Sigma: A Fault-Tolerant Mutual Exclusion Algorithm
in Dynamic Distributed Systems Subject to
Process Crashesand Memory L osses

Wei Chen Shi-Ding Lin Qiao Lian Zheng Zhang
Microsoft Research Asia
{weic, i-slin, t-giaol, zzhang}@microsoft.com

May, 2005

MSR-TR-2005-58

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Sigma: A Fault-Tolerant Mutual Exclusion Algorithm
in Dynamic Distributed Systems Subject to
Process Crashesand Memory L osses

Wei Chen Shi-Ding Lin Qiao Lian Zheng Zhang
Microsoft Research Asia

{weic, i-slin, t-giaol, zzhang}@microsoft.com

Abstract
This paper introduces the Sigma algorithm that emlfault-tolerant mutual exclusion problem in
dynamic systems where the set of processes magrdpe &nd change dynamically, processes may crash,
and the recovery or replacement of crashed progessy lose all state information (memory losses).,
Sigma algorithm includes new messaging mechanisnwslérate process crashes and memory losses. It
does not require any extra cost for process regoildre paper also shows that the threshold usetidoy
Sigma algorithm is necessary for systems with meaashes and memory losses. The paper includes

the complete proofs of the correctness of the @lgarand the lower bound result.

Keywords: distributed mutual exclusion, fault t@lece, quorum systems, distributed algorithm

1 Introduction

Distributed mutual exclusion is a problem that nggsathe access to a single, indivisible sharedureso
by at most one process at any time in a distribatedronment. It can also be viewed as managirgrtaia
critical sectionof the program code that allows only one procedsetin at any time. Distributed mutual
exclusion has been studied extensively in thedltee (e.g., see [18], [21], [13] for a collectiof
algorithms). In this paper, we focus on asynchrenmessage-passing mutual exclusion in dynamic
distributed systems, in particular peer-to-peeP()P3/stems.

To accommodate dynamic changes and tolerate fajluve can dedicate a small set of processes as
mutual exclusion servers to service client requéstiividual clients work with the servers to coote

mutual exclusion rather than working with otheents directly. Thus, the set of clients does nedre be

fixed and may be very large and change dynamic&hult tolerance can be achieved by choosing an
appropriate size of servers such that as long asgénservers do not crash, they can work with tdi¢m
achieve mutual exclusion.

In P2P systems with distributed hash table (DHPpsut (e.g., [6],[8],[17],[22]), the set of serveran
be maintained stable. If a machine hosting a samashes, one of its DHT neighbor will become the/n
host. However, the old states of the failed seavercompletely lost. This demands a new system hinde
which processes crashes are associated mémory lossesTherefore P2P/DHT systems provide good
support for maintaining stable server sets whitpiitng new failure models. Furthermore, in P2Ptest
the performance of the algorithm should be robust atable and works well in both low and high
contention cases. These were the chief motivatioatsstarted the study of the Sigma algorithm [12].

When designing fault-tolerant algorithms in thesntiserver architecture, two major approaches may
be used. One is the state-machine approach (Rd]), and the other is the quorum-based systergs[@,

[14], [19]). With the state-machine approach, elivers execute all client requests in the exacesanter,
and collectively they behave as a single faultrtoie state-machine that orders all client requebts.
achieve this, servers need a fault-tolerant agraepretocol (such as paxos [10], [9]) among thereseto
synchronize their executions. As a result, theestachine approach may increase the response dime t
client requests, and it may need more mechanisofsasifailure detection among the servers.

The quorum-based systems do not require coordmaticong the servers. Consistency is enforced by
requiring each client to collect responses fromuargm of servers before it can enter its criticdt®on.
Quorums of servers need to intersect with eachr atheertain ways to achieve fault tolerance.

However, existing quorum-based mutual exclusiomritigms (e.g. [2], [14], [19]) do not address the
issue that servers may crash and lose all theirariem When servers may crash and lose memorieis, th
responses to clients become inconsistent and maedhe violation of the mutual exclusion requiratne
Moreover, existing algorithms assume that commuiticachannels are reliable and FIFO. However,

process crashes and memory losses make the imghtioanof a reliable and FIFO communication

channels difficult, since such implementations ¢gfly require retaining certain memories such as
sequence numbers on both sides of a channel.

This paper introduces the Sigma algorithm to addm@m®cess crashes and memory losses. Sigma
algorithm solves the fault-tolerant mutual exclusjwoblem wherf<n/3, wheref is the number of faulty
servers ana is the total number of servers. Moreover, it idgls new messaging mechanisms to tolerate
non-reliable and non-FIFO channels caused by psar@shes and memory losses.

By the taxonomy of [21], Sigma algorithm belongdhe category of non-token-based, Maekawa-type
mutual exclusion algorithms. The performance ofSkgma algorithm is comparable with other algorishm
in the same category, while the mechanisms thakeadgrocess crashes and memory losses distirtheish
Sigma algorithm from others. Moreover, the alganithas an important feature: It does not require any
extra cost for process recovery. A server can kehava regular server immediately after recovetly no
extra reconfiguration or state transfer period. Paper further shows that the requiremenf<af3 is
necessary for any algorithm that employs a clientexr architecture to solve the fault-tolerant ralitu
exclusion problem in systems with process crashdsraemory losses.

The rest of the paper is organized as follows. \&find the system model in Section 2, and define the
fault-tolerant mutual exclusion problem in SectiBn We present the Sigma algorithm, discuss its
performance and compare it with other algorithm&éttion 4. In Section 5, we show that the condlitio
f<n/3 is necessary. We discuss related work in Seétiand conclude the paper in Section 7. The appendi

includes the detailed proofs of the correctnesh@flgorithm.
2 System Model

We consider an asynchronous message-passing disttisystem where processes are logically separated
into clients and servers. Client processes makeests to enter their mutually exclusive criticattams,
and servers help coordinate the client accessdgtoritical sections. The system is dynamic ingbese
that (a) new clients may join the system and mal requests at any time, and (b) servers may cttaih,

recover or be replaced by a new server.

LetZ ={c |i =1, 2, ...} denote the set of client procesges infinite, which means that the number
of potential client processes is not fixed but deandynamically and has no finite bound. Det {r; |j =
1, 2, ...,n} denote the set of servers, wheres the number of servers in the system. Serversdantified
by theirvirtual nameswhich are known to the entire system. If a selwaves the system or crashes, a new
server will replace the old one and assume the séru@l name. In practice, such virtual names ban
implemented by a domain name server or a DHT mestmaim P2P systems. Because of such virtual
naming mechanisms, the number of servers can bd fhcoughout the lifetime of the system. Whileesavn
server may replace an old one by assuming the satmal name, it loses all the state informationtfuod
old server. This memory loss behavior is cruciahffecting the behavior of communication channal an
the design of the algorithm, and it will be desedhin more details in the next section.

We assume that the global time is discrete withrtmge being the set of natural numbers. This is

merely to simplify the presentation, and proceskesot have access to the global time.
21 ProcessFailures

Processes may fail by crashing, i.e., halting ptamely. When a process crashes, it loses its stateely.
For a client process, if it later recovers, we dersit as a new client process, because it alréasbs its
entire context of the previous execution of the ualitexclusion algorithm. Thus, the crash of a tlien
process is considered permanent. A client processriect if it does not crash; it ifaulty if it is not
correct.

In case of a server, a crashed server may eithevee or be replaced by a new server assuming the
same virtual name. We model both cases as servevar. After recovery, the server cannot restare a
state information of the server before the cradiusTwe assume that after recovery, a server sudfers
completememory lossand restarts itself from its initial state. A sarvs correct if it never crashes; it is
faulty if it is not correct; it iseventually correcif there is a time after which the server staygeal

Given a time period, we say that a process (edhsient or a server) iorrect in the periodf it stays

alive in the period; it i¢aulty in the periodf it is not correct in the period.

In terms of detecting process failures, we ass.etigbte failure detection on the clients but wendd
require failure detection on the servers. More igedg, we assume that there is a perfect failuteader [4]

on the clients, and it satisfies the following pedjes:

« Strong completenesk a client is faulty, then there is a time aftehich it is permanently suspected

by every eventually correct server.
» Strong accuracyNo client is suspected by any server before lieatecrashes.

It is shown in [5] that the weakest failure detedtw solving the fault-tolerant mutual exclusioroblem is
weaker than the perfect failure detector, but e are similar. In practice, perfect failure deteain the
clients can be implemented by client-side leasetieat obtains leases from the servers and needsew
a lease before it expires, and if not, the cli@#sfon is terminated and the client has to recdrtoethe
servers as a new client. Therefore assuming pefédleire detection on the clients is a simple and

reasonable abstraction.
2.2 Fair Channels

Communication channels for message passing amanggses are asynchronous, which means there is no
timing assumptions on the time it takes to delavenessage. Bi-directional channels are availakisdssn

all client-server pairs. We do not assume that agess are unique, that is, a process may repeatedty

the same message to another process multiple times.

We assume that the basic communication channels losgy messages, but they will not behave
arbitrarily bad such as losing all messages. Thimddeled by the Fairness property as describexivbel
The purpose of introducing such lossy channelsvigdld. First, it shows that our algorithm tolerate
message losses. Second and more importantly, need¢ssges compounded with process crashes and
memory losses lead to some difficulty in enforciegjable and FIFO message deliveries across process
crashes. Dealing with possibly unreliable and ntifeFmessage deliveries is one of the major chadleng
in designing the Sigma algorithm.

We say that a channel from proceds procesg isfair if it satisfies the following properties:

* No Creation If q receives a messagefrom p at timet, thenp sentmto q before time.

» Finite Duplication If p sends a messageto g a finite number of times, then procepseceivean at

most a finite number of times.

« Fairness Suppose thgt sends a messageto g an infinite number of times, and procesdoes not
crash permanently. Then @yeceivesn from p an infinite number of times, and b) if the alglonit on
g is such thay sends a message back top whenever it receives from p, thenq sendsm’ to p an

infinite number of times.

Part (a) of the Fairness property is close to arsesl in other works (e.g., [13], [1]), except timabur
model it requires infinite number of message dei@seeven ifg may crash and recover infinitely often.
This is to eliminate the unfair situation wheralways crashes right before receivimgrom p. Part (b) is
required particularly for our crash-recovery modieis to eliminate another unfair situation wheralways

crashes right after receivimgbut before sending out any response bagk to
2.3 From Fair Channelsto Quasi-Reliable Channds

On top of the fair channels, we can use the standgpeated sending and acknowledgement protocol to
overcome message losses. However, with procesbesraand memory losses, the protocol does not
implement a traditional reliable channel that gntgas no message duplication and no message ladls in
situations. Instead, it implementgjaasi-reliablechannel, which is defined as a channel that sagis$io

Creation, Finite Duplication, and the following tyooperties:

» Crash Duplication For any given period t;], if qis correct in this period argireceivean from p

for k times in this period, then procgssust have semhto q for at leask times before timé.

