
1

Sigma: A Fault-Tolerant Mutual Exclusion Algorithm
in Dynamic Distributed Systems Subject to

Process Crashes and Memory Losses

Wei Chen Shi-Ding Lin Qiao Lian Zheng Zhang

Microsoft Research Asia

{weic, i-slin, t-qiaol, zzhang}@microsoft.com

May, 2005

 MSR-TR-2005-58

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

2

Sigma: A Fault-Tolerant Mutual Exclusion Algorithm
in Dynamic Distributed Systems Subject to

Process Crashes and Memory Losses

Wei Chen Shi-Ding Lin Qiao Lian Zheng Zhang

Microsoft Research Asia

{weic, i-slin, t-qiaol, zzhang}@microsoft.com

Abstract

This paper introduces the Sigma algorithm that solves fault-tolerant mutual exclusion problem in

dynamic systems where the set of processes may be large and change dynamically, processes may crash,

and the recovery or replacement of crashed processes may lose all state information (memory losses).,

Sigma algorithm includes new messaging mechanisms to tolerate process crashes and memory losses. It

does not require any extra cost for process recovery. The paper also shows that the threshold used by the

Sigma algorithm is necessary for systems with process crashes and memory losses. The paper includes

the complete proofs of the correctness of the algorithm and the lower bound result.

Keywords: distributed mutual exclusion, fault tolerance, quorum systems, distributed algorithm

1 Introduction

Distributed mutual exclusion is a problem that manages the access to a single, indivisible shared resource

by at most one process at any time in a distributed environment. It can also be viewed as managing a certain

critical section of the program code that allows only one process to be in at any time. Distributed mutual

exclusion has been studied extensively in the literature (e.g., see [18], [21], [13] for a collection of

algorithms). In this paper, we focus on asynchronous message-passing mutual exclusion in dynamic

distributed systems, in particular peer-to-peer (P2P) systems.

To accommodate dynamic changes and tolerate failures, we can dedicate a small set of processes as

mutual exclusion servers to service client requests. Individual clients work with the servers to coordinate

mutual exclusion rather than working with other clients directly. Thus, the set of clients does not need to be

3

fixed and may be very large and change dynamically. Fault tolerance can be achieved by choosing an

appropriate size of servers such that as long as enough servers do not crash, they can work with clients to

achieve mutual exclusion.

In P2P systems with distributed hash table (DHT) support (e.g., [6],[8],[17],[22]), the set of servers can

be maintained stable. If a machine hosting a server crashes, one of its DHT neighbor will become the new

host. However, the old states of the failed server are completely lost. This demands a new system model in

which processes crashes are associated with memory losses. Therefore P2P/DHT systems provide good

support for maintaining stable server sets while requiring new failure models. Furthermore, in P2P context,

the performance of the algorithm should be robust and stable and works well in both low and high

contention cases. These were the chief motivations that started the study of the Sigma algorithm [12].

When designing fault-tolerant algorithms in the client-server architecture, two major approaches may

be used. One is the state-machine approach ([11], [20]), and the other is the quorum-based systems (e.g. [2],

[14], [19]). With the state-machine approach, all servers execute all client requests in the exact same order,

and collectively they behave as a single fault-tolerant state-machine that orders all client requests. To

achieve this, servers need a fault-tolerant agreement protocol (such as paxos [10], [9]) among themselves to

synchronize their executions. As a result, the state-machine approach may increase the response time to

client requests, and it may need more mechanisms such as failure detection among the servers.

The quorum-based systems do not require coordination among the servers. Consistency is enforced by

requiring each client to collect responses from a quorum of servers before it can enter its critical section.

Quorums of servers need to intersect with each other in certain ways to achieve fault tolerance.

However, existing quorum-based mutual exclusion algorithms (e.g. [2], [14], [19]) do not address the

issue that servers may crash and lose all their memories. When servers may crash and lose memories, their

responses to clients become inconsistent and may cause the violation of the mutual exclusion requirement.

Moreover, existing algorithms assume that communication channels are reliable and FIFO. However,

process crashes and memory losses make the implementation of a reliable and FIFO communication

4

channels difficult, since such implementations typically require retaining certain memories such as

sequence numbers on both sides of a channel.

This paper introduces the Sigma algorithm to address process crashes and memory losses. Sigma

algorithm solves the fault-tolerant mutual exclusion problem when f<n/3, where f is the number of faulty

servers and n is the total number of servers. Moreover, it includes new messaging mechanisms to tolerate

non-reliable and non-FIFO channels caused by process crashes and memory losses.

By the taxonomy of [21], Sigma algorithm belongs to the category of non-token-based, Maekawa-type

mutual exclusion algorithms. The performance of the Sigma algorithm is comparable with other algorithms

in the same category, while the mechanisms that address process crashes and memory losses distinguish the

Sigma algorithm from others. Moreover, the algorithm has an important feature: It does not require any

extra cost for process recovery. A server can behave as a regular server immediately after recovery with no

extra reconfiguration or state transfer period. The paper further shows that the requirement of f<n/3 is

necessary for any algorithm that employs a client-server architecture to solve the fault-tolerant mutual

exclusion problem in systems with process crashes and memory losses.

The rest of the paper is organized as follows. We define the system model in Section 2, and define the

fault-tolerant mutual exclusion problem in Section 3. We present the Sigma algorithm, discuss its

performance and compare it with other algorithms in Section 4. In Section 5, we show that the condition

f<n/3 is necessary. We discuss related work in Section 6 and conclude the paper in Section 7. The appendix

includes the detailed proofs of the correctness of the algorithm.

2 System Model

We consider an asynchronous message-passing distributed system where processes are logically separated

into clients and servers. Client processes make requests to enter their mutually exclusive critical sections,

and servers help coordinate the client accesses to the critical sections. The system is dynamic in the sense

that (a) new clients may join the system and make new requests at any time, and (b) servers may crash, then

recover or be replaced by a new server.

5

Let Σ = {ci | i = 1, 2, …} denote the set of client processes. Σ is infinite, which means that the number

of potential client processes is not fixed but changes dynamically and has no finite bound. Let Π = {r j | j =

1, 2, …, n} denote the set of servers, where n is the number of servers in the system. Servers are identified

by their virtual names, which are known to the entire system. If a server leaves the system or crashes, a new

server will replace the old one and assume the same virtual name. In practice, such virtual names can be

implemented by a domain name server or a DHT mechanism in P2P systems. Because of such virtual

naming mechanisms, the number of servers can be fixed throughout the lifetime of the system. While a new

server may replace an old one by assuming the same virtual name, it loses all the state information of the

old server. This memory loss behavior is crucial in affecting the behavior of communication channel and

the design of the algorithm, and it will be described in more details in the next section.

We assume that the global time is discrete with the range being the set of natural numbers. This is

merely to simplify the presentation, and processes do not have access to the global time.

2.1 Process Failures

Processes may fail by crashing, i.e., halting prematurely. When a process crashes, it loses its state entirely.

For a client process, if it later recovers, we consider it as a new client process, because it already loses its

entire context of the previous execution of the mutual exclusion algorithm. Thus, the crash of a client

process is considered permanent. A client process is correct if it does not crash; it is faulty if it is not

correct.

In case of a server, a crashed server may either recover or be replaced by a new server assuming the

same virtual name. We model both cases as server recovery. After recovery, the server cannot restore any

state information of the server before the crash. Thus we assume that after recovery, a server suffers a

complete memory loss and restarts itself from its initial state. A server is correct if it never crashes; it is

faulty if it is not correct; it is eventually correct if there is a time after which the server stays alive.

Given a time period, we say that a process (either a client or a server) is correct in the period if it stays

alive in the period; it is faulty in the period if it is not correct in the period.

6

In terms of detecting process failures, we assume reliable failure detection on the clients but we do not

require failure detection on the servers. More precisely, we assume that there is a perfect failure detector [4]

on the clients, and it satisfies the following properties:

• Strong completeness: If a client is faulty, then there is a time after which it is permanently suspected

by every eventually correct server.

• Strong accuracy: No client is suspected by any server before the client crashes.

It is shown in [5] that the weakest failure detector for solving the fault-tolerant mutual exclusion problem is

weaker than the perfect failure detector, but the two are similar. In practice, perfect failure detector on the

clients can be implemented by client-side leases: a client obtains leases from the servers and needs to renew

a lease before it expires, and if not, the client session is terminated and the client has to reconnect to the

servers as a new client. Therefore assuming perfect failure detection on the clients is a simple and

reasonable abstraction.

