6)

Hence, the SLU model Pr(W |M) × Pr(M) should be used directly as the
language model in speech recognition.

In the second experiment, we used the SRGS grammar that was converted from
the HMM/CFG composite model in a one-pass recognition/understanding ex-
periment, and compared the word error rate and the SLU error rate with those
of the two-pass systems. We used two speech recognizers, Microsoft commer-
cial recognizer and HapiVite [Young (1993)], and we used the generic acoustic
models that came with the recognizers instead of training an ATIS specific
one. Table 1 shows the findings with the commercial recognizer and HapiVite.
For the commercial recognizer, even though the composite model’s word error
rate is over 46% higher than the trigram model, its SLU error rate (measured
as the slot insertion-deletion-substitution rate) is 17% lower. With HapiVite
that is less aggressive in pruning, the word error rate of the HMM/CFG model
is about 27% higher than the trigram model. However, the SLU error rate is
2.5% lower.

The results clearly demonstrate the sub-optimality of the two-pass approach
for ASR and SLU. In this approach, the trigram model is trained to optimize
the likelihood of the training sentences. If the test data is drawn from the

18



same distribution, the trigram model assigns higher likelihood to the correct
transcription and hence reduces the word error rate. On the other hand, the
objective of the HMM/CFG composite model training is to maximize the joint
probability of the sentences and their semantic representations. Thus the cor-
rect representations of the test sentences will be assigned higher probabilities.

Similar findings on the dependency of acoustic observations on the semantics
were reported in Riccardi and Gorin (1998). They interpolated a word n-gram
with a language model containing phrases that were salient for a call-routing
task, and observed that a slight word accuracy improvement resulted in a
substantial improvement in understanding accuracy. Our finding is even more
drastic here — we observed that the inclusion of semantic information in ASR
language model resulted in worse word error rate but better SLU error rate.

It is also important to note that in this experiment the HMM/CFG compos-
ite model only used around 1700 training samples of the ATIS3 training data,
while the n-gram solution used all the ATIS2 and ATIS3 training data, which
consist of more than 6000 training samples. Theoretically this comparison is
not fair to the HMM/CFG composite model. However, the comparison is in-
formative in practice, because it is much easier to obtain unannotated data
for LM training in a two-pass system than the annotated data required by
the HMM/CFG composite model. We also conducted a theoretically fair com-
parison, in which only the 1700 training samples were used for n-gram LM
training, which yielded 10.4% WER and 13.1% SLUER with the commercial
recognizer, and 7.5% WER and 10.2% SLUER with HapiVite.

3 Grammar Controls

The HMM/CFG composite model exploits CFGs as the lexicalization models
for slot fillers, which generally model a specific concept. The concept can be
domain-independent, like date, time, or credit card numbers. In this case the
CFG for it can be pre-built in a grammar library. The concept may also be
domain-dependent, such as insurance policy numbers, or auto part numbers.
In such a case, users have to either use the closest generic CFGs in the gram-
mar library, for example, use the generic alphanumeric sequence grammar for
a policy number, or build their own customized grammar. The first solution is
not specific enough and thus has very high perplexity, which leads to high error
rate. The second solution requires manual grammar development. Although it
may be a trivial problem for dialog system/SLU experts, it is not as straight-
forward for regular developers. In reality, the norm for commercial systems
is system-initiative, and the major grammar authoring task in building such
systems is to model these simple concepts. In spoken dialog research, the norm
is mixed-initiative systems, which often take the simple concept grammars for

19



granted. This leads many developers to an extreme conclusion that mixed-
initiative system research is useless. Pieraccini (2004) also lists this problem
as a research/industry gap.

As an anecdote that echoes the difficulty of authoring a customized grammar,
one of the users of Microsoft Speech Server had built a system to recognize
an alphanumeric concept with a very restrictive pattern — it always starts
with the same letter sequence. Instead of writing a specific grammar for the
particular pattern, the user opted to use the generic library rules, and then
write a program to enumeratively correct errors like the confusion of ‘A’ with
‘8’. It is interesting for SLU researchers to understand what kept the developers
away from writing their own customized grammar. According to discussions
with the developers, there are four major areas of difficulty:

(1) It is hard to anticipate various expressions that refer to the same meaning.
For example, “520” can be “five two oh”, “five two zero”, “five twenty”,
“five hundred twenty,” etc.

(2) It is hard to normalize speech inputs (like all the variations for “520”)
with SI tags. To write correct SI tags, developers have to make sure
that all the alternates in a rule return the semantics in the same format,
and clearly understand what should be expected from a child node in
every possible parse tree. This interdependency of SI tags across different
structure levels makes it difficult to design the tags coherently.

(3) It is hard to optimize grammar structures for best recognition perfor-
mance. Two grammars may accept the same language, but have signifi-
cantly different impacts on the recognition speed. For example, a gram-
mar that is not prefixed properly can result in a large fan-out at initial
stages of decoding and significantly slow down the decoding speed. De-
velopers need to have knowledge about the recognizer’s search algorithm
in order to develop a grammar that promises a high recognition speed.

(4) SRGS adopts XML as the language for grammars. While it has a lot of
technical advantages, its verbosity is a source of errors in manual gram-
mar development. An error analysis of a partner’s grammars revealed
that developers often forget to bracket alternates with the “<one-of>”
tag, resulting in broken paths by cascading rather than listing from the
grammars. To make matters worse, there are no debugging tools that can
detect this type of errors easily.