* Quasi-Reliability For any given time, if both p andq are correct after timg andp sends a message

mto q at leask times after time, thenq receivesn from p at leask times after time.

The Crash Duplication property basically says thaiessage may be duplicated only if there is dcras

failure between the two duplicated message deiserSuch message duplications are possible due to

process crashes, because the receiver may craslaftgr receiving the message but before sendihguo
acknowledgment, in which case the sender will keepding the message periodically, and when the
receiver recovers, it forgets the fact that it adhe receives the message and delivers the samegress
again. Note that Finite Duplication is still enfecteven if the receiver may crash infinitely oftdranks to

the Fairness property of the underlying channel.

Quasi-Reliability says that reliable message dgfive only enforced after the time when both the
sender and the receiver do not crash any more.dgesssent before a crash of either the sendereor th
receiver may still be lost.

Implementing quasi-reliable channels from fair aela is by repeated message sending and
acknowledgment and it is straightforward, so thplementation and its proof are not included in gaper.
Henceforth, we assume that all channels are gebable.

We do not enforce FIFO order because of the folgwiThe FIFO order is typically implemented by
maintaining a sequence number for each messageasdnteceived. However, with process crashes and
memory losses, sequence numbers on the sendimgairing side may be lost and have to be reset afte
recovery. Thus message order cannot be guaranteesbgrocess crashes.

Reliable and FIFO message delivery was assumedréyiops quorum-based mutual exclusion
algorithms (e.g. [2], [14], [19]). Therefore, undmir model, we need to carefully redesign the dlgarto

deal with possible message losses and out-of-cleleeries.
3 Specification of Fault-Tolerant Mutual Exclusion

The specification of the fault-tolerant mutual ersibn (FTME) problem follows similar terminologiead
notations as in [13] and [5]. Since the serverstakper processes only used in the implementatfon o
FTME, they do not appear in the specification oVl Only client processes appear in the specificati
Each client, X is associated with a usgrthat can request for exclusive access to a dritégaon (or
equivalently, a mutual exclusive lock). The ugetan be considered as the application programgchernt

¢ provides the interface to the mutual exclusion rma@m. In practicey; runs in client;.

Useru; interacts withc; with the interface actionsy;, crit;, exit, and rem Actionstry; andexit are
input actions ta;, initiated byu;. and actiongrit; andrem are output actions @f to u. An executioron (u;,
G) is a sequence of the above four actions (couldirbe or infinite). A well-formedexecutionis an
execution that follows the cyclic ordeiry;, crit;, exit, rem}. A useruy; is awell-formed useif the actions it
issues do not violate the cyclic order of actiotrg;{ crit;, exit, rem}.

Given a well-formed execution on;,(c), we say that cliert; is:

« initsremainder sectioffa) initially, or (b) in between amgm action and the followingry; action;

« initstrying sectionin between anjry; action and the followingrit; action;

in its critical sectionin between angrit; action and the followingxit action;

e initsexit sectiorin between angxit action and the followingem action.
If client ¢, crashes after an action, the corresponding sediédfimed above ends at the crash event. For
example, ifc; crashes after erit; action, we say thay is in its critical section in between that; action and
the crash event «.

If action try; is initiated onc, we say that; requests to enter the critical sectioifi action crit; is
returned ort;, we say that; is granted to enter the critical secti¢or simplyc enters the critical sectign
If actionexit is initiated onc;, we say that; requests to leave the critical sectidhactionrem is returned
ongc;, we say that; is granted to leave the critical sectiar ¢; enters the remainder sectjon

We define arepochof a client to be the time period when the cliemtn its trying section or the
subsequent critical section.

Fault-tolerant mutual exclusion (FTME}$ required to satisfy the following properties,den the

assumption that every user is well-formed:
» Well-formednesd-or any client,J%, any execution oruy(, ¢) is well-formed.

* Mutual exclusionNo two different clients are in their criticalcd®ns at the same time.

* Progressa) If a correct client is in its trying sectionssome point in time, then at some time later some
correct client is in its critical section. b) Ifcarrect client requests to leave the critical segtthen at

some time later it enters its remainder section.
The following is an additional property that mayrbquired for a stronger version of FTME.

» Lockout-freedom (Starvation freedontf) no client stays in its critical section forevand a correct

client requests to enter the critical section, thesome time later it enters the critical section.
It is not hard to verify that Lockout-freedom imgsi Progress (a).
4 SigmaAlgorithm
4.1 Description of the Algorithm and Its Correctness

In this section, we present the Sigma algorithngFé 1) that implements the specification of FTM#&eg
in the previous section.

Each client maintains a state variable timestanipctwobtains values from a GetTimeStamp() routine
that generates unique and monotonically increasimgbers. We define r@questto be a paird, t;), where
¢ is a client id, and is the timestamp from. There is a predetermined total order among ah saquests.
Thus, for any two requests, t) and €, t'), we can write ¢, t) < (¢, t'), and say thatq, t) is earlier than
(¢, t") according to this predetermined order. A simptmice of such an order is to order the request by
timestamp values, with client id as the tiebreakéfs will impose further requirements on the orideer
when we need the algorithm to support Lockout-foeedEach server maintains a queue ReqQ of client
requests, and a special requesi£, towne) that it currently supports.

The basic flow of the algorithm is: (a) a clienhde a request to the servers to enter its crisieation
(lines 2--5); (b) each server responds the requéhtthe request it currently supports (line 3%) the
client that receives supporting responses from gim@ervers enters its critical section (lines 12)-1d)
when a client exits its critical section, it sedBRELEASE message to the servers (line 22); andlfeh a

server receives the RELEASE message, it removesotiiesponding request, selects the earliest reques

10

its request queue to be the new request it supportssends a RESPONSE message to the new client it
supports now (line 43).

The above basic flow is similar to other quorumdshalgorithms (e.g. [2], [14], [19]). However, the
additional mechanisms that prevent various potedéiadlock scenarios are different from these dlyms,
as explained below.

Initiating YIELD messages from the clients instead of servers. The above basic flow may result in
deadlock if different servers support differenenlti requests. The way to resolve this issue ithioclients

to send a YIELD message when there is a conflithérequests support by the servers (line 15),tlaed
servers will reorder its request queue and seffiecearliest request to support (lines 36--41)hin $igma
algorithm, This YIELD message is initiated from ttiient side, when a client collect enough respsnse
from the servers but does not have enough onesodimp the client. This is different from previous
algorithms (e.g. [2], [14], [19]) that initiate du¢rIELD messages from the servers: In these alyoist
when a server receives a request that is earksr tie current one it is supporting, it sends aQUNRE
message to the client it is supporting to trigder tlient to send back a YIELD message. Initiatimg
YIELD message from the servers may be prematuregghe server may change its mind too fast, ansl th
miss the opportunity for the client it is currensiypporting to collect enough supporting resporisstead,
the approach of initiating YIELD messages from tfients is more stable, since it only occurs when a
client collects enough responses and discoversttisatot supported by enough servers.

Due to process crashes and memory losses, messagede lost or delivered out of order (as
explained in Section 2.3). Such problems generatestenarios that violate either the Mutual Exdosir
Progress requirement, and they are not handleddwqus algorithms. We now discuss these issues and
show how our algorithm deals with them.

Removing obsolete responses stored on the clients. Every client stores the responses it receivessin i
local array resp[]. Due to out-of-order messagévdsl, a client may receive an old response froseraer.

If this old response is kept on the client forevemay prevent the client to collect enough resesnthat

11

support the client. Therefore, all responses shbeldleared, and this is done after a client ctdlenough
responses (line 18).

If all responses are cleared, the algorithm needgiarantee that it can collect enough responsza ag
to avoid deadlock. To do so, a cliamheeds to send a message to the servers to triggdrea round of
responses.

On a clientc;, if its resp[] is (¢, t), thenc; needs to send a YIELD message to seryéine 15), as
discussed earlier. In this case, sery@eeds to send a response baa tath its new supporting requests,
even ifc is not the one; supports (line 41).

If resp|] is different from €, t;), then a different message needs to be sent Bere is a subtle issue
in designing the appropriate messages for this. igpposec; sends a new type of message, called an
INQUIRY message to; in this case, which triggersto send its currently supported request baok o
order to fill respf]. This is fine, except for the case wheyenay have crashed and recovered, and thus it
has lost the request it previously supported anchible to send a supported request back. To ahisid
caseg; needs to resend its REQUEST message bagkhmwever c; should not send REQUEST message
in all cases, becauserjfjust recovers from a crash, and receives this RE®IUfromc;, (c;, t;) will become
the request; supports, potentially blocking other earlier resfseTherefore, cliert; should only resend its
REQUEST message when, (t;) is earlier than the request stored in rgsmltherwisec; just sends an
INQUIRY message (lines 16--17). On servgrthe processing of the INQUIRY message is to send
RESPONSE message back with supported requests (line 45).

Avoiding crossover of YIELD and RESPONSE messages. With the above change, a RESPONSE
message may be triggered by several receiving vemtthe servers. This generates another issue: A
(YIELD, t;)) message from to r; should never cross over with a (RESPON&E;) message from to c;.
Because if so, the (RESPONSH t;)) message may causgo enter its critical section, while the (YIELD,

t;) may cause; to change its mind and support a different cliartich may in turn cause that client to enter

its critical section, and thus violating the Mutl&clusion property. To avoid such crossover, weenver

12

rj receives a REQUEST or INQUIRY message fromwherer;’s Couner Value is already;, rj will not reply
again with another (RESPONSE,,t)) message (the conditi@ge # i in lines 31 and 45).

Avoiding out-of-order RESPONSE messages. Due to non FIFO delivery, two response messages
(RESPONSEg;, t;) and (RESPONSE;, t;) from the same servermay be delivered out of order on client
¢. This may cause to mistake what; is supporting and make a wrong decision. Therevaoepossible
cases here. The first one is that (RESPONSE) is sent first. In this case, from sending the GREONSE,

G, t) message to sending the (RESPONG&E{;) messager; must have received a (YIELM) message
from ¢. Since the (YIELD}) and the (RESPONSEE, t) message do not cross over with each other, it is
guaranteed that the (RESPONSET;) message is received first.