2.2 Fair Channels

Communication channels for message passing among processes are asynchronous, which means there is no

timing assumptions on the time it takes to deliver a message. Bi-directional channels are available between

all client-server pairs. We do not assume that messages are unique, that is, a process may repeatedly send

the same message to another process multiple times.

We assume that the basic communication channels may lose messages, but they will not behave

arbitrarily bad such as losing all messages. This is modeled by the Fairness property as described below.

The purpose of introducing such lossy channels is twofold. First, it shows that our algorithm tolerates

message losses. Second and more importantly, message losses compounded with process crashes and

memory losses lead to some difficulty in enforcing reliable and FIFO message deliveries across process

crashes. Dealing with possibly unreliable and non-FIFO message deliveries is one of the major challenges

in designing the Sigma algorithm.

We say that a channel from process p to process q is fair if it satisfies the following properties:

7

• No Creation: If q receives a message m from p at time t, then p sent m to q before time t.

• Finite Duplication: If p sends a message m to q a finite number of times, then process q receives m at

most a finite number of times.

• Fairness: Suppose that p sends a message m to q an infinite number of times, and process q does not

crash permanently. Then a) q receives m from p an infinite number of times, and b) if the algorithm on

q is such that q sends a message m’ back to p whenever it receives m from p, then q sends m’ to p an

infinite number of times.

Part (a) of the Fairness property is close to ones used in other works (e.g., [13], [1]), except that in our

model it requires infinite number of message deliveries even if q may crash and recover infinitely often.

This is to eliminate the unfair situation where q always crashes right before receiving m from p. Part (b) is

required particularly for our crash-recovery model. It is to eliminate another unfair situation where q always

crashes right after receiving m but before sending out any response back to p.

2.3 From Fair Channels to Quasi-Reliable Channels

On top of the fair channels, we can use the standard repeated sending and acknowledgement protocol to

overcome message losses. However, with process crashes and memory losses, the protocol does not

implement a traditional reliable channel that guarantees no message duplication and no message loss in all

situations. Instead, it implements a quasi-reliable channel, which is defined as a channel that satisfies No

Creation, Finite Duplication, and the following two properties:

• Crash Duplication: For any given period [t1, t2], if q is correct in this period and q receives m from p

for k times in this period, then process p must have sent m to q for at least k times before time t2.

• Quasi-Reliability: For any given time t, if both p and q are correct after time t, and p sends a message

m to q at least k times after time t, then q receives m from p at least k times after time t.

The Crash Duplication property basically says that a message may be duplicated only if there is a crash

failure between the two duplicated message deliveries. Such message duplications are possible due to

8

process crashes, because the receiver may crash right after receiving the message but before sending out an

acknowledgment, in which case the sender will keep sending the message periodically, and when the

receiver recovers, it forgets the fact that it already receives the message and delivers the same message

again. Note that Finite Duplication is still enforced even if the receiver may crash infinitely often, thanks to

the Fairness property of the underlying channel.

Quasi-Reliability says that reliable message delivery is only enforced after the time when both the

sender and the receiver do not crash any more. Messages sent before a crash of either the sender or the

receiver may still be lost.

Implementing quasi-reliable channels from fair channels is by repeated message sending and

acknowledgment and it is straightforward, so the implementation and its proof are not included in this paper.

Henceforth, we assume that all channels are quasi-reliable.

We do not enforce FIFO order because of the following. The FIFO order is typically implemented by

maintaining a sequence number for each message sent and received. However, with process crashes and

memory losses, sequence numbers on the sending or receiving side may be lost and have to be reset after

recovery. Thus message order cannot be guaranteed across process crashes.

Reliable and FIFO message delivery was assumed by previous quorum-based mutual exclusion

algorithms (e.g. [2], [14], [19]). Therefore, under our model, we need to carefully redesign the algorithm to

deal with possible message losses and out-of-order deliveries.

3 Specification of Fault-Tolerant Mutual Exclusion

The specification of the fault-tolerant mutual exclusion (FTME) problem follows similar terminologies and

notations as in [13] and [5]. Since the servers are helper processes only used in the implementation of

FTME, they do not appear in the specification of FTME. Only client processes appear in the specification.

Each client ci∈Σ is associated with a user ui that can request for exclusive access to a critical region (or

equivalently, a mutual exclusive lock). The user ui can be considered as the application program, and client

ci provides the interface to the mutual exclusion mechanism. In practice, ui runs in client ci.

9

User ui interacts with ci with the interface actions tryi, criti, exiti, and remi. Actions tryi and exiti are

input actions to ci, initiated by ui; and actions crit i and remi are output actions of ci to ui. An execution on (ui,

ci) is a sequence of the above four actions (could be finite or infinite). A well-formed execution is an

execution that follows the cyclic order {tryi, criti, exiti, remi}. A user ui is a well-formed user if the actions it

issues do not violate the cyclic order of actions {tryi, criti, exiti, remi}.

Given a well-formed execution on (ui, ci), we say that client ci is:

• in its remainder section (a) initially, or (b) in between any remi action and the following tryi action;

• in its trying section in between any tryi action and the following crit i action;

• in its critical section in between any crit i action and the following exiti action;

• in its exit section in between any exiti action and the following remi action.

If client ci crashes after an action, the corresponding section defined above ends at the crash event. For

example, if ci crashes after a crit i action, we say that ci is in its critical section in between the crit i action and

the crash event of ci.

If action tryi is initiated on ci, we say that ci requests to enter the critical section. If action crit i is

returned on ci, we say that ci is granted to enter the critical section (or simply ci enters the critical section).

If action exiti is initiated on ci, we say that ci requests to leave the critical section. If action remi is returned

on ci, we say that ci is granted to leave the critical section (or ci enters the remainder section).

We define an epoch of a client to be the time period when the client is in its trying section or the

subsequent critical section.

Fault-tolerant mutual exclusion (FTME) is required to satisfy the following properties, under the

assumption that every user is well-formed:

• Well-formedness: For any client ci∈Σ, any execution on (ui, ci) is well-formed.

• Mutual exclusion: No two different clients are in their critical sections at the same time.

10

• Progress: a) If a correct client is in its trying section at some point in time, then at some time later some

correct client is in its critical section. b) If a correct client requests to leave the critical section, then at

some time later it enters its remainder section.

The following is an additional property that may be required for a stronger version of FTME.

• Lockout-freedom (Starvation freedom): If no client stays in its critical section forever and a correct

client requests to enter the critical section, then at some time later it enters the critical section.

It is not hard to verify that Lockout-freedom implies Progress (a).

4 Sigma Algorithm

4.1 Description of the Algorithm and Its Correctness

In this section, we present the Sigma algorithm (Figure 1) that implements the specification of FTME given

in the previous section.

Each client maintains a state variable timestamp, which obtains values from a GetTimeStamp() routine

that generates unique and monotonically increasing numbers. We define a request to be a pair (ci, ti), where

ci is a client id, and ti is the timestamp from ci. There is a predetermined total order among all such requests.

Thus, for any two requests (c, t) and (c’, t’), we can write (c, t) < (c’, t’), and say that (c, t) is earlier than

(c’, t’) according to this predetermined order. A simple choice of such an order is to order the request by

timestamp values, with client id as the tiebreakers. We will impose further requirements on the order later

when we need the algorithm to support Lockout-freedom. Each server maintains a queue ReqQ of client

requests, and a special request (cowner, towner) that it currently supports.

The basic flow of the algorithm is: (a) a client sends a request to the servers to enter its critical section

(lines 2--5); (b) each server responds the request with the request it currently supports (line 35); (c) the

client that receives supporting responses from enough servers enters its critical section (lines 11--12); (d)

when a client exits its critical section, it sends a RELEASE message to the servers (line 22); and (e) when a

server receives the RELEASE message, it removes the corresponding request, selects the earliest request in

11

its request queue to be the new request it supports, and sends a RESPONSE message to the new client it

supports now (line 43).

The above basic flow is similar to other quorum-based algorithms (e.g. [2], [14], [19]). However, the

additional mechanisms that prevent various potential deadlock scenarios are different from these algorithms,

as explained below.