These problems may not be difficult for SLU experts. However, it is expensive
and often not viable to hire an expert to write a customized grammar. An al-
ternative is to encapsulate the expert-level grammar implementation and hide
these details from users. Using GUI programming as a metaphor, developers
only need to specify what they need (e.g., OpenFile instead of OpenFolder)
by selecting the right control (a prepackaged component) and customize the
control to their own need with some parameters (e.g., set the initial direc-

20



tory shown in the GUI dialog). They do not have to know all the details
about how an OpenFile dialog is drawn on the screen and how an event is
thrown. For grammar development, controls can be provided for frequently
used concepts. Users can customize the controls to their own needs with the
control parameters. The implementation details, including the anticipation of
different expressions, the SI tags, the grammar structure optimization and the
SRGS syntax, are all taken care of by the language technology experts who
encode their expert knowledge in the implementation of the controls. They
are transparent to the grammar developers.

3.1 Basic Controls

Table 2 lists the basic grammar controls for some frequently used concepts.
Wang and Ju (2004) contains the pseudo-code for the algorithm that generates
the SRGS grammar for the ANC control.

Table 2
Basic grammar controls.

Name Description Parameter Example

ANC Alphanumeric RegExp ANC(\d{3}-\d{2}-\d{4})
CAR Cardinal num. Number range CAR(1-31)

CAR Cardinal num. Number set CAR(1, 2, 4, 8)

ORD Ordinal num. Number range ORD(1-31)

ORD Ordinal num. Number set ORD(1, 2, 4, 8)

LST Item list String items LST(apple, pear, orange, peach)

LST DB entries Serv:DB:Tab:Col LST(speech:ATIS:City:cityname)

The ANC control generates grammars for alphanumeric concepts, such as
insurance policy numbers, auto part numbers, etc. Its parameter is a regu-
lar expression that describes the pattern of the alphanumeric string. Table 2
shows an example of the parameter that generates the grammar for U.S. so-
cial security numbers. Developers are instructed to describe the pattern as
specifically as possible. If they know that a specific letter or digit must appear
at a particular position, they should mark it in the regular expression such
that the grammar is more constrained and has lower perplexity. The gram-
mar created by the control compiler from a regular expression, for example,
“AAA”, has broader coverage than the finite state machine constructed from
the same regular expression by the standard algorithm in the formal language
and automata theory — the former automatically takes care of the linguistic
variations and accepts both “A A A” and “Triple A” and transduces them to
“AAA”, while the latter only accepts “A A A”. Another difference is that a

21



control created grammar also allows optional case marks (e.g., “Capital M C
uppercase G R A D Y” for “McGrady”).

The CAR and ORD controls generate grammars for cardinal and ordinal num-
bers (non-negative integers), specified by either a parameter for the range of
the numbers or a parameter that lists the numbers in a set. The grammar
is capable of modeling different ways to utter a number, for example, “five
twenty” and “five hundred twenty” for number 520. In the implementation
of this control, trivial listing of all possible ways to speak all the numbers is
not the best practice. In order to make the grammar compact and efficient
for speech recognition, a lot of structure sharing and prefixing need to be per-
formed. Appendix A shows the SRGS grammar created with the basic control
ORD(1-31).

The LST control generates the grammar for a list of items. The parameter
specifies either the items in the list or a column in a database table. For many
speech applications, there already exists a database and a lot of the informa-
tion in the database can be used to produce a grammar automatically. The
example in Table 2 shows the control that generates a City grammar from the
“ATIS” database that resides on the server “speech”. Items are taken from the
“cityname” column of the “City” table in the database to populate the gram-
mar. The control implementation is able to correctly handle the normalization
issues for words like “Y2K” and “B2B”.

3.2 Operations on Grammar Controls

The basic controls can be used to create grammars for simple concepts. How-
ever, developers often face more complicated tasks that the basic controls do
not cover. In this section, we introduce several control operations that allow
the generation of more complicated grammars. Table 3 lists the operations
that were deemed useful when we attempted to use the basic controls as the
building blocks to construct a variety of complicated grammars — for example,
date and time grammars.

The concatenation operator combines two operand rules sequentially to form
a more complicated rule. For example, “LST(April, June, September, Novem-
ber) ⊗ ORD(1-30)” generates the date grammar for the months with 30 days.

The paste operation pair-wisely concatenates the entries in the operand rules,
rather than the rules themselves. The operand rules of this operation must con-
tain the same number of entries. Assume that table T of database DB on server
S contains a column for employees’ first names and a column for their last
names, then the paste operation “LST(S:DB:T:firstname) ⊕ LST(S:DB:T:lastname)”
creates a grammar that correctly models all the legitimate employee names,

22



Table 3
Operations on grammar controls.

Operator Operation Description

⊗ Concatenation Concatenate two operand rules sequentially

⊕ Paste Pairwise concatenate the entries in the two
operands

� Normalization Use the entries in the second operand as the
semantic interpretations for the entries in the
first operand rule

+ Union Add up all the entries in the two operand rules

• Composition Compose the two controls. Currently the first
operand can only be the ANC control.

while the concatenation operation will result in a grammar that accepts any
first name/last name combination.

The normalization operation associates an entry in the second operand rule as
the normalized semantics of the corresponding entry in the first operand rule
(via SI tags) in a pair-wise fashion. Assume that the database table T in the
previous example also has an employee ID column eid, “(LST(S:DB:T:firstname)
⊕ LST(S:DB:T:lastname)) � LST(S:DB:T:eid)” results in a grammar that ac-
cepts an employee’s name and returns his/her employee ID. Similarly, the op-
eration “LST(Monday, . . . , Sunday) �LST(1,. . . ,7)” accepts a weekday name
and returns the corresponding number as its semantics.