The second case is that the (RESPONSH;) message is sent before the (RESPONSE) message.
Suppose that; receives (RESPONSE;, t) and updates its regpto (c, t;) at timet. The algorithm
guarantees that after tinteif ¢; receives a (RESPONSE,;, t;) message while regp[is still (¢, t;), then
this (RESPONSK;;, t;) message must be out of order, i.e., sent beRESPONSEg;, t). This is because
if it is in order, r; must have received a (YIELD) message between sending (RESPONS$HE;) and
(RESPONSEG;, t:). Since (YIELD,t;) does not crossover with (RESPONSEY}), it must be sent aftex
receives (RESPONSE, t;), in which case the regppn ¢; should be cleared to (nil, nil) befocereceives
(RESPONSEG;, t;). Therefore, whenever, receives a (RESPONSE;, t;) message while its regpjis
still (g, t;), the message must be an out-of-order messagshemdd be ignored. This is enforced by the
condition (resg] # (c;, timestamyp) in line 8.

Removing obsolete requests stored on the servers. An obsolete request on servgmay prevent; to ever
support a new request, and thus block the progrettse entire system. There are several casesrthat
cause a request on serverto become obsolete. First, it may be caused bysages with different
timestamps. This is taken care of by code segnmehmes 27--29: ifr; receives a message with an older
timestamp, then it simply ignores it;rifreceives a message with a newer timestamp, tlidtes the old
request fromduner towney aNd ReqQ, as if it receives a RELEASE messagthfdrold request. Second, a

client process; may crash permanently while it is being supportgd.tn this case; relies on the perfect

13

failure detector for; to detect the failure and remowg's request fromdunes towne) (lines 46--47). Finally,
message loss and out-of-order delivery may causeersg to miss a (RELEASEY;) message while
receiving a (REQUEST;) message after it recovers. To avoid this situmatserver; periodically sends a
(CHECK, t)) message ta, where €, t)) is the request it currently supports (lines 48}-£lientc, needs to
reply this message with a (RELEASH, if it already leaves the epoch correspondingn@stampg; (lines
24--25). This is also the reason whyeeds to retrieve a new timestamp value in itssedtion (line 21),
since that is the time the previous epoch endgtemgdrevious request;(t;) should become obsolete on the
servers.
Quorum threshold m. As any quorum systems, the quorum thresmmolish the algorithm is to guarantee
that any two quorums will have enough intersectimnguarantee consistency. In our model, a senagr m
support one client initially, but then it crashesl aecovers, forgets about its previous supposalge, and
supports a different client. To tolerant such faikj the thresholoch should be large enough such that there
is at least a correct server in the intersectioarnf two quorums. If we ldtbe the maximum number of
faulty servers, then the above requirement is kated to 2n-n > f. On the other handn cannot be too
large because some servers may crash and neverregmahses, s;m < n - f. Combining the two
inequalities, we have that< n/3, andm can be set tb2n/3]. That is, the algorithm is correct when the
number of faulty servers is less than one thirtheftotal number of servers.

The above definition df can be further constrained. If a server remaiive aluring an entire epoch of
a client, then it should be considered correchis period even if it has crashed before. So weiipdie
definition off as below.
Definition 1. Let f be the maximum number of faulty servers during gpgch of any client.

We have described all technical aspects of theritthgo and the issues they address. The following
theorems formally state the correctness of therdlgn. The complete proofs of the theorems are ipex/

in the appendix.

14

Every clientc; executes the following:

timestamp: a state variable always maintained by ci, initially nil.

1 try;:

2 timestamp := GetTimeStamp(); {get a monotonically increasing number}
3 foral r;0N

4 resp[]]:=(nil, nil); {resp[1.. n] is a local array only used in the trying region}

5 send (REQUEST, timestamp) to ri;

6 repeat forever

7 wait until [received (RESPONSE, owner, t) from some ril

8 ifresp[j] #(ci,timestamp) and (¢; #owner or timestamp = t) then

9 resp[j].owner := owner; resp[j J-timestamp := t;

10 i f among resp([], at least mof them are not (nil, nil) then {enough responses received}
11 i f atleast melements in resp[] are (ci, tij) then {enough servers support ci}
12 return crity; { c¢; isgranted to enter the critical section, exit the repeat loop}
13 el se

14 for all r«0OMN such that resp[k] # (nil, nil)

15 i f resp[k].owner= ¢; then send (YIELD, timestamp) to rg;

16 el se if (ci,timestamp) < resp[k] then send (REQUEST, timestamp) to I

17 el se send (INQUIRY, timestamp) to ry;

18 resp[k] := (nil, nil); {clean out all responses}

19 exiti:

20 oldtimestamp := timestamp;

21 timestamp := GetTimeStamp();

22 for all r;0N send (RELEASE, oldtimestamp) to ri;
23 return rem;

24 upon receive (CHECK, t)from r;: {always executed, notonly in the trying or exit sections}
25 i f timestamp # t then send (RELEASE, t)to rj;

Every server; executes the following:

State variables:

Cowner: the client it accepts, initially nil.

t owner : time stamp of Cowner , initially nil.

ReqQ: queue storing requests, initially empty.

26 upon recei ve (tag, t)from c;:

27 if (ci, t)appearsin(Cower, Lower)OrReqQ then

28 if t < t’ then skipthe rest; {the message received is an older message}
29 if t> t’ thenDelete(c¢i, t’, ReqQ, Cowners T owner);

30 i f tag=REQUEST then

31 if Cower Z Ci then

32 it Cower = nil then (Cower, tower) =(Ci, t);

33 else if Comer # ¢i and (ci,-) notin ReqQ t hen

34 insert (ci, t)into ReqQ, by predetermined order;

35 send (RESPONSE, Couwer, tower)t0 Ci;

36 el se if tag=YIELD then

37 if(cownery towner) :(Ci, t) then

38 insert (¢, t)into ReqQ, by predetermined order;

39 (Cowners towner) :=dequeue(ReqQ);

40 send (RESPONSE, Coumers touwner) 0 Cowner;

41 if Cower # Ci then send (RESPONSE, Cowners tower)t0 Ci;

42 el se if tag=RELEASE then

43 Delete(Ci, t ’ RGQQ, Cowner s towner);

44 el se if tag = INQUIRY t hen

45 if Comer # Ci and Cower #hil then send (RESPONSE, Cowners tower)t0 Ci;

46 upon suspected that Cower has crashed when Cowner # Nil: {reliable failure detection on Cowner }

47 Delete(Cowner) t owner s Rqu! Covmer il t ovmer);

48 periodically:

49 if Cower Znil then send (CHECK, tomer)t0 Cowner;

50 Delete(¢, t,ReqQ, Cower, towner) {helper function: remove (c,t)from(
51 if (Cowner towner) =(C, t) t hen

52 i f not Empty(ReqQ) t hen

53 (Cowners towner):=dequeue(ReqQ);

54 send (RESPONSE, Comer;s touwner) 0 Cowner;

55 el se (Cowners towner) :=(nil, nil);

56 el se i f RegQ contains (c, t) thenremove(c, t)fromReqQ;

Figure 1 Sigma algorithm

15

COW‘IETY t OWI'IEI') and Rqu}

Theorem 1 (Correctness with a finite number of clients) Suppose that there are only a finite number of
clients requesting to enter their critical sectiotfsf < n/3, then the algorithm in Figure 1 with=n2n/3/
solves the fault-tolerant mutual exclusion probldafmat is, it satisfies the Well-formedness, Mutual

exclusion, and Progress properties of the fauletaht mutual exclusion specification.

The above theorem requires that there be onlyite fiumber of clients requesting to enter theitigal
sections. We will address this issue shortly indreen 3.

Moreover, the theorem does not address the Lodkeettom property. The Lockout-freedom property
requires that each client eventually enter itsaaditsection. For Sigma algorithm, this means évantually
each client request can be moved upciané, towne) @S the request it supports. To achieve this,emgire
that the total order on requestsey@ntually fair as defined below.

Definition 2. A total order on the set of requests{t) | ¢ OZ, t; is an output of GetTimeStamp()} is
eventually fairif for any (c;, t) and for anyc; # ¢, if ¢; calls GetTimeStamp() in the algorithm infinitely
often, then eventually for ail returned from GetTimeStamp(), we haget) < (¢, t).

An eventually fair order can be simply achieved bsing sequence numbers to implement
GetTimeStamp() function, and the order is definedh& order of the sequence number with clientgls
the tiebreaker. The fairness is guaranteed bedhassequence numbers increase without a boundcdlogi

clocks [11] can also be used here, since clienttevare causally linked through the servers.

Theorem 2 (Correctness plus L ockout-freedom with a finite number of clients) Suppose that there are
only a finite number of clients requesting to erteir critical sections. If f < n/3, then the algthm in
Figure 1 with m=/2n/3/ and an eventually fair total order dhe requestsolves the fault-tolerant mutual

exclusion problem, plus it satisfies the Lockoaeétom property.

Both Theorem 1 and 2 requires that there be offilyite number of clients active in the system. When
the client set is infinite, it is possible that nelients keep generating requests to the servads,naw
requests are always ordered ahead of older requesstspreventing any client to receive enough stpp

from servers. To deal with this issue, we put argjer requirement on the total order on the request

16

Definition 3. A total order on the set of requests {) | ¢ Oz, t; is an output of GetTimeStamp()} is
bounded-time faiif for any (, t;), there is a timé such that for ang; # ¢, for any output; that is
obtained by calling GetTimeStamp() gnafter timet, we have g, t) < (C, t;).

In practice, a bounded-time fair total order can dmhieved by implementing GetTimeStamp()
functions as some time function returning closerdal time values. Clients do not need to be fully
synchronized, as long as their local clocks aratikadly close to each other. This requirement antthal
order prevents unlimited number of new clients eagin and generating smaller requests.

However, there is still another possible case, wigeserver may crash and recover an infinite number
of times, and each time after it recovers, it reegia request from a new client and supports tfexitc
This may still block the progress of other clierfhis is very unlikely in practice. For now, we trgged

that no servers may crash and recover infinitelgrof

Theorem 3 (Correctness plus L ockout-freedom with an infinite number of clients) Suppose that there
is no server that crashes and recovers for an itdfinumber of times. If f < n/3, then the algoritim
Figure 1 with m=/2n/3/and a bounded-time fair total order on the reqaestlves the fault-tolerant

mutual exclusion problem, plus it satisfies thedot-freedom property.
4.2 Performance of Sigma Algorithm

Sigma algorithm belongs to the category of non+telased, Maekawa-type mutual exclusion algorithms
with deadlock resolutions, according to the taxonday Singhal [21]. Its performance is in line witther
algorithms in the same category. In particular,t{&) response time for a single requestTisvZhereT is

the average message delay (drfer the REQUEST message, the otlidor the RESPONSE message); (b)
the synchronization delay, which is the time froneclient leaving the critical section to the nexe
entering the critical section, is als® pneT for the RELEASE message, the otfiefor the RESPONSE
message); (c) the number of messages ia Bw load casesi(messages for REQUEST, RESPONSE, and
RELEASE messages each), and could be i5 high load cases (additionaln2messages for

YIELD/REQUEST/INQUIRY messages and RESPONSE mes3age

17

Note that the algorithm uses a fixed set of serwdride client set may increase with no bound, so th
above performance measure does not change whewnmhiger of clients increases. This is in contrash wi
many other algorithms where performance is propodli to the number of processes in the system.