Initiating YIELD messages from the clients instead of servers. The above basic flow may result in

deadlock if different servers support different client requests. The way to resolve this issue is for the clients

to send a YIELD message when there is a conflict in the requests support by the servers (line 15), and the

servers will reorder its request queue and select the earliest request to support (lines 36--41). In the Sigma

algorithm, This YIELD message is initiated from the client side, when a client collect enough responses

from the servers but does not have enough ones supporting the client. This is different from previous

algorithms (e.g. [2], [14], [19]) that initiate such YIELD messages from the servers: In these algorithms,

when a server receives a request that is earlier than the current one it is supporting, it sends an INQUIRE

message to the client it is supporting to trigger the client to send back a YIELD message. Initiating the

YIELD message from the servers may be premature, since the server may change its mind too fast, and thus

miss the opportunity for the client it is currently supporting to collect enough supporting responses. Instead,

the approach of initiating YIELD messages from the clients is more stable, since it only occurs when a

client collects enough responses and discovers that it is not supported by enough servers.

Due to process crashes and memory losses, messages may be lost or delivered out of order (as

explained in Section 2.3). Such problems generate new scenarios that violate either the Mutual Exclusion or

Progress requirement, and they are not handled by previous algorithms. We now discuss these issues and

show how our algorithm deals with them.

Removing obsolete responses stored on the clients. Every client stores the responses it receives in its

local array resp[]. Due to out-of-order message delivery, a client may receive an old response from a server.

If this old response is kept on the client forever, it may prevent the client to collect enough responses that

12

support the client. Therefore, all responses should be cleared, and this is done after a client collects enough

responses (line 18).

If all responses are cleared, the algorithm needs to guarantee that it can collect enough responses again

to avoid deadlock. To do so, a client ci needs to send a message to the servers to trigger another round of

responses.

On a client ci, if its resp[j] is (ci, ti), then ci needs to send a YIELD message to server r j (line 15), as

discussed earlier. In this case, server r j needs to send a response back to ci with its new supporting requests,

even if ci is not the one r j supports (line 41).

If resp[j] is different from (ci, ti), then a different message needs to be sent by ci. There is a subtle issue

in designing the appropriate messages for this case. Suppose ci sends a new type of message, called an

INQUIRY message to r j in this case, which triggers r j to send its currently supported request back to ci in

order to fill resp[j]. This is fine, except for the case where r j may have crashed and recovered, and thus it

has lost the request it previously supported and is unable to send a supported request back. To avoid this

case, ci needs to resend its REQUEST message back to r j. However, ci should not send REQUEST message

in all cases, because if r j just recovers from a crash, and receives this REQUEST from ci, (ci, ti) will become

the request r j supports, potentially blocking other earlier requests. Therefore, client ci should only resend its

REQUEST message when (ci, ti) is earlier than the request stored in resp[j], otherwise ci just sends an

INQUIRY message (lines 16--17). On server r j, the processing of the INQUIRY message is to send a

RESPONSE message back with r j’s supported requests (line 45).

Avoiding crossover of YIELD and RESPONSE messages. With the above change, a RESPONSE

message may be triggered by several receiving events on the servers. This generates another issue: A

(YIELD, ti) message from ci to r j should never cross over with a (RESPONSE, ci, ti) message from r j to ci.

Because if so, the (RESPONSE, ci, ti) message may cause ci to enter its critical section, while the (YIELD,

ti) may cause r j to change its mind and support a different client, which may in turn cause that client to enter

its critical section, and thus violating the Mutual Exclusion property. To avoid such crossover, when server

13

r j receives a REQUEST or INQUIRY message from ci where rj’s cowner value is already ci, r j will not reply

again with another (RESPONSE, ci, ti) message (the condition cowner ≠ ci in lines 31 and 45).

Avoiding out-of-order RESPONSE messages. Due to non FIFO delivery, two response messages

(RESPONSE, ci, ti) and (RESPONSE, ci’ , ti’) from the same server r j may be delivered out of order on client

ci. This may cause ci to mistake what r j is supporting and make a wrong decision. There are two possible

cases here. The first one is that (RESPONSE, ci, ti) is sent first. In this case, from sending the (RESPONSE,

ci, ti) message to sending the (RESPONSE, ci’ , ti’) message, r j must have received a (YIELD, ti) message

from ci. Since the (YIELD, ti) and the (RESPONSE, ci, ti) message do not cross over with each other, it is

guaranteed that the (RESPONSE, ci, ti) message is received first.

The second case is that the (RESPONSE, ci’ , ti’) message is sent before the (RESPONSE, ci, ti) message.

Suppose that ci receives (RESPONSE, ci, ti) and updates its resp[j] to (ci, ti) at time t. The algorithm

guarantees that after time t, if ci receives a (RESPONSE, ci’ , ti’) message while resp[j] is still (ci, ti), then

this (RESPONSE, ci’ , ti’) message must be out of order, i.e., sent before (RESPONSE, ci, ti). This is because

if it is in order, r j must have received a (YIELD, ti) message between sending (RESPONSE, ci, ti) and

(RESPONSE, ci’, ti’). Since (YIELD, ti) does not crossover with (RESPONSE, ci, ti), it must be sent after ci

receives (RESPONSE, ci, ti), in which case the resp[j] on ci should be cleared to (nil, nil) before ci receives

(RESPONSE, ci’ , ti’). Therefore, whenever ci receives a (RESPONSE, ci’ , ti’) message while its resp[j] is

still (ci, ti), the message must be an out-of-order message and should be ignored. This is enforced by the

condition (resp[j] ≠ (ci, timestamp)) in line 8.

Removing obsolete requests stored on the servers. An obsolete request on server r j may prevent r j to ever

support a new request, and thus block the progress of the entire system. There are several cases that may

cause a request on server r j to become obsolete. First, it may be caused by messages with different

timestamps. This is taken care of by code segment in lines 27--29: if r j receives a message with an older

timestamp, then it simply ignores it; if r j receives a message with a newer timestamp, then it deletes the old

request from (cowner, towner) and ReqQ, as if it receives a RELEASE message for that old request. Second, a

client process ci may crash permanently while it is being supported by r j. In this case, r j relies on the perfect

14

failure detector for ci to detect the failure and removes ci’s request from (cowner, towner) (lines 46--47). Finally,

message loss and out-of-order delivery may cause server r j to miss a (RELEASE, ti) message while

receiving a (REQUEST, ti) message after it recovers. To avoid this situation, server r j periodically sends a

(CHECK, ti) message to ci, where (ci, ti) is the request it currently supports (lines 48--49). Client ci needs to

reply this message with a (RELEASE, ti), if it already leaves the epoch corresponding to timestamp ti (lines

24--25). This is also the reason why ci needs to retrieve a new timestamp value in its exit section (line 21),

since that is the time the previous epoch ends and the previous request (ci, ti) should become obsolete on the

servers.

Quorum threshold m. As any quorum systems, the quorum threshold m in the algorithm is to guarantee

that any two quorums will have enough intersections to guarantee consistency. In our model, a server may

support one client initially, but then it crashes and recovers, forgets about its previous supporting value, and

supports a different client. To tolerant such failures, the threshold m should be large enough such that there

is at least a correct server in the intersection of any two quorums. If we let f be the maximum number of

faulty servers, then the above requirement is translated to 2m-n > f. On the other hand, m cannot be too

large because some servers may crash and never send responses, so m ≤ n - f. Combining the two

inequalities, we have that f < n/3, and m can be set to 2n/3. That is, the algorithm is correct when the

number of faulty servers is less than one third of the total number of servers.

The above definition of f can be further constrained. If a server remains alive during an entire epoch of

a client, then it should be considered correct in this period even if it has crashed before. So we modify the

definition of f as below.

Definition 1. Let f be the maximum number of faulty servers during any epoch of any client.

We have described all technical aspects of the algorithm and the issues they address. The following

theorems formally state the correctness of the algorithm. The complete proofs of the theorems are provided

in the appendix.

15

Every client ci executes the following:

timestamp: a state variable always maintained by ci, initially nil.