The union operation simply joins the entries in two operand rules. For exam-
ple, the operation “LST(January,March,May,July,August,October,December)
⊗ ORD(1-31) + LST(April,June,September,November) ⊗ ORD(1-30) + LST(
February) ⊗ ORD(1-28)” produces a simple “date” grammar.

The composition operation is more restrictive. The left operand must be an
ANC control. It will result in a spelling grammar for the entries in the second
operand rule. For example, “ANC•LST(speech:ATIS:City:cityname)” accepts
utterances like “S E A T T L E” or “S E A double T L E” and returns
“Seattle” as the semantics for the two utterances.

The combination of these operations, together with the basic grammar con-
trols, provides a powerful way to generate various complicated speech recog-
nition grammars.

23



3.3 Experiments

We compare the speech recognition accuracy resulting from a customized
grammar built by grammar controls with the accuracy obtained with the
closest generic grammar from the grammar library of Microsoft Speech Appli-
cation Software Development Kit (MS SASDK). This reflects how much im-
provement grammar controls can bring to a speech application over the best
scenario without customized grammars. We focused our study on the most
frequently used ANC control. Three different alphanumeric grammars were
created for social security numbers (SSN), license plate numbers (LPN), and
Washington State driver license numbers (WADL) from the ANC grammar
control. Table 4 shows the parameterized controls that were used to generate
the grammars.

Table 4
Parameterized grammar controls that generate the W3C speech recognition gram-
mars.

Concept Controls

SSN ANC(\d{3}-\d{2}-\d{4})
LPN ANC(\d[A-Z]{3} \d{3})
WADL ANC([A-Z]{2}[A-Z*]{3}[A-Z][A-Z*]\d{3}[A-Z]{2})

220 samples were generated randomly for each concept from the regular expres-
sions used by the grammar controls, except for the WADL. The Washington
State driver license number starts with the five initial letters of a person’s last
name (filled with ‘*’ if the last name is shorter), followed by the first initial
and the middle initial (‘*’ if no middle initial), and then three digits and two
letters. We randomly picked 220 last names from the US Census Bureau’s 1990
census, took the first five letters from each name and appended it with a string
randomly generated according to the regular expression “[A-Z][A-Z*]\d{3}[A-
Z]{2}.”

Speech data was collected from eleven subjects. The subjects were Microsoft
employees, including five speech researchers, four software engineers/testers
and two administrative members. The subjects were told what the numbers
stood for, and they were instructed to read them out in the normal way they
speak them in their daily life. Twenty utterances per concept were collected
from each subject.

Microsoft commercial recognizer was used in the experiments, together with
its default speaker independent acoustic model. For each concept, we used as
the baseline the general fixed-length alphanumeric grammar from the gram-
mar library. The same grammar library also contains the rule USSocialSecurity
(Lib/SSN). We used it as an alternative (presumably better) baseline for the

24



Table 5
Character error rate (CER) and semantic error rate (SER) for the SSN recognition
task. Digit9 is the grammar for the digit string of length 9. Lib/SSN is the SSN
grammar in the grammar library. ANC/SSN is generated from the ANC grammar
control in Table 4.

Digit9 Lib/SSN ANC/SSN

CER 17.8% 7.5% 1.8%

SER 33.2% 22.3% 13.2%

Table 6
Character error rate (CER) and semantic error rate (SER) for the license plate
number recognition task. AN-7 is the grammar for the alphanumeric string of length
7. ANC/LPN is generated from the ANC grammar control in Table 4.

AN-7 ANC/LPN

CER 10.8% 4.9%

SER 47.7% 22.7%

SSN task. The recognition outputs were then compared with the original num-
bers used in data collection. The statistics of the character error rates and the
semantic error rates were collected — a recognition hypothesis is considered
a semantic error if one or more character errors occur.

Table 5 shows the error rates of the three different grammars for the SSN
task. The grammar generated by the ANC grammar control (ANC/SSN) cut
the semantic error rate (row SER, column ANC/SSN) by more than 60%
when it is compared with the fixed length digit sequence grammar (row SER,
column Digit9), and over 40% when it is compared with the library SSN
grammar (row SER, column Lib/SSN). The digit sequence grammar has the
highest error rate because it doesn’t cover the digit sequences that were read
as numbers (e.g., “one hundred twenty three” for “123”). The library SSN
grammar (Lib/SSN) has higher error rate than that of ANC/SSN. This is
an artifact of the explicit read-out of the hyphens in SSNs by one speaker.
The hyphen is not modeled by, and not straightforward to add to the library
SSN grammar. This demonstrates that grammar controls effectively provide a
customized alternative when the existing library grammar fails to model some
speakers’ peculiar utterances.

Table 6 compares the license plate number grammar created by the ANC
grammar control (ANC/LPN) with the baseline grammar. Because ANC/LPN
modeled the diversity of the digit sequence expressions, as well as the con-
straints on the locations where a digit or a letter is expected, it cut the er-
ror rate by more than 50%. The location constraints significantly reduce the
fan-out at each grammar state (and hence the perplexity) and eliminate the
frequently observed confusions between ‘8’ and ‘A’.

25



Table 7
Character error rate (CER) and semantic error rate (SER) for the Washington State
driver license number task. AN-12 is the grammar for the alphanumeric string of
length 12. ANC/WADL is generated from the ANC grammar control in Table 4.