The key performance feature that distinguishes 8igigorithm from others is itso-cost recovery
feature. When a server recovers, it simply stamsning from its initial state and joins the system
immediately. The server is correct for all clietitat make requests after the recovery (DefinitiprQther
algorithms either do no deal with recovery and mgnhass explicitly, or require a reconfigurationriog
where the new server is brought up to speed byimgiservers with some state transfer protocoleh &5
the state-machine approach [20]. This period malehgthy depending on the state information and the

possible failures that may occur, and it may aféecathe availability of other servers.
4.3 Advantages of SigmaAlgorithm

Sigma algorithm accommodates dynamic changes détebdited system and tolerates process crashes,
recoveries, and memory losses. It has the folloveidgantages comparing with several classes of mutua
exclusion algorithms.

Open and scalable comparing with algorithms with fixed and known set of processes. The algorithm
allows new clients to join the system at any timd anake requests to enter their critical secti@iignts

only communicate with a fixed number of serverg #ms the communication cost per request is fixed.
Many existing mutual exclusion algorithms (e.g.,nmalgorithms discussed in [13]) require a closed
model in which a fixed and known set of processetigipate in the algorithm, and processes comnai@ic
with each other. Therefore the algorithms do namawnodate dynamic changes of the processes, and the
communication cost per request is proportionahtortumber of processes.

Fast response time, no-cost recovery and no failure detection for servers comparing with the state-
machine approach. Sigma algorithm does not require servers to symiheowith each other with a fault-
tolerant agreement protocol, as required by thee-stechine approach. Therefore, the response tima f

single request isT while with the state-machine approach, the respdime is at leastT4 with 2T for

18

client requests and server responses, dnchidimum for any server agreement protocol [7]. btorer,
server fault-tolerant agreement protocols requirthér assumptions to the model such as failurectien
among the servers [3]. The no-cost recovery is lagtter than the state-machine approach.

Stable in high load and handle recoveries and memory losses comparing with other quorum based
algorithms. Sigma algorithm uses client-side initiation of YIE messages to make it more stable during
high loads of client requests. It also deals withsh-recovery and memory losses explicitly, whilesm
other quorum based algorithms either do not addwessveries and memory losses, or require restoring

server states after recovery.
5 Necessary Condition on the Number of Failures

Sigma algorithm requires that the number of fagtywvers during any epoch of any client be less tmn
third of the total number of servers, i.&sp/3. This condition is necessary to solve the FTMBEbfem,

given the model defined in Section 2. This is statethe following theorem.

Theorem 4 Consider a system in which (a) servers may crashranover, (b) servers start from their

initial states after recovery, (c) client processds not communicate with each other, and (d)
communication channels are reliable. Let n be ttalthumber of servers and f be the maximum numiber

faulty servers during any epoch of any client. # /3, then there is no algorithm that solves thdtfa

tolerant mutual exclusion problem in the system.

The proof of the theorem is by a partition argumemnilar to the ones in [4] and [1], and it is @ivin
the appendix. This theorem also applies to the-stetchine approach where servers communicate with
each other. Therefore, the theorem showsrthait is the lower bound for any client-server stylecaiiyms
to solve the FTME problem in systems with processies and memory losses. Sigma algorithm achieves

this lower bound.

19

6 Reated Work

Distributed mutual exclusion is one of the fundatakhuilding blocks of distributed systems and has
been studied extensively ([18], [21], [13]). Accimigl to the taxonomy of [21], Sigma algorithm belsrig
the category of non-token-based, Maekawa-type rheax@usion algorithms. The algorithm is based on
guorum systems, similar to algorithms in [2], [®4]d [19]. However, the algorithm deals with dynamic
changes of quorum servers, and thus distinguistse#f from other existing algorithms and makes it
suitable for internet P2P systems.

The crash-recovery model without stable storagdl]ims similar to the crash and memory-loss model
in this paper. The difference is that in [1] aftecovery the process knows that it has crashedéetfad
can use this information to help the algorithm, s in our model, the recovered process (or a new
process replacing the crashed one) has no knowladget the history whatsoever. Therefore, the lower
bounds derived from the two papers are different.

This paper is based on [12], but it is significardlifferent from [12] in that the latter focuses on
empirical studies and does not handle all failirses related to process crashes and memory logsés,
this paper focuses on formal analysis and provéidesmplete algorithm and its proof as well as tveer

bound result.

7 Concluding Remarks

The paper presents a hew algorithm that solvestfialerant mutual exclusion problem in dynamic eyss
subject to both process crashes and memory lo$éesalgorithm achieves the best failure threshold
possible for such systems, and does not have anyeagy cost.

Memory-loss failure model is different from Byzardifailure model. In Byzantine quorum systems
[15], toleratingf Byzantine servers requires4f. Although Martin, et. al. reduced it to-3f when using
Byzantine quorum systems to implement shared exgi$l6], it requires extra rounds of communication

The case for solving FTME would be similarn#4f, some simple modification to Sigma algorithm would

20

work, but if n>3f, we may need significant changes to the algoriétmu it is unclear how to make these

changes.

References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

9]

[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]

[20]

[21]
[22]

Aguilera, M. K., Chen W., and Toueg, S. Failureeddbn and consensus in the crash-recovery mdgietributed
Computing 13(2):99-125, April, 2000.

Agrawal, D. and Abbadi A. E. An efficient and fatdlerant solution for distributed mutual exclusiockCM Trans. On
Computer Systems, 9(1):1-20, Feb., 1991.

Chandra, T. D., Hadzilacos, V. and Toueg, S. Thakest failure detector for solving consensimjrnal of the ACM
43(4):685-722, July 1996.

Chandra, T. D. and Toueg, S. Unreliable failureeditrs for reliable distributed systendsurnal of the ACM43(2):225-267,
Mar. 1996.

Delporte-Gallet, C., Fauconnier, H., Guerraoui, Rouznetsov, P. Mutual exclusion in asynchronougtesys with failure
detectors.Technical Report in Computer and Communication r®eg id: 200227, Ecole Polytechnique Fédérale de
Lausanne, May 2002.

Druschel, P. and Rowstron, RAST: A large-scale, persistent peer-to-peer steratility, in Proceedings of HotOS VIII,
Schoss Elmau, Germany, May 2001.

Keidar, I. and Rajsbaum S. On the cost of faukkfmht consensus when there are no faults --- &aialUt8IGACT News
32(2):45-63, June 2001.

Kubiatowicz, J. et alOceanStore: An Architecture for Global-Scale Pdesis Storage in Proceedings of the Ninth
international Conference on Architectural Support Programming Languages and Operating Systems L(@SP2000),
November 2000.

Lamport, L. Paxos Made SimplaCM SIGACT News (Distributed Computing Colur@g) 4 (Whole Number 121), 18-25,
December 2001.

Lamport, L. The Part-Time ParliamenACM Transactions on Computer Systeh 2 (May 1998), 133-169.

Lamport, L. Time, clocks, and the ordering of egeint a distributed systenCommunications of the AGN21(7):558-565,
July 1978.

Lin, S., Lian, Q., Chen M., and Zhang, Z., A Preatidistributed mutual exclusion protocol in dynameer-to-peer systems,
in Proceeding of § International Workshop on Peer-to-Peer SysteP@4, to appear. Full version as Microsoft Resear
Technical Report MSR-TR-2004-13.

Lynch, N. Distribute Algorithms. Morgan Kauftmannl#ishers, 1996.

Maekawa, M. Ay/n algorithm for mutual exclusion in decentralizedtgyns ACM Trans. On Computer SysterBg2):145-
159, 1985.

Malkhi, D. and Reiter M. Byzantine quorum syste®sstributed Computing11:203-213, 1998.

Martin, J-P, Alvisi, L., and Dahlin, M., Minimal Baantine storage, in Proceedings of th& 1®ernation Symposium on
Distributed Computing (DISC), Oct. 2002.

Ratnasamy, S., Francis, P., Handley, M., KarpaRd, Shenker, S., A scalable content-addressablrietin Proceedings
of ACM SIGCOMM2001.

Raynal, M. Algorithms for Mutual Exclusion. MIT Psg, Cambridge, 1986.

Sanders, B. The information structure of distributeutual exclusion algorithms, ACM Trans. On Conep&ystems, Aug.
1987.

Schneider, F. B. Implementing fault tolerant segsiasing the state machine approach: A tuto@aimputing Surveys
22(4):299-319, December 1990.

Singhal, M. A taxonomy of distributed mutual exétrs Journal of Parallel and Distributed Computing8:94-101, 1993.

Stoica, I. et al, Chord: A Scalable peer-to-peeklp service for internet applications, in Procagdiof ACM SIGCOMM
2001, San Deigo, CA, August 2001.

21

Appendix

A. Proof of the Correctness of the Sigma Algorithm
In the analysis, to disambiguate local variableshef algorithm, superscripts may be added to thel lo

variables whenever necessary, e.g.,'[8s$p the resg] on clientc..
Lemmal (Well-formedness) For any client;(0Z, any execution oru(, ¢) is well-formed.

Proof. This is obvious, given that every user is welkried, and the fact that a) after ting action, the
algorithm can only return theit; action, and b) after thexit action, the algorithm can only return ttegn

action. [

Let TS andTS be the two trying sections of two cliemsandc;, respectively. Let the time periods of the
two trying sections ard;}, ti;] and [o, ti 1], respectively. Thethe time period that covers the two trying

sectionds defined as [minyy, ti o), max(; 1, ti 1)]-

We assume that on each client, functi®etTimeStamp() generates unique and monotonically

increasing numbers each time it is called.

Lemma 2 Consider two different clients andc;. Let TS andTS be the two trying sections ofandc;,
respectively. Suppose that affEg, ¢, does not crash or send a RELEASE message b&fprends, and
vice versa. If for some server resﬁ{j] = (c,t;) at the end of S and resHj] = (c,ty) at the end oT S, then

there must be a crash failure on seryeluring the period that covef§ andTS.

Proof. Suppose, for a contradiction, that there is nslcfailure on server, during the period that covers

TS andTS.

Suppose redj] = (c,t;) at the end of' S. According to lines 8--9 of the algorithm,must have received a
message (RESPONSE, t) from r; during TS, andt; must be the same @&ss timestamp value of this
trying section. Again by algorithnt; must have received a message (REQUEBJ$Trom c;, and this

message must have been sent;lay the beginning of S.