1 tryi:
2 timestamp := GetTimeStamp(); {get a monotonically increasing number}

3 for all rj∈Π
4 resp[j] := (nil, nil); {resp[1.. n] is a local array only used in the trying region}
5 send (REQUEST, timestamp) to rj;
6 repeat forever
7 wait until [received (RESPONSE, owner, t) from some rj]
8 if resp[j] ≠ (ci, timestamp) and (ci ≠ owner or timestamp = t) then
9 resp[j].owner := owner; resp[j].timestamp := t;
10 if among resp[], at least m of them are not (nil, nil) then {enough responses received}
11 if at least m elements in resp[] are (ci, ti) then {enough servers support ci}
12 return criti; { ci is granted to enter the critical section, exit the repeat loop}
13 else

14 for all rk∈Π such that resp[k] ≠ (nil, nil)
15 if resp[k].owner = ci then send (YIELD, timestamp) to rk;
16 else if (ci, timestamp) < resp[k] then send (REQUEST, timestamp) to rk;
17 else send (INQUIRY, timestamp) to rk;
18 resp[k] := (nil, nil); {clean out all responses}
19 exiti:
20 oldtimestamp := timestamp;
21 timestamp := GetTimeStamp();
22 for all rj∈Π send (RELEASE, oldtimestamp) to rj;
23 return remi;

24 upon receive (CHECK, t) from rj: {always executed, not only in the trying or exit sections}

25 if timestamp ≠ t then send (RELEASE, t) to rj;

Every server r j executes the following:

State variables:
cowner: the client it accepts, initially nil.
towner: time stamp of cowner, initially nil.
ReqQ: queue storing requests, initially empty.

26 upon receive (tag, t) from ci:
27 if (ci, t’) appears in (cowner, towner) or ReqQ then
28 if t < t’ then skip the rest; {the message received is an older message}
29 if t > t’ then Delete(ci, t’, ReqQ, cowner, towner);
30 if tag = REQUEST then

31 if cowner ≠ ci then
32 if cowner = nil then (cowner, towner) := (ci, t);
33 else if cowner ≠ ci and (ci, -) not in ReqQ then
34 insert (ci, t) into ReqQ, by predetermined order;
35 send (RESPONSE, cowner, towner) to ci;
36 else if tag = YIELD then
37 if (cowner, towner) = (ci, t) then
38 insert (ci, t) into ReqQ, by predetermined order;
39 (cowner, towner) := dequeue(ReqQ);
40 send (RESPONSE, cowner, towner) to cowner;
41 if cowner ≠ ci then send (RESPONSE, cowner, towner) to ci;
42 else if tag = RELEASE then
43 Delete(ci, t, ReqQ, cowner, towner);
44 else if tag = INQUIRY then

45 if cowner ≠ ci and cowner ≠ nil then send (RESPONSE, cowner, towner) to ci;

46 upon suspected that cowner has crashed when cowner ≠ nil: {reliable failure detection on cowner}
47 Delete(cowner, towner, ReqQ, cowner, towner);

48 periodically:
49 if cowner ≠ nil then send (CHECK, towner) to cowner;

50 Delete(c, t, ReqQ, cowner, towner) {helper function: remove (c, t) from (cowner, towner) and ReqQ}
51 if (cowner, towner) = (c, t) then
52 if not Empty(ReqQ) then
53 (cowner, towner) := dequeue(ReqQ);
54 send (RESPONSE, cowner, towner) to cowner;
55 else (cowner, towner) := (nil, nil);
56 else if ReqQ contains (c, t) then remove (c, t) from ReqQ;

Figure 1 Sigma algorithm

16

Theorem 1 (Correctness with a finite number of clients) Suppose that there are only a finite number of

clients requesting to enter their critical sections. If f < n/3, then the algorithm in Figure 1 with m= 2n/3
solves the fault-tolerant mutual exclusion problem, that is, it satisfies the Well-formedness, Mutual

exclusion, and Progress properties of the fault-tolerant mutual exclusion specification.

The above theorem requires that there be only a finite number of clients requesting to enter their critical

sections. We will address this issue shortly in Theorem 3.

Moreover, the theorem does not address the Lockout-freedom property. The Lockout-freedom property

requires that each client eventually enter its critical section. For Sigma algorithm, this means that eventually

each client request can be moved up to (cowner, towner) as the request it supports. To achieve this, we require

that the total order on requests be eventually fair, as defined below.

Definition 2. A total order on the set of requests {(ci, ti) | ci ∈Σ, ti is an output of GetTimeStamp()} is

eventually fair if for any (ci, ti) and for any ci’ ≠ ci, if ci’ calls GetTimeStamp() in the algorithm infinitely

often, then eventually for all ti’ returned from GetTimeStamp(), we have (ci, ti) < (ci’ , ti’).

An eventually fair order can be simply achieved by using sequence numbers to implement

GetTimeStamp() function, and the order is defined as the order of the sequence number with client ids as

the tiebreaker. The fairness is guaranteed because the sequence numbers increase without a bound. Logical

clocks [11] can also be used here, since client events are causally linked through the servers.

Theorem 2 (Correctness plus Lockout-freedom with a finite number of clients) Suppose that there are

only a finite number of clients requesting to enter their critical sections. If f < n/3, then the algorithm in

Figure 1 with m= 2n/3 and an eventually fair total order on the requests solves the fault-tolerant mutual

exclusion problem, plus it satisfies the Lockout-freedom property.

Both Theorem 1 and 2 requires that there be only a finite number of clients active in the system. When

the client set is infinite, it is possible that new clients keep generating requests to the servers, and new

requests are always ordered ahead of older requests, thus preventing any client to receive enough supports

from servers. To deal with this issue, we put a stronger requirement on the total order on the requests.

17

Definition 3. A total order on the set of requests {(ci, ti) | ci ∈Σ, ti is an output of GetTimeStamp()} is

bounded-time fair if for any (ci, ti), there is a time t such that for any ci’ ≠ ci, for any output ti’ that is

obtained by calling GetTimeStamp() on ci’ after time t, we have (ci, ti) < (ci’ , ti’).

In practice, a bounded-time fair total order can be achieved by implementing GetTimeStamp()

functions as some time function returning close to real time values. Clients do not need to be fully

synchronized, as long as their local clocks are relatively close to each other. This requirement on the total

order prevents unlimited number of new clients coming in and generating smaller requests.

However, there is still another possible case, where a server may crash and recover an infinite number

of times, and each time after it recovers, it receives a request from a new client and supports that client.

This may still block the progress of other clients. This is very unlikely in practice. For now, we restricted

that no servers may crash and recover infinitely often.

Theorem 3 (Correctness plus Lockout-freedom with an infinite number of clients) Suppose that there

is no server that crashes and recovers for an infinite number of times. If f < n/3, then the algorithm in

Figure 1 with m= 2n/3 and a bounded-time fair total order on the requests solves the fault-tolerant

mutual exclusion problem, plus it satisfies the Lockout-freedom property.

4.2 Performance of Sigma Algorithm

Sigma algorithm belongs to the category of non-token-based, Maekawa-type mutual exclusion algorithms

with deadlock resolutions, according to the taxonomy by Singhal [21]. Its performance is in line with other

algorithms in the same category. In particular, (a) the response time for a single request is 2T, where T is

the average message delay (one T for the REQUEST message, the other T for the RESPONSE message); (b)

the synchronization delay, which is the time from one client leaving the critical section to the next one

entering the critical section, is also 2T (one T for the RELEASE message, the other T for the RESPONSE

message); (c) the number of messages is 3n in low load cases (n messages for REQUEST, RESPONSE, and

RELEASE messages each), and could be 5n in high load cases (additional 2n messages for

YIELD/REQUEST/INQUIRY messages and RESPONSE messages).

18

Note that the algorithm uses a fixed set of servers while client set may increase with no bound, so the

above performance measure does not change when the number of clients increases. This is in contrast with

many other algorithms where performance is proportional to the number of processes in the system.

The key performance feature that distinguishes Sigma algorithm from others is its no-cost recovery

feature. When a server recovers, it simply starts running from its initial state and joins the system

immediately. The server is correct for all clients that make requests after the recovery (Definition 1). Other

algorithms either do no deal with recovery and memory loss explicitly, or require a reconfiguration period

where the new server is brought up to speed by existing servers with some state transfer protocols, such as

the state-machine approach [20]. This period may be lengthy depending on the state information and the

possible failures that may occur, and it may also affect the availability of other servers.