AN-12 ANC/WADL

CER 24.5% 23.6%

SER 81.4% 63.2%

Finally, Table 7 lists the error rates of the two WADL grammars. The grammar
created from the grammar control (ANC/WADL) again has better accuracy.
However, both grammars have a very high error rate for this task. An error
analysis shows that the high error rates can be attributed to the following two
reasons:

(1) There are more letters in a WADL number, and letters are acoustically
more confusable than digits. The error analysis shows that the most con-
fusable letters are ‘S’ vs. ‘F’, and then the E-set letters B, D, E, G, P,
and T. This also explains why the license plate numbers has higher error
rate than the social security numbers.

(2) WADL numbers often contain pronounceable substrings (last names or
last name prefixes). Many subjects (often the speech researchers who tried
hard to break the system) opted to pronounce the name instead of spelling
out the letters. About 8% of the data was read out with the substring
pronunciation, which is completely not covered by either grammar.

The results are not surprising since the grammars generated by the grammar
controls are more constrained and therefore have lower perplexity. Neverthe-
less, it shows the benefit of grammar controls. Grammar controls provide an
efficient way to create grammars customized to specific concepts in an appli-
cation. This is not only helpful to regular developers without a background in
dialog systems, who often find it difficult to create customized grammars, but
also useful for spoken dialog experts to save time in grammar development.
The tool has been well received by developers. As an example, a developer
reported that he still could not make the SI tags work properly after spending
a whole morning on a grammar for driver license numbers, and credited the
tool with grammar controls for building the grammar for him in literally a
couple of seconds.

4 Grammar Configurability

The HMM/CFG model was designed for mixed-initiative systems in which
an object with a specific type can be the filler of different slots, e.g. a city

26



name can be the filler for either the departure or the arrival city slot. It
still requires labeled training data even though the inclusion of the domain
knowledge in the model has significantly reduced the requirement. In many
different application scenarios, simplified model topologies that require even
less or no training data are more suitable. In this section we illustrate that
some configuration parameters of SGStudio can customize the HMM/CFG
model topology to fit different application scenarios.

4.1 Configuration Parameters

We start with the introduction of the configuration parameters. In the next
subsection we will show how they can be used to configure the model topology
for different application scenarios.

Table 8 lists the configuration parameters. The “backbone” parameter con-
trols the overall model structure. The value of the parameter is either “Tem-
plate HMM” or “Domain Ngram”. The difference between the two parameter
values lies in the way the dependency for a lexical item is modeled. In the case
of “Template HMM” setting, the words that a state emits only depend on the
state and the history of words from the same state. The first word of the state
depends on the context cue of sentence beginning, “<s>”. On the other hand,
in the “Domain Ngram” setting, a history may also include the previous state;
or the words from the previous state when the previous state is modeled with
a pooled (tied) n-gram (see the model type parameter in next paragraph). As
an example for this setting, if preambles are modeled with a pooled n-gram,
the slot filler state will depend on the words in the pooled n-gram as well.

The model type parameter applies to four different model states: slot pream-
bles and postambles, and the precommands and postcommands for top level
tasks. The parameter takes one of the five possible values. “None” means that
the specific state should be omitted from the general model topology (e.g., slot
postambles are often optional in English); “Wildcard” indicates that there is
no specific language model for the state. A phone loop model should be used
to accept any acoustic inputs; “PooledNgram” ties the model with the models
of all the other “PooledNgram” states. The training data for all those states
are pooled together. These three model types eliminate or reduce the require-
ment for training data. The value “Ngram” results in the standard composite
model described in Section 2; and the “Rule” value lets the model use CFG
rules instead of n-gram models for the particular type of states.

27



Table 8
The configuration parameters. The backbone parameter controls the overall model
topology, while the ModelType parameters determine the types of statistical models
used for the precommand, postcommand, preamble and postamble states.

Parameter Application Value Description

Backbone
Model
Topology

Template HMM Using the HMM with different
preamble/postambles

Domain Ngram Use the unified LM as the
backbone of the model

Model
Type

Preamble
Postamble
PreCommand
PostComamnd

None Don’t model it

Wildcard Use wildcard model

PooledNgram Share an n-gram model

Ngram Use specific n-gram models

Rule Use specific CFG rules

4.2 Application Scenarios

4.2.1 Scenario 1: Key phrase spotting for system-initiated dialogs

We have shown that grammar controls can create grammars for system-initiated
systems. The grammars model exactly what the system is expecting from a
user. However, users’ response may contain unexpected insertions. For exam-
ple, in a pizza ordering application, the system may prompt a user for the size
and toppings of the pizza. The user may reply “I want to have a large pizza
with mushroom and cheese” or “medium pepperoni please”. The SLU compo-
nent needs to spot the word “large” and “medium” for size and “mushroom”,
“cheese” and “pepperoni” for toppings from the user’s utterances. When there
is no training data available, a wildcard model can be used for this task, with
a phone loop model that picks everything except for the key phrases. This is
shown in Fig. 12.

* *large,small,mushroom,ham,...

Toppings | Size

Fig. 12. The wildcard model: the key phrase model is bracketed by the wildcards
(*) that can match anything a user may say. The task of recognition/understanding
is to extract the key phrases from a user’s utterance.

Fig. 13 shows the grammar configuration that generates the wildcard model.

28



<GrammarConfiguration>
<Preamble>Wildcard</Preamble>
<Postamble>None</Postamble>
<PreCommand>None</PreCommand>
<PostCommand>Wildcard</PostCommand>

< /GrammarConfiguration>

Fig. 13. The grammar configuration that creates the wildcard model. The pre-
commands and the postambles of the general topology in Fig. 5 are omitted. All
preambles are modeled with the wildcard so they collapsed into the left wildcard
node in Fig. 12, and all postcommands collapsed into the right wildcard node.