22

Let Ti, be the last time at whiati receives (RESPONSE, t;) fromr; duringTS. Then fromT;, to the end
of TS, resij] is always €.t,). Lett, be the last time at whiat sends (RESPONSE, t) to ¢; before time
Tio- Thusty must be within the span @5. Symmetrically, we can define tinbeto be the last time at which
rj sends (RESPONSE;, t;) to c: before client; keeps its reé}{)j] value as §, t;) till the end of TS Time
t; is within the span of §. Without loss of generality, assurge<t;. To prove the lemma, it is sufficient to

show that; must have a crash failure betwegandt;.

According to the algorithm, at tirmg, ther;’s (Cownes towne) Value must beg t;). Similarly, at timet,, the

'S (Cownen townen Value must bec(, t;). We first show the following claim:

Claim 1 Let [T, T'] be any time period within the period that covélts two trying section§S andTS.
Suppose that th&gnes towne) Value ofr; at timeT is (C, t). If there is a time in the period,(T’] at which
the Cownes towne) Value ofr; is different from €, t), thenr; must have received a (YIELE) message from

G in the period T, T'].

Proof of Claim 1. According to the algorithm, theme four possible cases that may causedhg.(towne)
value ofr; to change in the time period,(T’]: a) r; receives a (RELEASH,) message from in this period,;
b) r; detects that; have crashed in this period;rgyeceives a (YIELDt) message from in this period; or
d) rj has a crash failure in this period. Case d) ispassible by our assumption at the beginning ef th

proof. It is sufficient to show that cases a) ahdre also impossible.

For a), ifr; receives a (RELEASE;) message from in this period, this RELEASE message cannot be sent
by ¢; before it enters the trying sectid§, because otherwise the timestamp must be diffesime
GetTimeStamp() generates unique numbers. But byaisemption of the Lemma; does not send a
RELEASE message aft@i§ and untilTS ends, so it is impossible forto receive a RELEASE message

from ¢, between tim& andT’.

Case b) is also impossible, since the Lemma asstivags does not crash in this period, and by the Strong

Accuracy property of the failure detector monitgr@ r; never suspects before it crashes.
Therefore, only case c) is possible, and the claiids.

23

Applying Claim 1 to the period t;], we have that; receives a (YIELD{)) message fror; in the period
(to, t1]. First, this YIELD message cannot be sentchyefore or after the trying sectiofrS, because
otherwise the timestamp must be different. Thus, XlELD message can only be sentduring the

trying sectionTS.

To show a contradiction in this case, we constbackward in time a series of time points within ttyéng
section TS at which¢; sends or receives messages. We show that thisrectist procedure can be

repeated forever, but this contradicts with the thatTS is a finite period.

Let Tj o = to. We already show so far thatmust have received a (YIELD) message in the time periad, [
t;], which is sent by; in TS. This YIELD message must be sentdipefore timeT; ,, because after sending
YIELD to r;, resflj] is set back to (nil,nil) by the algorithm (lin@)1 but afterT, o, the value of redp] is
always €.t). Let T; 1 be the last time; sends a (YIELDf;) message tg; in its trying sectionTS. By the
above argument; ; < T;,. According to the algorithm, whesmsends a YIELD message ttp the value of
respj] must be ¢, t). Then there must be an earlier time < T;; such that at timd;, ¢ receives a
(RESPONSEGC; t) message from;, and in the period ofT[,, Ti4], the value of reé[:j] is always €.t).
Consider the periodTI[,, Tg]. In this period,c; does not crash, ar@receives (RESPONSE, t) message
from r; twice. By the Crash Duplication propertymust have sent (RESPONSE, ;) to ¢ at least twice
before timeT;,. We already defined;, be the last time; sends (RESPONSE,, t;) to ¢; before timeT; .

Now letT;, <T;, be the second to last timesends (RESPONSE, t;) to ¢; before timeT; .

At time T;; and timeT;, r; both sends (RESPONSE, t;) to c;, so at both times’s (Cownen towne) Values

are €, t). The following claim must be true:
Claim 2 During the periodTj, T, r; must have received a (YIELE) message from.

Proof of Claim 2. Consider the events occurring;jat timeT,,. There are following cases that caus®

send (RESPONSE;, t) toc; at timeT, .

! Note that here we use the discrete time for colenee. If we use continuous time, we need to apiperty that no
process sends or receives an infinite number ofages within a finite time period.

24

1) Serverm; receives a (REQUEST), message from at timeT;,. According to line 31 of the algorithm),
sends a RESPONSE message backdaly if c,unerZ C. Thus, there must be a change@ffer towner
value in the periodT(s, Tjo]. Applying Claim 1 to the periodT(, T;o, we know thatr; must have

received a (YIELD};) message from in this period.

2) Serverr; receives a (YIELDt) message from; at timeT, o. According to lines 37--41 of the algorithm,
r; sends (RESPONSE, t;) to ¢ in this case only if = touner= ti. Sor; receives a (YIELDY;) message

from ¢ in (T,, Tql-

3) Serverr; receives a (YIELD{) message from another client at tifig andr's (Cownen towne) Value
becomesd, t) after processing this message. But for this torbe r;'s (Cownen towne) Value has to be
changed fromd; t;) to some other value during the peridg,(T, o. Again by Claim 1r; must have

received a (YIELD};) message frorg in (T; 1, Tj -

4) Serverrjreceives a RELEASE message from another clietinatT; o and Cownes towne) Value becomes
(¢, t;) after processing this message. Thus, there neust thange oft{wner towne) N the period Tj 1,

Tiol- Again by Claim 1y; must have received a (YIELD) message from in (Tj 1, Tj).

5) Serverr; receives an (INQUIRYt) message frons,.. According to line 45 of the algorithm, sends a
RESPONSE message baclctonly if counerZ G. Thus, there must be a change@fier towne) Value in
the period Tj1, T;o- Applying Claim 1 to the periodT(4, Tjo], we know that; must have received a

(YIELD, t) message from in this period.

6) Serverr; detects at tim@; that the currentower Crashed and; is the newcynevalue. Same argument

as 4) can be applied here.
Therefore, Claim 2 is true for all the cases.

Now consider the time periodjf, ti]. In this periody; receives at least two (YIELD®) messages from,
one in the periodT{, T; ¢ and one in the period(, t]. Sincer; does not crash in this period, by the Crash

Duplication property,c; must have sent at least two (YIELE) messages before time We already

25

defined timeT; ; as the last time at whiak sends a (YIELDf;) message tg in its trying sectiorTS. Let
Tis < Ti1 be the second to last time at whigtsends a (YIELD{;) message tg. By the definition ofT;,
earlier, we also know thdi ; < T, ». Then, the above argument can be repeated againya can find time
Ti4 < Tz at whichc; receives a (RESPONSE, t)) message from, find timeT;, < T, at whichr; sends a
(RESPONSEG;, t;)) message to, and find timeT; s < T; 4 at whichc; sends a (YIELDt;) message tg, and

SO on.

However, this process cannot be repeated foremee $he trying sectiom§ is finite. Therefore, finally we
reached a contradiction, which means that our asomthat there is no crash failure on senyeturing

the period that coverBS andTS is wrong, so the lemma holds. 0
Assume thain in the algorithm satisfies > n/2.

Lemma 3 If two different clients are in their critical sémts at the same time, there must be at leash 2m-
servers that have crash failures during the petiatl covers the two previous trying sections of tihe

clients.

Proof. Suppose clients; andc; are in their critical sections at the same timet the two previous trying
sections of these two clients ar§ andTS, respectively. According to lines 11--12 of thgaithm, at the
end of TS, there must be at leastelements in redp with value €, t). Thesem elements correspond to a
set ofm servers. Similarly there must beelements of re$fj having value ¢, t;), which correspond to
another set afn servers. Between these two setmafervers, at least 2mservers are in the intersection. It
is easy to verify that these 2mservers together withS andTS satisfy all the conditions of Lemma 2.
Thus by Lemma 2, all of the 2mservers in the intersection must have crash &slim the period covering

TS andTS. O
Definition 1: Letf be the maximum number of faulty servers during gmych of any client.

Lemma 4 (Mutual exclusion) If 2m-n > f, then no two different clients are in their crticections at the

same time.

26

Proof. Suppose, for a contradiction, that there exist ¢lients that are in their critical sections at Hane
time. By Lemma 3, there are at leastR servers that have crash failures during the pdhiaticovers the
two previous trying sections of the two clients.t®lthat the period that covers the two previousgry
sections is within the period when one of the ¢Hidn either in its trying section or its subsedueitical

section. So by Definition 1,n2n < f. This contradicts the assumption that2 > f. 0

The above lemma shows the crucial safety propertthe mutual exclusion on the access of the atitic

sections. We now turn our attention to the livenasperties, that is, the Progress and Lockoutdfree
property.
Proposition 1 On any server, at any time,dfuner = nil, then ReqQ is empty.

Proof. This is true in the initial state of the servempBose, for a contradiction, that there is a tilnetach
Cowne=Nil @and ReqQ is nonempty. To reach this stateakeoperation related Q... and ReqQ must be
either a)cowner IS set to nil while ReqQ is nonempty, or b) ameid inserted into ReqQ whilgner remains

nil. For case a)¢owner cOuld be set back to nil only when the serverivesea RELEASE message from
Cowner OF SUSpPects thal,..er has crashed. But according to lines 52--55 ofaflgerithm, Couner i set to nil
only when RegQ is empty in this case, so case ia)psssible. For case b), an entry can be inseénted
ReqQ when the server receives a REQUEST or a YlHEid3sage. But in both cases, according to the
algorithm, the entry is inserted only wheger is not nil, so case b) is also impossible. Thadfeto a

contradiction. [

Proposition 2 On any server, at any time before the server resev message or after it completes
processing of the message, or before it suspentash ofc,umer Or after it completes the processing upon
suspecting a crash of,ne, both of the following are true: a) for any1Z, there is at most one entry, (-)

in the request queue ReqQ; and if.r is not nil, then §uner -) is NOt in ReqQ.

Proof. We prove this proposition by induction on the n@mimessages received or crash suspicions made.
The base case is the initiate state of the sewlgich satisfies both a) and b) trivially. Now suppahe

current state o€,.wner and RegQ (reached after receiving a finite nundfenessages and making a finite

27

number of crash suspicions) satisfies a) and b).ldbk at all possible cases of the next messagexir

crash suspicion.

Case 1The next message is a (REQUES$Tmessage frona;,. First, Couner may be set ta;, but this
only occurs whercoumer Was nil (line 32). By Proposition 1, in this caReqQ was nil. So after
settingCowner tO Ci. (Cownes -) IS NOt in RegQ. Thus b) is satisfied. Iltemsalso true since ReqQ is
not changed. Second;,(t) may be inserted into ReqQ. But this only occur®m €ouner Z C) and
(¢, -) notin RegQ (line 33), so both a) and b) giteteue.