4.3 Advantages of Sigma Algorithm

Sigma algorithm accommodates dynamic changes of a distributed system and tolerates process crashes,

recoveries, and memory losses. It has the following advantages comparing with several classes of mutual

exclusion algorithms.

Open and scalable comparing with algorithms with fixed and known set of processes. The algorithm

allows new clients to join the system at any time and make requests to enter their critical sections. Clients

only communicate with a fixed number of servers, and thus the communication cost per request is fixed.

Many existing mutual exclusion algorithms (e.g., many algorithms discussed in [13]) require a closed

model in which a fixed and known set of processes participate in the algorithm, and processes communicate

with each other. Therefore the algorithms do no accommodate dynamic changes of the processes, and the

communication cost per request is proportional to the number of processes.

Fast response time, no-cost recovery and no failure detection for servers comparing with the state-

machine approach. Sigma algorithm does not require servers to synchronize with each other with a fault-

tolerant agreement protocol, as required by the state-machine approach. Therefore, the response time for a

single request is 2T, while with the state-machine approach, the response time is at least 4T, with 2T for

19

client requests and server responses, and 2T minimum for any server agreement protocol [7]. Moreover,

server fault-tolerant agreement protocols require further assumptions to the model such as failure detection

among the servers [3]. The no-cost recovery is also better than the state-machine approach.

Stable in high load and handle recoveries and memory losses comparing with other quorum based

algorithms. Sigma algorithm uses client-side initiation of YIELD messages to make it more stable during

high loads of client requests. It also deals with crash-recovery and memory losses explicitly, while most

other quorum based algorithms either do not address recoveries and memory losses, or require restoring

server states after recovery.

5 Necessary Condition on the Number of Failures

Sigma algorithm requires that the number of faulty servers during any epoch of any client be less than one

third of the total number of servers, i.e., f<n/3. This condition is necessary to solve the FTME problem,

given the model defined in Section 2. This is stated in the following theorem.

Theorem 4 Consider a system in which (a) servers may crash and recover, (b) servers start from their

initial states after recovery, (c) client processes do not communicate with each other, and (d)

communication channels are reliable. Let n be the total number of servers and f be the maximum number of

faulty servers during any epoch of any client. If f ≥ n/3, then there is no algorithm that solves the fault-

tolerant mutual exclusion problem in the system.

The proof of the theorem is by a partition argument, similar to the ones in [4] and [1], and it is given in

the appendix. This theorem also applies to the state-machine approach where servers communicate with

each other. Therefore, the theorem shows that n>3f is the lower bound for any client-server style algorithms

to solve the FTME problem in systems with process crashes and memory losses. Sigma algorithm achieves

this lower bound.

20

6 Related Work

Distributed mutual exclusion is one of the fundamental building blocks of distributed systems and has

been studied extensively ([18], [21], [13]). According to the taxonomy of [21], Sigma algorithm belongs to

the category of non-token-based, Maekawa-type mutual exclusion algorithms. The algorithm is based on

quorum systems, similar to algorithms in [2], [14] and [19]. However, the algorithm deals with dynamic

changes of quorum servers, and thus distinguishes itself from other existing algorithms and makes it

suitable for internet P2P systems.

The crash-recovery model without stable storage in [1] is similar to the crash and memory-loss model

in this paper. The difference is that in [1] after recovery the process knows that it has crashed before and

can use this information to help the algorithm, whereas in our model, the recovered process (or a new

process replacing the crashed one) has no knowledge about the history whatsoever. Therefore, the lower

bounds derived from the two papers are different.

This paper is based on [12], but it is significantly different from [12] in that the latter focuses on

empirical studies and does not handle all failure cases related to process crashes and memory losses, while

this paper focuses on formal analysis and provides a complete algorithm and its proof as well as the lower

bound result.

7 Concluding Remarks

The paper presents a new algorithm that solves fault-tolerant mutual exclusion problem in dynamic systems

subject to both process crashes and memory losses. The algorithm achieves the best failure threshold

possible for such systems, and does not have any recovery cost.

Memory-loss failure model is different from Byzantine failure model. In Byzantine quorum systems

[15], tolerating f Byzantine servers requires n>4f. Although Martin, et. al. reduced it to n>3f when using

Byzantine quorum systems to implement shared registers [16], it requires extra rounds of communication.

The case for solving FTME would be similar: if n>4f, some simple modification to Sigma algorithm would

21

work, but if n>3f, we may need significant changes to the algorithm and it is unclear how to make these

changes.

References

[1] Aguilera, M. K., Chen W., and Toueg, S. Failure detection and consensus in the crash-recovery model. Distributed
Computing, 13(2):99-125, April, 2000.

[2] Agrawal, D. and Abbadi A. E. An efficient and fault-tolerant solution for distributed mutual exclusion. ACM Trans. On
Computer Systems, 9(1):1-20, Feb., 1991.

[3] Chandra, T. D., Hadzilacos, V. and Toueg, S. The weakest failure detector for solving consensus, Journal of the ACM,
43(4):685-722, July 1996.

[4] Chandra, T. D. and Toueg, S. Unreliable failure detectors for reliable distributed systems. Journal of the ACM, 43(2):225-267,
Mar. 1996.

[5] Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P. Mutual exclusion in asynchronous systems with failure
detectors. Technical Report in Computer and Communication Sciences, id: 200227, École Polytechnique Fédérale de
Lausanne, May 2002.

[6] Druschel, P. and Rowstron, A. PAST: A large-scale, persistent peer-to-peer storage utility, in Proceedings of HotOS VIII,
Schoss Elmau, Germany, May 2001.

[7] Keidar, I. and Rajsbaum S. On the cost of fault-tolerant consensus when there are no faults --- a tutorial. SIGACT News
32(2):45-63, June 2001.

[8] Kubiatowicz, J. et al. OceanStore: An Architecture for Global-Scale Persistent Storage, in Proceedings of the Ninth
international Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2000),
November 2000.

[9] Lamport, L. Paxos Made Simple. ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number 121), 18-25,
December 2001.

[10] Lamport, L. The Part-Time Parliament. ACM Transactions on Computer Systems, 16, 2 (May 1998), 133-169.

[11] Lamport, L. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565,
July 1978.

[12] Lin, S., Lian, Q., Chen M., and Zhang, Z., A Practical distributed mutual exclusion protocol in dynamic peer-to-peer systems,
in Proceeding of 3rd International Workshop on Peer-to-Peer Systems, 2004, to appear. Full version as Microsoft Research
Technical Report MSR-TR-2004-13.

[13] Lynch, N. Distribute Algorithms. Morgan Kauftmann Publishers, 1996.

[14] Maekawa, M. A n algorithm for mutual exclusion in decentralized systems. ACM Trans. On Computer Systems, 3(2):145-
159, 1985.

[15] Malkhi, D. and Reiter M. Byzantine quorum systems. Distributed Computing, 11:203-213, 1998.

[16] Martin, J-P, Alvisi, L., and Dahlin, M., Minimal Byzantine storage, in Proceedings of the 16th Internation Symposium on
Distributed Computing (DISC), Oct. 2002.

[17] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S., A scalable content-addressable network, in Proceedings
of ACM SIGCOMM 2001.

[18] Raynal, M. Algorithms for Mutual Exclusion. MIT Press, Cambridge, 1986.

[19] Sanders, B. The information structure of distributed mutual exclusion algorithms, ACM Trans. On Computer Systems, Aug.
1987.

[20] Schneider, F. B. Implementing fault tolerant services using the state machine approach: A tutorial. Computing Surveys,
22(4):299-319, December 1990.

[21] Singhal, M. A taxonomy of distributed mutual exclusion. Journal of Parallel and Distributed Computing, 18:94-101, 1993.

[22] Stoica, I. et al, Chord: A Scalable peer-to-peer lookup service for internet applications, in Proceedings of ACM SIGCOMM
2001, San Deigo, CA, August 2001.

22

Appendix

A. Proof of the Correctness of the Sigma Algorithm

In the analysis, to disambiguate local variables of the algorithm, superscripts may be added to the local

variables whenever necessary, e.g., respi[j] is the resp[j] on client ci.

Lemma 1 (Well-formedness) For any client ci∈Σ, any execution on (ui, ci) is well-formed.