While the model is robust and requires no training data, it often has a high
insertion error rate. Because the wildcard model is very flat, it tends to assign
lower probability to the matched acoustic feature frames. Therefore the input
acoustics are more likely to be matched with the key phrase model, which
results in false positive errors. This model can be used to deploy an initial sys-
tem, and more sophisticated systems can be built as the data become available
after deployment.

4.2.2 Scenario 2: Multiple slots without ambiguities/Unified language model

The wildcard model can be improved when data are available. If there is no
slot ambiguity, i.e., the fillers for one slot cannot be the filler for another
slot, then there is no need to have separate preambles and postambles for
different slots as the contextual cues for slot disambiguation. We can lump
together all the n-grams for the precommands, preambles, postambles, as well
as the backbone slot n-grams (with the “Domain Ngram” backbone setting)
together. In doing so, the number of parameters is greatly reduced, and thus
so is the requirement for training data. Note that there is no need for the
postcommand states, since the words that occur at the end of a sentence are
modeled by the postamble following the last slot, which is the same as the
backbone n-gram model. The grammar configuration is shown in Fig. 14, and
the resulting grammar structure in illustrated in Fig. 15.

The model in Fig. 15 forms the basis of the unified language model. It was first
introduced in [Wang et al. (2000)] and had been further studied in [Dolfing
(2004), Wang et al. (2004)]. The unified language model is a generalization of
the class-based n-gram model, where PCFG non-terminals, as the word classes
in the class-based n-gram model, are introduced into the n-gram model as
“super-words”. From the super-words, the terminal lexical items are generated
according to the distributions defined in the PCFG. Let’s consider the sentence
“meeting at four PM with Derek.” With the traditional n-gram model, the
probability of the sentence is

29



<GrammarConfiguration>
<Backbone>Domain Ngram</Backbone>
<Preamble>PooledNgram</Preamble>
<Postamble>PooledNgram</Postamble>
<PreCommand>PooledNgram</PreCommand>
<PostCommand>None</PostCommand>

< /GrammarConfiguration>

Fig. 14. The configuration that creates the unified language model. The backbone of
the model is an n-gram, which is tied with the preamble, postamble and precommand
n-grams. The training data for all the n-grams are pooled together. This effectively
results in a single n-gram model that predicts both the terminal words and the CFG
non-terminals.

Pr(w2|w1) Pr(w2|w1)

Pr(w|Size)
Size

Toppings

text
Pr(Toppings|w)

Pr(Size|w)
text

Pr(w|Toppings)

Prcfg(W=large|Size)

Pr(w|Size)

Prcfg(W=large|Toppings)

Pr(w|Toppings)

Fig. 15. Topology of the unified language model, in which words and the CFG
non-terminals are modeled together in the backbone n-gram model.

Pr(“meeting at four PM with Derek”) =
Pr(meeting|<s>) × Pr(at|meeting)×
Pr(four|at) × Pr(PM|four) × Pr(with|PM)×
Pr(Derek|with) × Pr(</s>|Derek) (7)

In the unified language model, the CFG non-terminals, for example, <Name>
and <Time>, are introduced into the n-gram. The process that generates the
previous example sentence is illustrated in Fig. 16. The probability of the
example is

Pr(“meeting at four PM with Derek”) =
Pr(meeting|<s>) × Pr(at|meeting)×
Pr(<Time>|at) × Pcfg(four PM|<Time>)×
Pr(with|<Time>) × Pr(<Name>|with)×
Pcfg(Derek|<Name>) × Pr(</s>|<Name>) (8)

The introduction of the CFG non-terminals makes the unified language model
generalize better. For example, the sentence “meeting at noon with Peter
Johnson” will share the same underlying structure as the one in Fig. 16. They

30



meeting

at

Pr(at|meeting)

Pr(<Time>|at) withPr(with|<Time>) Pr(<Name>|with)

Pr(meeting|<s>)

Pr(</s>|Name)<Time>

four PM

<Name>

Pr(four PM | <Time>)

Derek

Pr(Derek|<Name>)

Fig. 16. The state sequence of the unified language model for the utterance “meeting
at four PM with Derek”. The circles represent the emissions of lexical items, and
the rectangles represent the PCFG rules.

only differ in the emissions of the lexical items from the CFG states “<Time>”
and “<Name>”. Furthermore, the introduction of the non-terminals enables
the speech recognizer to identify and output the slot semantics.

The absence of state specific preamble and postamble models make the model
unable to use context to disambiguate the slots. For applications like ATIS
where a city can be the departure, arrival or connecting city, and a time can
be either a departure or a arrival time, the original HMM/CFG composite
model is more appropriate.

4.2.3 Scenario 3: Grammar for Manual Maintenance

One disadvantage of the original HMM/CFG composite model is that the
SRGS grammar created from it is not easy to read/understand due to the
n-gram to FSA conversion. It is very difficult to manually modify the au-
tomatically learned grammar if the developers opt to do so. A compromise
is to sacrifice the robustness for maintainability by replacing n-gram models
with CFG rules for the precommand, postcommand, preamble and postamble
states. Note that this does not affect the training algorithm very much. The
only modification is to run a Viterbi segmentation at the final stage for all
training examples and use the word sequence aligned with each state as a
rule for the state. The probability for the rule is just the normalized expected
count calculated by the EM algorithm described in Wang et al. (2005). Fig. 17
shows the configuration and the topology of such grammars.

While the resulting grammar is more maintainable, it is less robust because
it requires the input sentences match the precommands, postcommands, and
preambles exactly as seen in the training sentences. Normally this causes a
15∼20% (relative) increase in error rate.