Case 2The next message is a (YIELD,message fror.

Case 3The next message is a (RELEASENessage fror.

Case 4The next message is an (INQUIRYY message from,.

Case 5The server makes a crash suspiciomQh.

It is not hard to verify that in all the above casgperations oownerand ReqQ do not violate either a) or b).

0

Lemma 5 Suppose a cliend, enters its trying section and generates a timestartipeventuallyc crashes
or ¢ enters its exit section after this trying sectittvren for every servet, there is a time after whicle;(t;)

no longer appears itgumen towne) ON SEIVET;.

Proof. According to the algorithm, wher enters its exit section, its variable timestams gehew value
(line 21). Thus the timestamp variable has valwaly whenc is in its trying section and the subsequent

critical section.

The only message that may causet{) to be added intg’s (Cownes towne) OF ReqQ is the (REQUEST)
message sent k. Sincec; does not stay in its trying section foreversends at most a finite number of
(REQUEST) messages. By the Finite Duplication propertyyeer (whether faulty or not) only receives
a finite number of (REQUEST;) messages from. Let T, be the time at which receives the last copy of
the message (REQUEST), from c;. After timeT,, if r; has a crash failure, then itSfnen towne) @and ReqQ

will be cleared, and afterwards, t;) will never appear in them again, so in this dhgglemma holds.

28

Assume now that; does not have any crash failure after tifpeThat is,r; is an eventually correct server.
If client ¢; crashes, then by the Strong Completeness propettyedfailure detector ow;, rj eventually
suspects that; has crashed forever and removest() from (Cownes towney if Necessary (lines 46--47), so

there is a time after whiclai(t) no longer appears iBounes towne) ON SEIVer;.

If client ¢ does not crash, thesm eventually enters its exit section. Cliensends only a finite number of
(YIELD, t) messages to, so by the Finite Duplication property, only receives a finite number of
(YIELD, t) messages. L% > T, be a time by whicls; has entered its exit section anthas received all of
(YIELD, t;)) messages. Ifc(, t;) no longer appears ity(nes towne) ON server; after timeT,, then the lemma
holds. Suppose there is a tiffig> T, at which Counes towne) ON SerVer; is (G, t;). Sincer; has received all
(YIELD, t) message by tim@&;, the €, t) value will not leave Guner towne) due to the receipt of any
(YIELD, t) message from;. It can only leavedyunes towne) DY receiving a (RELEASHE;) message, which
removes ¢, t) permanentlybecause a) by Proposition 2,) is not in ReqQ at this time, and b) by the

definition of T, afterwards; never receives a (REQUES]),message fror.

Suppose, by a contradiction, thalues towne) remains to bed t;) forever afterT;, which means; does
receive any (RELEASH;) message aftefs. According to the algorithm, aftéli; serverr; periodically
sends (CHECK}) messages tg. Since neither; nor ¢ crash after timel;, by the Quasi-Reliability
property of the channels; receives (CHECKY;) from r; after timeTs. By the definition ofT;, whenc;
receives this (CHECHK;) message, the timestamp value;d$ no longett;, so it will send a (RELEASH;)
message back 19 (line 25). Again by the Quasi-Reliability propedfthe channels; eventually receives

the (RELEASE}) message after tinig --- a contradiction. 0

Proposition 3 Suppose that a correct clianstays in its trying sectiomS forever with timestamp,tand a
serverr; is correct in the period covering the trying sexflS. If r; sends (RESPONSE, t}) messages to
¢ at both timet andt’>t during the trying sectioS, thenr; must have received a (YIELM) message

from ¢, during the periodt(t’].

29

Proof. Whenr; sends §RESPONSEG;, t;)) messageo ¢; at timet, its (Cownes towne) Value is €, t). It is
easy to verify that whercdues towne) iS (G, i), N0 message other than a (YIELE),message frong; can

cause; to send another RESPONSE messagg to O

Lemma 6 Suppose that a correct cliegtstays in its trying sectiomS forever with timestamp,tand a
serverr; is correct in the period covering the trying seefS. If ¢; sends the k-th (YIELD;) message tg

at timet for any k1, then (a) before time r; sends the (RESPONSE, t;) message to; exactly k times,
and (b) let’ < t be the time; sends the k-th (RESPONSE,,t;) message to; thenr; receives the (YIELD,
t) message from; for (k-1) times by time’, andr; receives th&-th (YIELD, t}) message from after time

t.

Proof. Because botlt; andr; are correct since; enters its trying sectioS, we can apply the Crash
Duplication and the Quasi-Reliability properties ttee channels between and r;. According to the
algorithm, each time befogsends a (YIELD{;) message tg, its resfij] must be ¢, t), and this must be
the result of; receiving a (RESPONSE, t;)) message from. Also afterc; sends a (YIELDf;) message to
rj, Gi clears its reéﬁj] to (nil, nil), soc; has to receive another (RESPONSE!) message from to change
resp[j] back to €, t;). Thereforec must have received the (RESPONSEt;) message from for at least
k times by time. By the Crash Duplication property,must have sends the (RESPONE&HR;) message to

c; for at least k times before tinte

To show (a), suppose for a contradiction thaeceives sends the (RESPONSEL) message to; for at
leastk+1 times before timé Then there are at least k intervals betweenanycbnsecutive (RESPONSE,
C, t) messages. By Propositionr3must have received the (YIELEB) message fror for at least k times
before timet. By the Crash Duplication property,must have sent the (YIELD) message tq for at least
k times before timd, but this contradicts the assumption in the lenth@c, sends itsk-th (YIELD, t)

message tg at timet. Thus (a) holds.

For (b), since; sends the (RESPONSE, t) message tg, exactly k times by timé¢, and there are (k-1)

intervals between these messages, by Propositigne®;eives (k-1) (YIELD};) messages from by time

30

t'. During the periodt{, t], r; does not receive any more (YIELE), messages from, because otherwise
we can apply the Crash Duplication property to hemcontradiction. For theth (YIELD, t) message that
c sends at timé by the Quasi-Reliability property, will receive a (YIELD,t) message after tinte This

completes the proof of (b). 0

Lemma 7 Suppose that a correct cliegtstays in its trying sectiomS forever with timestamp, and a
serverr; is correct in the period covers the trying secfith If ¢ sends a REQUEST, or YIELD, or
INQUIRY message to at timet, then it is guaranteed that there is a tthrret such that resfi] is not (nil,

nil) at timet'.
Proof. We prove the lemma by studying the following cds&sed on the messagesends at timé

Case 1Clientc sends a (REQUEST) message tg in line 5. This is the first messagesends taj in
the trying sectiorTS. By the Quasi-Reliability property; receives this (REQUEST,) message

fromc.

Sincec; stays in the trying sectionS forever, the timestamipmust be the highest timestamp value
thatc ever gets. Thus the condition in line 28 is nogtamdc; will not skip the rest of the message
processing code. Line 29 of the algorithm guarantiwat after receiving the (REQUESH),
message, there is no more ald t{) with t'<t; appears iNGuner towne) OF i ReqQ. Moreover, since
this is the first time; receives a (REQUEST) message from, (c, ;) has not appeared iBy{nen
towne) OF ReqQ either. Therefore, whenexecutes line 31, the conditi@gune # ¢ must be true.
Then according to line 35 of the algorithmsends a (RESPONSE&,ner towne) Message back

By the Quasi-Reliability property of the channglreceives this message, and this must happen
after timet. Note that for theQunen towne) Value in the message,Gfuner is Ci, thentyuner Must bet;.
Thus, either at this time refjpis already non-(nil, nil), or the condition imé 8 is satisfied, ant]

updates regfp] to a non-(nil, nil) value (line 9). The lemma Hslfor this case.

Case 2Clientc; sends a (YIELDf;) message tg in line 15. Let this be the,th (YIELD, t) message

thatc, sends ta;. By Lemma 6 (a); sends itsy-th (RESPONSEg, tj) message to at a timet’ <

31

t. This implies that at timg&, the €ownes towne) Value ofr; is (G, t;). By Lemma 6 (b)r; receives the
n-th (YIELD, t;) message frong; after timet. Let this time b&” . So in the periodt(, t”), r; does
not receive any (YIELDt)) message frorg;, which implies that thec{unes towne) Value ofr; at time
t” (before processing the YIELD message) is stillt{). Therefore, then-th (YIELD, ;) message
received byr; at timet” will causer; to send a RESPONSE message back.tBythe Quasi-
Reliability property, this message will be receiu®dc;, and thus change the régpto a non-(nil,

nil) value.

Case 3Client ¢, sends a (REQUEST;) message tg; in line 16. LetT, = t. By the Quasi-Reliability

property,r; receives this message at some tipe T, If at time T, the Couner Value ofr; is notc,
then according to the algorithm (lines 31--35kends a RESPONSE message baas, tavhich
eventually receives this message and updates §§jJréo a non-(nil, nil) value, so the lemma
holds in this case. If at tim& the Counervalue ofr; is ¢ but touner is Nott;, thentoumer Must be less
thant; because the timestamps are monotonically incrgaBin line 29 of the algorithm, this old
(Cownen towne) Value will be deleted, and thersends a RESPONSE message backabline 35. So

the lemma also holds.

We now concentrate on the case where at fimghe Cowner towne) Value of rj is (G, t).
Before ¢ sends out the (REQUEST) message at tim&,, the resfjj] must be a valuecf, t;)
different from €;, t;). So there must be a tinfg < T, such that at tim&; r;’s (Cownen towne) Value is
(G, t), andr; sends a (RESPONSE,, t;) message to,. Then from timéTl, to Ty, the Cownen towne)
value changes front(, t;) to (c, t}). Let T; be the time at which th&g(nes towne) Value is changed

to (G, t;) and in the periodTg, Ti1], the Cownen towney Value is alwaysd, t;).

At time Tg, r; sends a (RESPONSE, t) message ta. If ¢ receives this RESPONSE message
after Ty, thenc will update the resf] to a non-(nil, nil) value and the lemma holdspBose that;

receives this (RESPONSE, t;) message from at timeT, < T, (¢; cannot receive this message at

32

time Ty, because otherwisg,updates reéﬁ] to (¢, t), contradicting the fact that at tinieg, resﬂj]

is (¢, t) different from €;, t)). SOTs < T4 <T,.

It is straightforward to see that once tbg.(e, towne) Value becomes(t;), r; sends a RESPONSE
message to; if and only if it receives a (YIELD;) message from. So ifr; receives a (YIELDt;)
message frong; at or after timeT,, then it will send a RESPONSE message baak tohich will
causec; to update the re§fl to a non-(nil, nil) value. So we only consideettase wherg does

not receive any (YIELDt;) message at or after tirfig.