Proof. This is obvious, given that every user is well-formed, and the fact that a) after the tryi action, the

algorithm can only return the crit i action, and b) after the exiti action, the algorithm can only return the remi

action. �

Let TSi and TSi’ be the two trying sections of two clients ci and ci’ , respectively. Let the time periods of the

two trying sections are [ti.0, ti,1] and [ti’ ,0, ti’ ,1], respectively. Then the time period that covers the two trying

sections is defined as [min(ti,0, ti’,0), max(ti,1, ti’ ,1)].

We assume that on each client, function GetTimeStamp() generates unique and monotonically

increasing numbers each time it is called.

Lemma 2 Consider two different clients ci and ci’ . Let TSi and TSi’ be the two trying sections of ci and ci’ ,

respectively. Suppose that after TSi, ci does not crash or send a RELEASE message before TSi’ ends, and

vice versa. If for some server r j, respi[j] = (ci,ti) at the end of TSi and respi’ [j] = (ci’ ,ti’) at the end of TSi’ , then

there must be a crash failure on server r j during the period that covers TSi and TSi’ .

Proof. Suppose, for a contradiction, that there is no crash failure on server r j during the period that covers

TSi and TSi’ .

Suppose respi[j] = (ci,ti) at the end of TSi. According to lines 8--9 of the algorithm, ci must have received a

message (RESPONSE, ci, ti) from r j during TSi, and ti must be the same as ci’s timestamp value of this

trying section. Again by algorithm, r j must have received a message (REQUEST, ti) from ci, and this

message must have been sent by ci at the beginning of TSi.

23

Let Ti,0 be the last time at which ci receives (RESPONSE, ci, ti) from r j during TSi. Then from Ti,0 to the end

of TSi, respi[j] is always (ci,ti). Let t0 be the last time at which r j sends (RESPONSE, ci, ti) to ci before time

Ti,0. Thus t0 must be within the span of TSi. Symmetrically, we can define time t1 to be the last time at which

r j sends (RESPONSE, ci’ , ti’) to ci’ before client ci’ keeps its respi’ [j] value as (ci’ , ti’) till the end of TSi’ . Time

t1 is within the span of TSi’ . Without loss of generality, assume t0 < t1. To prove the lemma, it is sufficient to

show that r j must have a crash failure between t0 and t1.

According to the algorithm, at time t0, the r j’s (cowner, towner) value must be (ci, ti). Similarly, at time t1, the

r j’s (cowner, towner) value must be (ci’ , ti’). We first show the following claim:

Claim 1: Let [T, T’] be any time period within the period that covers the two trying sections TSi and TSi’ .

Suppose that the (cowner, towner) value of r j at time T is (ci, ti). If there is a time in the period (T, T’] at which

the (cowner, towner) value of r j is different from (ci, ti), then r j must have received a (YIELD, ti) message from

ci in the period (T, T’].

Proof of Claim 1. According to the algorithm, there are four possible cases that may cause the (cowner, towner)

value of r j to change in the time period (T, T’]: a) r j receives a (RELEASE, ti) message from ci in this period;

b) r j detects that ci have crashed in this period; c) r j receives a (YIELD, ti) message from ci in this period; or

d) r j has a crash failure in this period. Case d) is not possible by our assumption at the beginning of the

proof. It is sufficient to show that cases a) and b) are also impossible.

For a), if r j receives a (RELEASE, ti) message from ci in this period, this RELEASE message cannot be sent

by ci before it enters the trying section TSi, because otherwise the timestamp must be different since

GetTimeStamp() generates unique numbers. But by the assumption of the Lemma, ci does not send a

RELEASE message after TSi and until TSi’ ends, so it is impossible for r j to receive a RELEASE message

from ci between time T and T’.

Case b) is also impossible, since the Lemma assumes that ci does not crash in this period, and by the Strong

Accuracy property of the failure detector monitoring ci, r j never suspects ci before it crashes.

Therefore, only case c) is possible, and the claim holds.

24

Applying Claim 1 to the period (t0, t1], we have that r j receives a (YIELD, ti) message from ci in the period

(t0, t1]. First, this YIELD message cannot be sent by ci before or after the trying section TSi, because

otherwise the timestamp must be different. Thus, the YIELD message can only be sent by ci during the

trying section TSi.

To show a contradiction in this case, we construct backward in time a series of time points within the trying

section TSi at which ci sends or receives messages. We show that this construction procedure can be

repeated forever, but this contradicts with the fact that TSi is a finite period.1

Let Tj,0 = t0. We already show so far that r j must have received a (YIELD, ti) message in the time period [t0,

t1], which is sent by ci in TSi. This YIELD message must be sent by ci before time Ti,0, because after sending

YIELD to r j, respi[j] is set back to (nil,nil) by the algorithm (line 18), but after Ti,0, the value of respi[j] is

always (ci,ti). Let Ti,1 be the last time ci sends a (YIELD, ti) message to r j in its trying section TSi. By the

above argument, Ti,1 < Ti,0. According to the algorithm, when ci sends a YIELD message to r j, the value of

respi[j] must be (ci, ti). Then there must be an earlier time Ti,2 ≤ Ti,1 such that at time Ti,2 ci receives a

(RESPONSE, ci, ti) message from r j, and in the period of [Ti,2, Ti,1], the value of respi[j] is always (ci,ti).

Consider the period [Ti,2, Ti,0]. In this period, ci does not crash, and ci receives (RESPONSE, ci, ti) message

from r j twice. By the Crash Duplication property, r j must have sent (RESPONSE, ci, ti) to ci at least twice

before time Ti,0. We already defined Tj,0 be the last time r j sends (RESPONSE, ci, ti) to ci before time Ti,0.

Now let Tj,1 < Tj,0 be the second to last time r j sends (RESPONSE, ci, ti) to ci before time Ti,0.

At time Tj,1 and time Tj,0, r j both sends (RESPONSE, ci, ti) to ci, so at both times r j’s (cowner, towner) values

are (ci, ti). The following claim must be true:

Claim 2: During the period (Tj,1, Tj,0], r j must have received a (YIELD, ti) message from ci.

Proof of Claim 2. Consider the events occurring on r j at time Tj,0. There are following cases that cause r j to

send (RESPONSE, ci, ti) to ci at time Tj,0.

1 Note that here we use the discrete time for convenience. If we use continuous time, we need to add a property that no
process sends or receives an infinite number of messages within a finite time period.

25

1) Server r j receives a (REQUEST, t) message from ci at time Tj,0. According to line 31 of the algorithm, r j

sends a RESPONSE message back to ci only if cowner ≠ ci. Thus, there must be a change of (cowner, towner)

value in the period (Tj,1, Tj,0]. Applying Claim 1 to the period (Tj,1, Tj,0], we know that r j must have

received a (YIELD, ti) message from ci in this period.

2) Server r j receives a (YIELD, t) message from ci at time Tj,0. According to lines 37--41 of the algorithm,

r j sends (RESPONSE, ci, ti) to ci in this case only if t = towner = ti. So r j receives a (YIELD, ti) message

from ci in (Tj,1, Tj,0].

3) Server r j receives a (YIELD, t) message from another client at time Tj,0 and r j’s (cowner, towner) value

becomes (ci, ti) after processing this message. But for this to be true, r j’s (cowner, towner) value has to be

changed from (ci, ti) to some other value during the period (Tj,1, Tj,0]. Again by Claim 1, r j must have

received a (YIELD, ti) message from ci in (Tj,1, Tj,0].

4) Server r j receives a RELEASE message from another client at time Tj,0 and (cowner, towner) value becomes

(ci, ti) after processing this message. Thus, there must be a change of (cowner, towner) in the period (Tj,1,

Tj,0]. Again by Claim 1, r j must have received a (YIELD, ti) message from ci in (Tj,1, Tj,0].

5) Server r j receives an (INQUIRY, t) message from ci. According to line 45 of the algorithm, r j sends a

RESPONSE message back to ci only if cowner ≠ ci. Thus, there must be a change of (cowner, towner) value in

the period (Tj,1, Tj,0]. Applying Claim 1 to the period (Tj,1, Tj,0], we know that r j must have received a

(YIELD, ti) message from ci in this period.

6) Server r j detects at time Tj,0 that the current cowner crashed and ci is the new cowner value. Same argument

as 4) can be applied here.

Therefore, Claim 2 is true for all the cases.