31



<GrammarConfiguration>
<Backbone>Template HMM</Backbone>
<Preamble>Rule</Preamble>
<Postamble>None</Postamble>
<PreCommand>Rule</PreCommand>
<PostCommand>Rule</PostCommand>

</GrammarConfiguration>

Prcfg(W=ham|Toppings)

ToppingsPreToppings

PreSize Size

Prcfg(W=large|Size)

Pr(PreSize|command)

Pr(PreSize|Size)

Pr(PreToppings|command)

command PostCommand
Pr(PreToppings|Size)

Pr(PreSize|Toppings)

Pr(PreToppings|Toppings)

Fig. 17. The configuration and the topology of the more maintainable HMM/CFG
composite model. The rectangles represent PCFG rules.

4.2.4 Scenario 4: Call Routing/Classification

The HMM/CFG composite model can also be configured for call routing ap-
plications.

If we omit all the preambles, postambles and postcommands, and use a sepa-
rate n-gram model for the precommand of each of the top level tasks, as shown
in the configuration in Fig. 18, then we end up with the topology shown in
Fig. 19. In this case, each precommand n-gram is a unified language model —
or a regular word n-gram model if there is no slot for the task frame. For an in-
put sentence W , the recognizer picks the task that maximizes the a posteriori
probability:

Task = arg max
taski

Pr(taski) × Pr(W |taski) (9)

This is the n-gram classifier described in Chelba et al. (2003).

Chelba et al. (2003) compared the model with other classifiers. The experi-
ments were conducted with the ATIS data. It used all the ATIS2 and ATIS3
training data for training and ATIS3 test data (∼ 900 utterances) for testing.
The main database table name in the reference SQL query was taken as the
class label for each utterance. There are 14 class labels.

Table 9 highlights some of their key findings on this data set with the ML

32



<GrammarConfiguration>
<Backbone>Template HMM</Backbone>
<Preamble>NGram</Preamble>
<Postamble>None</Postamble>
<PreCommand>None</PreCommand>
<PostCommand>None</PostCommand>

</GrammarConfiguration>

Fig. 18. The configuration and the topology for the call routing grammar.

Task1 command n-gram

Taskn command n-gram

Task2 command n-gram

Pr(Task1)

Pr(Taskn)

Pr(Task2)

Fig. 19. HMM/CFG model’s call-routing topology.

trained classification models, including a naive Bayes classifiers (NB) [Duda
et al. (2001)], a two-pass trigram classifiers (2-pass Trigram), and a one-pass
trigram (2-pass Trigram) classifier that is equivalent to the SGStudio gener-
ated n-gram classification model.

Table 9
Comparison of ML trained classifiers. All classifiers except for the last one operate
in two passes. A trigram LM is used in the first pass ASR, and the classification
models are applied in the second pass.

Classifier WER CER

NB 5.1% 9.7%

2 pass Trigram 5.1% 9.4%

1 pass Trigram 5.5% 9.0%

The one-pass trigram classifier works with the lowest classification error rate
among the models, even though the word error rate is higher — this is an-
other piece of evidence that reveals the the broken semantics/surface sen-
tence/acoustic observation dependency chain results in a suboptimal solution.

The experiments were conducted in the ATIS domain simply due to the readi-
ness of the data. Readers are cautioned that ATIS is not a good call routing
application. We are in the process of obtaining more realistic call routing data
to test the system. Also it has been shown that models trained discrimina-
tively have better classification accuracy than ML trained models [Kuo et al.
(2002); Hakkani-Tür et al. (2004)]. We are currently investigating discrimina-
tive training for the HMM/CFG composite model.

33



5 Ongoing and Future Work

This article has investigated the problem of grammar authoring for initial
system deployment when little data is available. Potentially, the HMM/CFG
composite model can also be used for system adaptation/tuning when data are
available after the initial system deployment. In fact, we are currently working
on a dialog system tuning tool that improves the model with system logged
data.

While preliminary experimental results show that SGStudio can generate sta-
tistical models that accomplished good classification performance compared to
other ML trained models, there is potentially a significant room for improve-
ment with discriminatively trained models. We are currently investigating the
discriminative model training, not just for call classification, but also for high
resolution SLU tasks. We are also in the process of obtaining more realistic
call routing data for evaluation.

SGStudio, like many other SLU systems, adopts a frame-based domain se-
mantic definition, which is used to build the prior model topology. While the
grammar topology and parameters are automatically learned, the model still
depends on the developers description of domain semantics based on his/her
domain knowledge. While the semantic frame is closely related to the ap-
plication database schema, there is no systematic derivation of the semantic
frames from the database schema. The quality of the description of domain
semantics, to a large extent, depends on the developer’s experience. Although
semantic definition is a much simpler problem than grammar development,
the systematic derivation of the semantic frame remains a very important and
interesting research topic.

6 Conclusions

This article addresses the problem of grammar authoring in spoken dialog sys-
tems when the application developer has little expertise in human language
technology. Previous data-driven grammar learning methods suffer from the
problem that little training data is available at initial stages of system de-
velopment. This practical problem has not been sufficiently addressed in the
research community, and remains one of the major obstacles to the wide accep-
tance of spoken dialog technology. To close the gap, we introduced SGStudio, a
tool that aims at enabling a regular developer to create high quality grammars
for ASR and SLU. The major contributions include:

(1) The HMM/CFG composite model that includes domain knowledge as an

34



integral part of the statistical model in a principled way. It alleviates
the data-sparseness problem and enables tight ASR/SLU coupling, and
hence improves the overall understanding accuracy.