From timeT, to T,, the reslfj] value is changed front(t) to (G, t;). According to line 8 of the
algorithm (in particular the condition ré§p# (c, timestamp)), resjjmay change fromd(, t) to

(cr, tv) only indirectly by changing fronty t) to (nil, nil) first. That is, it must be that sbme time

Ts in the period T4, To), G sends a (YIELD}) message at line 15, clears fg$value at line 18,
and laterc; receives a (RESPONSE,, t;) from r;. By the previous assumptior,does not receive
any (YIELD, t)) message fromy; at or after timeT,, so it must receive a (YIELD,) message in the
period (s, To). Since periodTs, To) is within the periodTs, Ti], the Counen towne) Value ofr; when

rj receives this (YIELDt;) message must be,(t;), which means; must send a (RESPONSE., ;)
message back . If ¢ receives this RESPONSE message after igm@gain we are done. ¢f
receives this RESPONSE message before Tignghen we can apply the above argument again to
find another YIELD message, another RESPONSE messiag so on. Since the period befdge
only allows sending a finite number of YIELD messagthe above argument cannot continue
forever, so it must be that receives a RESPONSE message frpmfter timeT,. This message

then cause; to update res]to a non-(nil, nil) value, and the lemma holds.

Case 4Clientc; sends an (INQUIRYt) message tg in line 17. The argument for this case is exactly

like the one for Case 3.

Therefore, the lemma holds for all the possiblesas 0

33

Lemma 8 (Progress (a) with a finite number of clients) Suppose that there are only a finite number of
clients requesting to enter their critical sectidhispposen < n-f. If a correct client is in its trying section at

timet, then at some time >t some correct client is in its critical section.

Proof. Let c be a correct client. Suppose for a contradictiat there is a tim&,, such that at time, client

c is in its trying section, but after tinTg, no correct client is in its critical section ampre. Lets, be the
set of clients that ever request to enter theticali sections, is finite by the assumption of the lemma.
Clients inZ, can be divided into two disjoint sefs; andZ,. X, is the set of correct clients that eventually
stay in their trying sections forever after tiffig andZ, is the set of clients that either crash eventyaity
stay in their exit or remainder sections forevers keasy to see thag is the union of; and>, and%; and

2, are disjoint.

Let T, be the earliest time at which some clien&inenters its last trying section. LE; be the set of
correct servers in the period,| +). Since the clients ik; stays in their last trying sections foreviar, is
also the set of correct servers in the period wémme client is in its trying section. By Definitidnwe
have 14| = n-f. For eachc0y, lett; be the timestamp generated @rat the beginning of its last trying

section.

By Lemma 5, for ang;[12,, eventually ¢, -) does not appear as thguke, towne) Value on any server. So
there is a time after which for any serverthe Counes towne) Value onrj must be a value from ¢ t) |

¢24}. Let T; > Ty be such a time.

Now for all the ¢;,t;)) values wheres[0%;, they can be ordered by the predetermined orded by the
algorithm. Without loss of generality, leto to) be the first entry according to this order. Siggesends
(REQUEST ty) at the beginning of the trying section to allvees, and all the servers ity as well asc,
are correct since timepTwe can apply the Quasi-Reliability property ot tbhannels and have that
eventually all servers iAl; receive this message and pay (o) either in their €y une; towne) Value or in their

RegQ. Once a server receives (REQUBEZT (Co, to) Will stay in its Cowner towne) OF ReqQ forever, because

34

the server never receives a (RELEA&Emessage from, again (by the fact thay is correct and stays in
its trying section forever). LéE,>T,; be the time at and after whicty,(to) stays in €owner towne) Value or in

the RegQ on all servers .

Claim 1. For any serveylll,, there is a timé¢= T, such that at or after tirmahe Cowne: towne) Value orr; is
always €o, to).

Proof of Claim 1. Letd, t;) be the €uwne: towne) Value onr; at timeT,. If (¢, t;)) = (Co, to), we are done, since
(Co, to) is already theGunertowne) Value, and because by definitian, (to) is the first in the predetermined
order among alld, t;) wherec,(JZ; and those are the only possible values showingsu@wnertowne) after

time T,, (Co, to) Will never be swapped out of thefnetowne) Value.

Now supposed, t) > (Co, to). By the definition ofT,, (co, tg) must be in ReqQ af; at and after timd,.
There must be a tinte<T, such that’ is thelasttime whenr; sends a (RESPONSE, t;) message to, by
time T,, and from time’ to Ty, the Cownertowne) Value ofrj remains ¢, t;). By the Quasi-Reliability property
of the channels;, receives this message and updates itsjldsp(c, t;). At this time there are two possible

cases concerning the resp[] arraycpn

» Case 1. For at least servers; 01, resp[’] is not (nil, nil). According to line 11 of thelgorithm,
¢ checks if at leagh elements in resp[] are;(t;). This condition cannot be true, because otherwise
¢ enters its critical section after it completedatst trying section (by timestantpit is known that
G is in its last trying section) --- contradictingetssumption thay stays in its last trying section
forever. Thereforeg; must send out a (YIELD;) message to, (line 15) because regpE (c;, t).
By the Quasi-Reliability property of the channetss (YIELD, t) message is received by This
(YIELD, t) message must be received bfter timeT,, because otherwise it is received in the
period €, T,], but since in this period th€(netowne) Value ofrj remains ¢, t), r; sends another
(RESPONSEGg;, tj) message to in this period, violating the definition of tinte Whenr; receives

this YIELD message aftér,, since €, to) is in ReqQ at this time andy(ty) is the first entry in the

35

predetermined ordercd, t)) must be the new value set @Qufertowne)- After this time, €, to) will

never be swapped out @ (netowne). SO the Claim 1 holds in this case.

» Case 2. There are less timarservers; [N such that resp] is not (nil, nil). Sincel,| = n-f, andn-
f > m, there must be somelIN; such that resp] = (nil, nil). By Lemma 7, for every; M, such
that resp[] = (nil, nil), there must be a later time at whipesp[’] is not (nil, nil). So there must be
later time at which for at least servers; [N, resp[’] is not (nil, nil). Then we can use the same

argument in Case 1 to show Claim 1for this case.

With Claim 1, we can see that eventually forrdlll;, the Cownertowne) Value ofr; will always be €, to).
Thus, there is a tim&; > T, at and after which for at{Jl1,, onc, the resg] is either (nil, nil) or ¢, to).
The Claim 3 shows this is even true @il \ M,. Before showing Claim 3, we proof the followingich

first.

Claim 2. Every clientc; (0%, executes line 11 of the algorithm, and then sentEL¥, INQUIRY or

REQUEST messages to servers for an infinite nurobtmes in its last trying section.

Proof of Claim 2. By Lemma 7, for every servgtll,, there is a time at which the rdgpvalue is not (nil,
nil) after¢; sends out the initial REQUEST messagé $ Sincel[l;| = n-f = m, there is a time at which the
condition in 10 is true, and line 11 is executelde Tondition is line 11 cannot be true, sinceever leaves
its last trying section. Thug sends out a YIELD, INQUIRY or REQUEST message ® shrvers from
which it received RESPONSE messages and cleaetipd] rarray (lines 14--18). By Lemma 7 again, for
every server;[y, there is a time at which the rdgpvalue is not (nil, nil) after; sends out those YIELD,
INQUIRY or REQUEST messages, so condition in 10 i true again, and line 11 will be executed.

When applying the above arguments repeatedly, ueghow Claim 2.

Claim 3. There is a tim&, > T, at and after which for at|J \ ,, onc, the resy] is either (nil, nil) or €,

to).

36

Proof of Claim 3. Suppose, for a contradiction tlea any timet > T, there is always a time >t and
there is a;0MN \ M, such that om, respf] is neither €, to) nor (nil, nil). By Claim 2, resp] will always be
cleared at a later time. Since the number of sengefinite, there must be a servebll \ M, such that for

an infinite number of time points regpis neither €, to) nor (nil, nil) onc,.
There are two cases in terms of the number of dedlsiies server; has.

Case 1There is a finite number of crash failures mnandr; does not recover after the last crash
failure. By Claim 2, there is a time aftgis last crash when regplfis cleared to (nil, nil) orc,.
After this time, resg] will not be changed becausgnever recovers after the last crash. This
contradicts the assumption that for an infinite bemof time points resfj[is neither ¢, to) nor

(nil, nil) on cy.

Case 2There is a finite number of crash failuresrgrandr; recovers after its last crash. So there is a
timet > T, after which server; does not have any more failures. Before the &iktré, r; only sent
a finite number of messages. By the Finite Duplicaproperty, every client only receives a finite
number of messages framsent before;’s last failure. Thus without loss of generalitgsamet is
also the time after which no client iy ever receives any message fronafter timet. By the
assumption, after there is a tima’ at which resp] is neither €, to) nor (nil, nil). By Claim 2

above, there is a tint® >t at whichc, clears all resp[] entries. There are two subcases.

o From timet tot”, resp]] is changed toq, ty) at some point. If sog must receive a
(RESPONSEQ,, to) from ;. By the definition oft this RESPONSE message is sent;tsfter
its last failure. This means(to) is the Cownertowne) Value onr; and it will never be replaced by

any other value.

o From timet' tot”, resp[] is not changed tac§, tp). Thus at” , resp[] # (Co, to). By Lemma 5,
eventually only &, t) remains ast{unenr towne) fOr G024, so without loss of generality, refjpk

(¢, t;) for somec,dZ;. Then by the definition ofcy, ty), we have &, to) < (C, t). According to

37

line 16 of the algorithm, at timg&' ¢, sends a (REQUEST,) message to,. Sincer; has no
failure any morey; eventually receives this message and insert RégQ, assumingC{unes
towne) = (G, 1) > (Co, to) (otherwise, we are done). Fro this time on, g4 towne) Value ofr;
either remainsd, t;) forever, or due to the receipt of a (YIELf),message from,, it changes
to (Co, tg) and then remaingyd, to) forever. The latter case is what we want. So hewsthat the
(Cownen townen) Value ofr; will not remain ¢, t;) forever. If the opposite is true, then eventually
the only RESPONSE message thatends is (RESPONSE, t;). By Claim 2,¢ sends YIELD,
INQUIRY, or REQUEST messages tpan infinite number of times. It is impossible tlat
sends INQUIRY or REQUEST messages;tan infinite number of times, because each such
message implies thatreceives a (RESPONSE, t) message from with (c, t) different from

(¢, t), but this contradicts to the fact that eventutily only RESPONSE message thaends

is (RESPONSEG;, t). Therefore, eventuallg; sends a (YIELD};) message to;, and this

message causeso change itStuner towney Value to €, to).