Now consider the time period [Tj,1, t1]. In this period, r j receives at least two (YIELD, ti) messages from ci,

one in the period (Tj,1, Tj,0] and one in the period (Tj,0, t1]. Since r j does not crash in this period, by the Crash

Duplication property, ci must have sent at least two (YIELD, ti) messages before time t1. We already

26

defined time Ti,1 as the last time at which ci sends a (YIELD, ti) message to r j in its trying section TSi. Let

Ti,3 < Ti,1 be the second to last time at which ci sends a (YIELD, ti) message to r j. By the definition of Ti,2

earlier, we also know that Ti,3 < Ti,2. Then, the above argument can be repeated again, and we can find time

Ti,4 ≤ Ti,3 at which ci receives a (RESPONSE, ci, ti) message from r j, find time Tj,2 < Tj,1 at which r j sends a

(RESPONSE, ci, ti) message to ci, and find time Ti,5 < Ti,4 at which ci sends a (YIELD, ti) message to r j, and

so on.

However, this process cannot be repeated forever since the trying section TSi is finite. Therefore, finally we

reached a contradiction, which means that our assumption that there is no crash failure on server r j during

the period that covers TSi and TSi’ is wrong, so the lemma holds. �

Assume that m in the algorithm satisfies m > n/2.

Lemma 3 If two different clients are in their critical sections at the same time, there must be at least 2m-n

servers that have crash failures during the period that covers the two previous trying sections of the two

clients.

Proof. Suppose clients ci and ci’ are in their critical sections at the same time. Let the two previous trying

sections of these two clients are TSi and TSi’, respectively. According to lines 11--12 of the algorithm, at the

end of TSi, there must be at least m elements in respi[] with value (ci, ti). These m elements correspond to a

set of m servers. Similarly there must be m elements of respi’ [] having value (ci’, ti’), which correspond to

another set of m servers. Between these two sets of m servers, at least 2m-n servers are in the intersection. It

is easy to verify that these 2m-n servers together with TSi and TSi’ satisfy all the conditions of Lemma 2.

Thus by Lemma 2, all of the 2m-n servers in the intersection must have crash failures in the period covering

TSi and TSi’. �

Definition 1: Let f be the maximum number of faulty servers during any epoch of any client.

Lemma 4 (Mutual exclusion) If 2m-n > f, then no two different clients are in their critical sections at the

same time.

27

Proof. Suppose, for a contradiction, that there exist two clients that are in their critical sections at the same

time. By Lemma 3, there are at least 2m-n servers that have crash failures during the period that covers the

two previous trying sections of the two clients. Note that the period that covers the two previous trying

sections is within the period when one of the clients is either in its trying section or its subsequent critical

section. So by Definition 1, 2m-n ≤ f. This contradicts the assumption that 2m-n > f. �

The above lemma shows the crucial safety property --- the mutual exclusion on the access of the critical

sections. We now turn our attention to the liveness properties, that is, the Progress and Lockout freedom

property.

Proposition 1 On any server, at any time, if cowner = nil, then ReqQ is empty.

Proof. This is true in the initial state of the server. Suppose, for a contradiction, that there is a time at which

cowner=nil and ReqQ is nonempty. To reach this state, the last operation related to cowner and ReqQ must be

either a) cowner is set to nil while ReqQ is nonempty, or b) an entry is inserted into ReqQ while cowner remains

nil. For case a), cowner could be set back to nil only when the server receives a RELEASE message from

cowner or suspects that cowner has crashed. But according to lines 52--55 of the algorithm, cowner is set to nil

only when ReqQ is empty in this case, so case a) is impossible. For case b), an entry can be inserted into

ReqQ when the server receives a REQUEST or a YIELD message. But in both cases, according to the

algorithm, the entry is inserted only when cowner is not nil, so case b) is also impossible. This leads to a

contradiction. �

Proposition 2 On any server, at any time before the server receives a message or after it completes

processing of the message, or before it suspects a crash of cowner or after it completes the processing upon

suspecting a crash of cowner, both of the following are true: a) for any ci∈Σ, there is at most one entry (ci, -)

in the request queue ReqQ; and b) if cowner is not nil, then (cowner, -) is not in ReqQ.

Proof. We prove this proposition by induction on the number messages received or crash suspicions made.

The base case is the initiate state of the server, which satisfies both a) and b) trivially. Now suppose the

current state of cowner and ReqQ (reached after receiving a finite number of messages and making a finite

28

number of crash suspicions) satisfies a) and b). We look at all possible cases of the next message or next

crash suspicion.

Case 1. The next message is a (REQUEST, t) message from ci. First, cowner may be set to ci, but this

only occurs when cowner was nil (line 32). By Proposition 1, in this case ReqQ was nil. So after

setting cowner to ci, (cowner, -) is not in ReqQ. Thus b) is satisfied. Item a) is also true since ReqQ is

not changed. Second, (ci, t) may be inserted into ReqQ. But this only occurs when (cowner ≠ ci) and

(ci, -) not in ReqQ (line 33), so both a) and b) are still true.

Case 2. The next message is a (YIELD, t) message from ci.

Case 3. The next message is a (RELEASE, t) message from ci.

Case 4. The next message is an (INQUIRY, t) message from ci.

Case 5. The server makes a crash suspicion on cowner.

It is not hard to verify that in all the above cases, operations on cowner and ReqQ do not violate either a) or b).

 �

Lemma 5 Suppose a client ci enters its trying section and generates a timestamp ti. If eventually ci crashes

or ci enters its exit section after this trying section, then for every server r j, there is a time after which (ci, ti)

no longer appears in (cowner, towner) on server r j.

Proof. According to the algorithm, when ci enters its exit section, its variable timestamp gets a new value

(line 21). Thus the timestamp variable has value ti only when ci is in its trying section and the subsequent

critical section.

The only message that may cause (ci, ti) to be added into r j’s (cowner, towner) or ReqQ is the (REQUEST, ti)

message sent by ci. Since ci does not stay in its trying section forever, ci sends at most a finite number of

(REQUEST, ti) messages. By the Finite Duplication property, server r j (whether faulty or not) only receives

a finite number of (REQUEST, ti) messages from ci. Let T1 be the time at which r j receives the last copy of

the message (REQUEST, ti) from ci. After time T1, if r j has a crash failure, then its (cowner, towner) and ReqQ

will be cleared, and afterwards (ci, ti) will never appear in them again, so in this case the lemma holds.

29

Assume now that r j does not have any crash failure after time T1. That is, r j is an eventually correct server.

If client ci crashes, then by the Strong Completeness property of the failure detector on ci, r j eventually

suspects that ci has crashed forever and removes (ci, ti) from (cowner, towner) if necessary (lines 46--47), so

there is a time after which (ci, ti) no longer appears in (cowner, towner) on server r j.

If client ci does not crash, then ci eventually enters its exit section. Client ci sends only a finite number of

(YIELD, ti) messages to r j, so by the Finite Duplication property, r j only receives a finite number of

(YIELD, ti) messages. Let T2 > T1 be a time by which ci has entered its exit section and r j has received all of

(YIELD, ti) messages. If (ci, ti) no longer appears in (cowner, towner) on server r j after time T2, then the lemma

holds. Suppose there is a time T3 > T2 at which (cowner, towner) on server r j is (ci, ti). Since r j has received all

(YIELD, ti) message by time T3, the (ci, ti) value will not leave (cowner, towner) due to the receipt of any

(YIELD, ti) message from ci. It can only leave (cowner, towner) by receiving a (RELEASE, ti) message, which

removes (ci, ti) permanently because a) by Proposition 2, (ci, ti) is not in ReqQ at this time, and b) by the

definition of T1, afterwards r j never receives a (REQUEST, ti) message from ci.

Suppose, by a contradiction, that (cowner, towner) remains to be (ci, ti) forever after T3, which means r j does

receive any (RELEASE, ti) message after T3. According to the algorithm, after T3 server r j periodically

sends (CHECK, ti) messages to ci. Since neither r j nor ci crash after time T3, by the Quasi-Reliability

property of the channels, ci receives (CHECK, ti) from r j after time T3. By the definition of T3, when ci

receives this (CHECK, ti) message, the timestamp value of ci is no longer ti, so it will send a (RELEASE, ti)

message back to r j (line 25). Again by the Quasi-Reliability property of the channels, r j eventually receives

the (RELEASE, ti) message after time T3 --- a contradiction. �

Proposition 3 Suppose that a correct client ci stays in its trying section TSi forever with timestamp ti, and a

server r j is correct in the period covering the trying section TSi. If r j sends (RESPONSE, ci, ti) messages to

ci at both time t and t’>t during the trying section TSi, then r j must have received a (YIELD, ti) message

from ci during the period (t, t’].