(2) The introduction of grammar controls and control operations. They pro-
vide a very powerful tool to create grammars for domain-specific concepts.
This complements the data-driven statistical modeling approach.

(3) The combination of the HMM/CFG composite model, grammar controls
technology and a configurable model structure results in a very practi-
cal tool for speech understanding grammar authoring. It increases the
productivity of spoken dialog system development.

Experimental results show that the HMM/CFG composite model achieved
better SLU accuracy on the ATIS task with much less training data, and the
novel use of grammar control technology resulted in customized grammars
that best fit users’ needs. We believe that the marriage of spoken language
modeling research and the best engineering practice presented in this article
is a solid step towards closing the research/industry gap in spoken dialog
systems, and it will promote broad adoption of speech technology.

7 Acknowledgments

The authors would like to thank the anonymous reviewers for their construc-
tive comments and suggestions, and acknowledge the help from Ciprian Chelba
and Mike Seltzer for their feedback on the manuscript.

A An Exemplar Grammar Control Generated Grammar

The following grammar is generated with the ordinal number grammar control
ORD(1-31):

<?xml version=“1.0”?>
<grammar xml:lang=“en-US” xmlns=“http://www.w3.org/2001/06/grammar”
root=“root” tag-format=“semantics-ms/1.0” version=“1.0”>
<! −−ORD(1-31)–>

<rule id=“root” scope=“public”>
<tag>prefix=0</tag>
<one-of>

<item>
<ruleref uri=“#Ones 1 9th”/>
<tag>$=$$</tag>

< /item>

35



<item>
<ruleref uri=“#Tens 10 29th”/>
<tag>$=$$</tag>

< /item>
<item>

<ruleref uri=“#Tens 30 31th”/>
<tag>$=$$</tag>

< /item>
< /one-of>
<tag>$=$+prefix</tag>

< /rule>

<rule id=“Ones 1 9th” scope=“private”>
<one-of>

<item>first <tag>$=1</tag></item>
<item>second <tag>$=2</tag></item>
<item>third <tag>$=3</tag></item>
<item>fourth <tag>$=4</tag></item>
<item>fifth <tag>$=5</tag></item>
<item>sixth <tag>$=6</tag></item>
<item>seventh <tag>$=7</tag></item>
<item>eighth <tag>$=8</tag></item>
<item>nineth <tag>$=9</tag></item>

< /one-of>
< /rule>

<rule id=“Tens 30 31th” scope=“private”>
<one-of>

<item>thirty first <tag>$=31</tag></item>
<item>thirtieth <tag>$=30</tag></item>

< /one-of>
< /rule>

<rule id=“Tens 10 29th” scope=“private”>
<one-of>

<item>tenth <tag>$=10</tag></item>
<item>eleventh <tag>$=11</tag></item>
<item>twelfth <tag>$=12</tag></item>
<item>thirteenth <tag>$=13</tag></item>
<item>fourteenth <tag>$=14</tag></item>
<item>fifteenth <tag>$=15</tag></item>
<item>sixteenth <tag>$=16</tag></item>
<item>seventeenth <tag>$=17</tag></item>
<item>eighteenth <tag>$=18</tag></item>
<item>nineteenth <tag>$=19</tag></item>

36



<item>twentieth <tag>$=20</tag></item>
<item>twenty <tag>$=20</tag>

<ruleref uri=“#Ones 1 9th”/><tag>$=$+$$</tag>
</item>

< /one-of>
< /rule>

< /grammar>

References

Allen, J. F., Miller, B. W., Ringger, E. K., Sikorshi, T., 1996. Robust under-
standing in a dialogue system. In: 34th Annual Meeting of the Association
for Computational Linguistics. Santa Cruz, California, USA, pp. 62–70.

Bangalore, S., Johnston, M., 2004. Balancing data-driven and rule-based ap-
proaches in the context of a multimodal conversational system. In: Human
Language Technology/Conference of the North American Chapter of the
Association for Computational Linguistics. Boston, MA, USA.

Carpenter, B., Chu-Carroll, J., 1998. Natural language call routing: a robust,
self-organizing approach. In: International Conference on Speech and Lan-
guage Processing. Sydney Australia.

Chelba, C., Mahajan, M., Acero, A., 2003. Speech utterance classification. In:
IEEE International Conference on Acoustics, Speech, and Signal Processing.
Hong Kong, China.

Della Pietra, S., Epstein, M., Roukos, S., Ward, T., 1997. Fertility models for
statistical natural language understanding. In: 35th Annual Meeting of the
Association for Computational Linguistics. Madrid, Spain, pp. 168–173.

Dempster, A. P., Laird, N., Rubin, D. B., 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society B 39, 1–38.

Dolfing, H., 2004. Unified language modeling using finite-state transducers
with first applications. In: International Conference on Spoken Language
Processing. Jeju, Korea.

Dowding, J., Gawron, J. M., Appelt, D., Bear, J., Cherny, L., Moore, R.,
Moran, D., 1993. Gemini: A natural language system for spoken-language
understanding. In: 31st Annual Meeting of the Association for Computa-
tional Linguistics. Columbus, Ohio, pp. 54–61.

Duda, R. O., Hart, P. E., Stork, D. G., 2001. Pattern Classification. John
Wiley and Sons, Inc.

Estéve, Y., Raymond, C., Bechet, F., Mori, R. D., 2003. Conceptual decoding
for spoken dialog systems. In: Eurospeech 2003. Geneva, Switzerland.

Fu, K. S., Booth, T. L., 1975a. Grammatical inference: Introduction and sur-
vey, part 1. IEEE Transactions on Systems, Man and Cybernetics 5, 85–111.