From the above discussion on the two subcasespm@udle that eventually they{ner towne) Value

of r; remains to bed, ty) forever. This means that eventually the only RERBE messageg
sends is (RESPONSIE,, t;) message. This contradicts the assumption tha¢ thee an infinite
number of times at which regppn ¢, is neither ¢, to) nor (nil, nil), because the later requires that

Co receive a infinite number of (RESPONSE) message withe(t) different from €, to).

So, we show that in Case 2 we reach a contradigtiinthe assumption at the beginning of the

proof.

Case 3There are an infinite number of crash failuresrprit is easy to see that there is a time after
which the only messages sent and received in thersyare messages pertainingdot() with
¢Z;, due to the Finite Duplication property. By ClaBnevery client inX; clears its resp[] an
infinite number of times, so there is a time aftdrich the only values appearing in resp[] on any

client are ¢, t;)) with ¢0Z;. Let T; > T, be such a time. Let; = {Cy, Cy, ... ,C}, With the order €, to)

38

< (cy, ty) <... < (C t). Consider, first. By Claim 2, clears its resp[] an infinite number of times
after Ts. Consider the value reéf§jj right before it is cleared each time affer By the definition of
Ts, respj] must be ¢, t) for somecZ;. Since €, tJ is the largest among these values, when
resplj] is cleared,c, sends a YIELD or INQUIRY message, but does nodserREQUEST
message. Sq, only sends (REQUEST,) a finite number of times tg. By the Finite Duplication
property, r; receives the (REQUEST,) from ¢, only a finite number of times. Singg has an
infinite number of crash failures, there is a time> T; after which the G unes towne) and ReqQ are
reset to their initial values and they will nevavh €, t) in it any more. Then there is a tirfig>

T, after which ¢, t,) does not appear in any client’s rgsphy more. We can now apply the same
argument to ¢4, t.1), and then tog,, tko), and so on, and show that there is a time aftéctw
none of these values appear in any client’s jeggly more --- this is a contradiction to the

assumption made at the beginning of the proof afr©i3.
By the argument in Case 1, 2 and 3, we show thatrC3 holds.

Now with Claim 1, 2 and 3 we are ready to provelémema. With Claim 1 and 3, we know that there is a
time after which for all resp[] entries @p, they have to be eithety to) or (nil, nil). By Claim 2, after this
time, there is a time whegy executes line 11 again. This implies that attinie there are at least entries
in resp[] that are not (nil, nil). So they must laél €, to). However, in this case the condition in line 11
must be true, which means thgtwould execute line 12 and successfully enterritical section at this

moment. This is a contradiction to the assumptiaimea beginning of the proof that all clientsipstay in

their trying sections forever. 0

Lemma 9 (Progress (b)) If a correct client requests to leave the criteattion, then at some time later it

enters its remainder section.

Proof. This is obvious according to lines 19--23h&f algorithm. 0

39

Theorem 1 (Correctness with a finite number of clients) Suppose that there are only a finite number of
clients requesting to enter their critical sectiofi§ < n/3, then the algorithm in Figure 1 with=[2n/3]
solves the fault-tolerant mutual exclusion probletmat is, it satisfies the Well-formedness, Mutual

exclusion, and Progress properties of the faultriit mutual exclusion specification.

Proof. By Lemma 1, Lemma 4, Lemma 8, and Lemma 9, andatttethat (a) Bvn = 2*[2n/3] -n> 2 *

2n/3 n=n/3 >f, and (b)n-m=n-[2n/3] =[n/3]= 1. 0

Definition 2. A total order on the set of requests;{t) | ¢ OZ, t; is an output of GetTimeStamp()} is
eventually fairif for any (c;, t}) and for anyc; # ¢, if ¢; calls GetTimeStamp() in the algorithm infinitely

often, then eventually for ail returned from GetTimeStamp(), we haget) < (¢, t;).

Lemma 10 (L ockout-freedom with a finite number of clients) Suppose that (a) there are only a finite
number of clients requesting to enter their critezctions; (b)n < n-f, f<m; and (c) the total order used by
the algorithm is eventually faiif no client stays in its critical section forevend a correct client requests

to enter the critical section, then at some tinterla enters the critical section.

Proof (sketch). The proof follows the same structure as the poddfemma 8. Suppose by a contradiction
that a correct client enters its trying section at tinig but never enters the subsequent critical section.
Define X, Z; andZ, in the same way as in the proof of Lemma 8. Byagdion,c]Z;. This time, there is
another class of clients, defined&gswhich is the set of clients that enter their catisections an infinite
number of times. Because there is no client staiyiritg critical section foreveb,;, 2, and; is a complete

classification of,,.

We then show thai; must be an empty set. Suppose it is not empty.aRgic[Z;, ¢ enters its trying
sections for an infinite number of times. Because tbtal order used by the algorithm is eventutaly;
eventually the @, t) value forc's trying sections will always be greater tham, (o), where €, to) is
defined as in the proof of Lemma 8. It is easy ¢oify that Claim 1 in the proof of Lemma 8 also dl

here, so eventuallycq, to) is the only value appearing as tlogue, towne) Value of all the servers ;. So

40

eventually, orci, for any server;n,, the resffj] value cannot bec(-). Thus, if resjfj] = (c;, -), the server
rj must be if\M,. Since\M4] =n - [4] <n - (n-f) =f <m, ¢ will never get supports from enough servers
to enter its critical section. That i5,cannot enter its trying (and critical) sections dorinfinite number of

times. Thereforels must be empty.

Since; is empty, the rest of the proof follows the sarrecture of the proof of Lemma 8 to reach a

contradiction. [

Theorem 2 (Correctness plus L ockout-freedom with a finite number of clients) Suppose that there are
only a finite number of clients requesting to erttezir critical sections. If < n/3, then the algorithm in
Figure 1 withm =[2n/3] and an eventually fair total order on requestsesokhe fault-tolerant mutual

exclusion problem, plus it satisfies the Lockowefilom property.

Proof. By Lemma 1, Lemma 4, Lemma 9, and Lemma 10, andaittethat (a) &+n = 2*[2n/3] -n > 2 *

2n/3 -n=n/3 >f, (b)n-m=n-[2/3] =[r/3]>f, and (c)f <n/3<[2n/3]=m. 0

Definition 3 A total order on {¢, t) | ¢ OZ, t; is an output of GetTimeStamp()} imunded-time faiif for
any @, t), there is a tima such that for any; # ¢, for any outputt; that is obtained by calling

GetTimeStamp() on; after timet, we haved, t) < (-, t;).

Lemma 11 (Lockout freedom with an infinite number of clients) Suppose that (ah < n-f; (b) the total
order used by the algorithm is bounded-time faid €&) there is no server that crashes and recévesn
infinite number of timeslf no client stays in its critical section forewvemd a correct client requests to enter

the critical section, then at some time later teenthe critical section.

Proof (sketch). The proof follows the same structure as the poddfemma 8. Suppose by a contradiction
that a correct client enters its trying section at tinig but never enters the subsequent critical sectien.

t be the timestamp afs last trying section. Since the total order ubgdhe algorithm is bounded-time fair,
there is a timd; > T, such that any client, entering a trying section with timestarhfter timeT, will

have €, t) > (c, t). So we only consider the clients that make tlasit requests by tim&,. Let 2, be this

41

set of clients. By the assumption of our model éatidn 2, there are only a finite number of cliemizking
requests by tim&y, so, is finite. Z, can be divided int&; andZ,, in the same way as the proof of Lemma
8. Since all other clients make requests after fimevith (¢, t) > (c, t), their ©, t;) will not be the €wnen

towne) Value of any servers if; (same as Claim 1 in the proof of Lemma 8).

For servers not ifll;, we can also show Claim 3 here as in the prodfemfima 8. The reason is (a) the
Cases 1 and 2 in the proof of Claim3 of Lemma B ktld here, and (b) there is no Case 3 by the

assumption of this lemma.
The rest of the proof follows the same structurthefproof of Lemma 8 to reach a contradiction. 0

Theorem 3 (Correctness plus L ockout-freedom with an infinite number of clients) Suppose that there
is no server that crashes and recovers for antmfiumber of times. if <n/3, then the algorithm in Figure
1 with m= [2n/3] and a bounded-time fair total order on the regusstves the fault-tolerant mutual

exclusion problem, plus it satisfies the Lockowefilom property.

Proof. By Lemma 1, Lemma 4, Lemma 9, and Lemma 11, andaittethat (a) &+n = 2*[2n/3] -n > 2 *

2n/3 n=n/3 >f, and (b)n-m=n-[2n/3] =[/3] = 1. 5

B. Proof of Theorem 4

Theorem 4 Consider a system in which (a) servers may cradhrecover, (b) servers start from their initial

states after recovery, (c) client processes docootmunicate with each other, and (d) communication
channels are reliable. Latbe the total number of servers droe the maximum number of faulty servers

during any epoch of any client. if= n/3, then there is no algorithm that solves thetfealerant mutual

exclusion problem in the system.

2 The argument in Case 3 of Lemmades not work here, because we cannot claim teat ik a time after which the
only values appearing in resp[] on any client aret;j with ¢0Z;, as we did for Lemma 8. A new client can always
come in, sends a request to a server that jusveesdrom a crash, which will take this new cli@stitscoyner Value
and then cause other clients to have a resp[] thhtdas neitherd, to) nor (nil, nil).

42

Proof (sketch). Suppose, for a contradiction, that an algorithraolves FTME in the system whé&m/3.

We separate the servers into three disjoint graBp<z,, andGs, with f processes each. Suppose first that a
client ¢ requests to enter its critical section. Clientan only communicate with the servers. Consider a
run R in which all messages to and from server&jrare delayed, and servers@ do no take any steps
initially. From other clients and servers’ pointwiéw, servers itz have crashed. In this case, algorithm A
should allowc; to enter its critical section eventually, sinceydnservers irG; may crash. Supposeenters

its critical section at timé Suppose after timg (a) servers i, crashes and recovers immediately and
start themselves in their initial state, (b) messap and from servers @ are delayed, (c) communication
betweenG, andG; and the clients are resumed, and (d) messagesdtér@n G, before timet are still
delayed. Suppose after timea client ¢ requests to enter its critical section. From thepof view of
client g and the servers 6, andGs;, the servers iG; have crashed, and server$&GnandG; are correct
servers after timg and these servers have no knowledge about didrging granted access to its critical
section already. So eventually enters its critical section at some tihe> t. After timet’, all delayed

messages are delivered and all servers are wockimgctly.

Hence, we constructed a réhin which at mosft servers (those ;) are faulty during the epochs of the
clientsc; andc,, but bothc; andc, are in their critical sections at the same timelating the Mutual

exclusion property. Therefore, no such algorithristex 0

43