Fu, K. S., Booth, T. L., 1975b. Grammatical inference: Introduction and sur-

37



vey, part 2. IEEE Transactions on Systems, Man and Cybernetics 5, 409–
423.

Gorin, A., 1995. On automated language acqusition. Journal of Accoustical
Society of America 97 (6), 3441–3461.

Hakkani-Tür, D., Tur, G., Rahim, M., Riccardi, G., 2004. Unsupervised and
active learning in automatic speech recognition for call classification. In:
IEEE International Conference on Acoustics, Speech, and Signal Processing.
Montreal, Canada.

He, Y., Young, S., 2005. Semantic processing using the hidden vector state
model. Computer Speeech and Language 19 (1), 85–106.

Hunt, A., McGlashan, S., 2002. Speech recognition grammar specification ver-
sion 1.0. http://www.w3.org/tr/speech-grammar/.

Jelinek, F., Lafferty, J. D., Mercer, R. L., 1990. Basic methods of probabilistic
context free grammars. Tech. Rep. RC 16374, IBM T.J. Watson Research
Center, Yorktown Heights, N.Y.

Kuo, H.-K. J., Zitouni, I., Fosler-Lussier, E., Ammicht, E., Lee, C.-H., 2002.
Discriminative training for call classification and routing. In: International
Conference on Spoken Language Processing. Denver Colorado.

Macherey, K., Och, F. J., Ney, H., 2001. Natural language understanding using
statistical machine translation. In: Eurospeech 2001.

Miller, S., Bobrow, R., Ingria, R., Schwartz, R., 1994. Hidden understanding
models of natural language. In: 31st Annual Meeting of the Association for
Computational Linguistics. New Mexico State University.

Pargellis, A., Fosler-Lussier, E., Potamianos, A., Lee, C.-H., 2001. Metrics for
measuring domain independence of semantic classes. In: Eurospeech 2001.
Aalborg, Denmark.

Pieraccini, R., 2004. Spoken language understanding, the research/industry
chasm. In: HLT/NAACL Workshop on Spoken Language Understanding
for Conversational Systems. Boston.

Pieraccini, R., Levin, E., 1993. A learning approach to natural language under-
standing. In: 1993 NATO ASI Summer School. New Advances and Trends
in Speech Recognition and Coding. Springer-Verlag, Bubion, Spain.

Price, P., 1990. Evaluation of spoken language system: the atis domain. In:
DARPA Speech and Natural Language Workshop. Hidden Valley, PA.

Riccardi, G., Gorin, A. L., 1998. Stochastic language models for speech recog-
nition and understanding. In: International Conference on Spoken Language
Processing. Sidney, Australia.

Riccardi, G., Pieraccini, R., Bocchieri, E., 1996. Stochastic automata for lan-
guage modeling. Computer Speech and Language 10, 265–293.

Ringger, E., 2000. Correcting speech recognition errors. Ph.D. thesis, Univer-
sity of Rochester.

Schapire, R. E., Rochery, M., Rahim, M., Gupta, N., 2005. Boosting with prior
knowledge for call classification. IEEE Transactions on Speech and Audio
Processing 13 (2), 174–181.

Seneff, S., 1992. TINA: A natural language system for spoken language appli-

38



cations. Computational Linguistics 18 (1), 61–86.
Stolcke, A., Omohundro, S. M., 1994. Best-first model merging for Hidden

Markov Model induction. Tech. Rep. TR-94-003, International Computer
Science Institute.

Vidal, E., Casacuberta, F., Garcia, P., 1993. Grammatical inference and ap-
plications to automatic speech recognition and understanding. Tech. Rep.
DSIC II/41/93, Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia.

Wang, N. J., Shen, J.-L., Tsai, C.-H., 2004. Integrating layer concept infor-
mation into n-gram modeling for spoken language understanding. In: Inter-
national Conference on Spoken Language Processing. Jeju, Korea.

Wang, Y.-Y., 1999. A robust parser for spoken language understanding. In:
Eurospeech 1999. Vol. 5. ESCA, Budapest, Hungary, pp. 2055–2058.

Wang, Y.-Y., Deng, L., Acero, A., 2005. Spoken language understanding — an
introduction to the statistical framework. IEEE Signal Processing Mazagine
22 (5).

Wang, Y.-Y., Ju, Y.-C., 2004. Creating speech recognition grammars from
regular expressions for alphanumeric concepts. In: International Conference
on Spoken Language Processing. Jeju, Korea.

Wang, Y.-Y., Mahajan, M., Huang, X., 2000. A unified context-free grammar
and n-gram model for spoken language processing. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing. Istanbul, Turkey.

Wang, Y.-Y., Waibel, A., 1998. Modeling with structures in statistical ma-
chine translation. In: 36th Annual Meeting of the Association for Compu-
tational Linguistics/17th International Conference on Computational Lin-
guistics. Montral, Qubec, Canada.

Ward, W., 1994. Recent improvements in the CMU spoken language under-
standing system. In: Human Language Technology Workshop. Plainsboro,
New Jersey.

Wong, C.-C., Meng, H., 2001. Improvements on a semi-automatic grammar
induction framework. In: IEEE Automatic Speech Recognition and Under-
standing Workshop. Madonna di Campiglio, Italy.

Woods, W. A., 1983. Language processing for speech understanding. In: Com-
puter Speech Processing. Prentice-Hall International, Englewood Cliffs, NJ.

Young, S., 1993. The htk hidden markov model toolkit: design and philosophy.
Tech. Rep. TR.153, Department of Engineering, Cambridge University.

39