30

Proof. When r j sends a (RESPONSE, ci, ti) message to ci at time t, its (cowner, towner) value is (ci, ti). It is

easy to verify that when (cowner, towner) is (ci, ti), no message other than a (YIELD, ti) message from ci can

cause r j to send another RESPONSE message to ci. �

Lemma 6 Suppose that a correct client ci stays in its trying section TSi forever with timestamp ti, and a

server r j is correct in the period covering the trying section TSi. If ci sends the k-th (YIELD, ti) message to r j

at time t for any k≥1, then (a) before time t, r j sends the (RESPONSE, ci, ti) message to ci exactly k times,

and (b) let t’ < t be the time r j sends the k-th (RESPONSE, ci, ti) message to ci; then r j receives the (YIELD,

ti) message from ci for (k-1) times by time t’, and r j receives the k-th (YIELD, ti) message from ci after time

t.

Proof. Because both ci and r j are correct since ci enters its trying section TSi, we can apply the Crash

Duplication and the Quasi-Reliability properties to the channels between ci and r j. According to the

algorithm, each time before ci sends a (YIELD, ti) message to r j, its respi[j] must be (ci, ti), and this must be

the result of ci receiving a (RESPONSE, ci, ti) message from r j. Also after ci sends a (YIELD, ti) message to

r j, ci clears its respi[j] to (nil, nil), so ci has to receive another (RESPONSE, ci, ti) message from r j to change

respi[j] back to (ci, ti). Therefore, ci must have received the (RESPONSE, ci, ti) message from r j for at least

k times by time t. By the Crash Duplication property, r j must have sends the (RESPONSE, ci, ti) message to

ci for at least k times before time t.

To show (a), suppose for a contradiction that r j receives sends the (RESPONSE, ci, ti) message to ci for at

least k+1 times before time t. Then there are at least k intervals between any two consecutive (RESPONSE,

ci, ti) messages. By Proposition 3, r j must have received the (YIELD, ti) message from ci for at least k times

before time t. By the Crash Duplication property, ci must have sent the (YIELD, ti) message to r j for at least

k times before time t, but this contradicts the assumption in the lemma that ci sends its k-th (YIELD, ti)

message to r j at time t. Thus (a) holds.

For (b), since r j sends the (RESPONSE, ci, ti) message to ci exactly k times by time t’, and there are (k-1)

intervals between these messages, by Proposition 3, r j receives (k-1) (YIELD, ti) messages from ci by time

31

t’ . During the period (t’ , t], r j does not receive any more (YIELD, ti) messages from ci, because otherwise

we can apply the Crash Duplication property to reach a contradiction. For the k-th (YIELD, ti) message that

ci sends at time t, by the Quasi-Reliability property, r j will receive a (YIELD, ti) message after time t. This

completes the proof of (b). �

Lemma 7 Suppose that a correct client ci stays in its trying section TSi forever with timestamp ti, and a

server r j is correct in the period covers the trying section TSi. If ci sends a REQUEST, or YIELD, or

INQUIRY message to r j at time t, then it is guaranteed that there is a time t’ > t such that respi[j] is not (nil,

nil) at time t’ .

Proof. We prove the lemma by studying the following cases based on the message ci sends at time t.

Case 1. Client ci sends a (REQUEST, ti) message to r j in line 5. This is the first message ci sends to r j in

the trying section TSi. By the Quasi-Reliability property, r j receives this (REQUEST, ti) message

from ci.

Since ci stays in the trying section TSi forever, the timestamp ti must be the highest timestamp value

that ci ever gets. Thus the condition in line 28 is not true and ci will not skip the rest of the message

processing code. Line 29 of the algorithm guarantees that after receiving the (REQUEST, ti)

message, there is no more old (ci, t’) with t’<ti appears in (cowner, towner) or in ReqQ. Moreover, since

this is the first time r j receives a (REQUEST, ti) message from ci, (ci, ti) has not appeared in (cowner,

towner) or ReqQ either. Therefore, when r j executes line 31, the condition cowner ≠ ci must be true.

Then according to line 35 of the algorithm, r j sends a (RESPONSE, cowner, towner) message back to ci.

By the Quasi-Reliability property of the channel, ci receives this message, and this must happen

after time t. Note that for the (cowner, towner) value in the message, if cowner is ci, then towner must be ti.

Thus, either at this time respi[j] is already non-(nil, nil), or the condition in line 8 is satisfied, and ci

updates respi[j] to a non-(nil, nil) value (line 9). The lemma holds for this case.

Case 2. Client ci sends a (YIELD, ti) message to r j in line 15. Let this be the ny-th (YIELD, ti) message

that ci sends to r j. By Lemma 6 (a), r j sends its ny-th (RESPONSE, ci, ti) message to ci at a time t’ <

32

t. This implies that at time t’ , the (cowner, towner) value of r j is (ci, ti). By Lemma 6 (b), r j receives the

ny-th (YIELD, ti) message from ci after time t. Let this time be t’’ . So in the period (t’ , t’’), r j does

not receive any (YIELD, ti) message from ci, which implies that the (cowner, towner) value of r j at time

t’’ (before processing the YIELD message) is still (ci, ti). Therefore, the ny-th (YIELD, ti) message

received by r j at time t’’ will cause r j to send a RESPONSE message back to ci. By the Quasi-

Reliability property, this message will be received by ci, and thus change the respi[j] to a non-(nil,

nil) value.

Case 3. Client ci sends a (REQUEST, ti) message to r j in line 16. Let T0 = t. By the Quasi-Reliability

property, r j receives this message at some time T1 > T0. If at time T1 the cowner value of r j is not ci,

then according to the algorithm (lines 31--35) r j sends a RESPONSE message back to ci, which

eventually receives this message and updates the respi[j] to a non-(nil, nil) value, so the lemma

holds in this case. If at time T1 the cowner value of r j is ci but towner is not ti, then towner must be less

than ti because the timestamps are monotonically increasing. By line 29 of the algorithm, this old

(cowner, towner) value will be deleted, and then r j sends a RESPONSE message back to ci at line 35. So

the lemma also holds.

We now concentrate on the case where at time T1 the (cowner, towner) value of r j is (ci, ti).

Before ci sends out the (REQUEST, ti) message at time T0, the respi[j] must be a value (ci’, ti’)

different from (ci, ti). So there must be a time T2 < T0 such that at time T2 r j’s (cowner, towner) value is

(ci’, ti’), and r j sends a (RESPONSE, ci’, ti’) message to ci. Then from time T2 to T1, the (cowner, towner)

value changes from (ci’, ti’) to (ci, ti). Let T3 be the time at which the (cowner, towner) value is changed

to (ci, ti) and in the period [T3, T1], the (cowner, towner) value is always (ci, ti).

At time T3, r j sends a (RESPONSE, ci, ti) message to ci. If ci receives this RESPONSE message

after T0, then ci will update the respi[j] to a non-(nil, nil) value and the lemma holds. Suppose that ci

receives this (RESPONSE, ci, ti) message from r j at time T4 < T0 (ci cannot receive this message at

33

time T0, because otherwise, ci updates respi[j] to (ci, ti), contradicting the fact that at time T0, respi[j]

is (ci’, ti’) different from (ci, ti)). So T3 < T4 < T0.

It is straightforward to see that once the (cowner, towner) value becomes (ci, ti), r j sends a RESPONSE

message to ci if and only if it receives a (YIELD, ti) message from ci. So if r j receives a (YIELD, ti)

message from ci at or after time T0, then it will send a RESPONSE message back to ci, which will

cause ci to update the respi[j] to a non-(nil, nil) value. So we only consider the case where r j does

not receive any (YIELD, ti) message at or after time T0.

From time T4 to T0, the respi[j] value is changed from (ci, ti) to (ci’, ti’). According to line 8 of the

algorithm (in particular the condition respi[j] ≠ (ci, timestamp)), resp[j] may change from (ci, ti) to

(ci’, ti’) only indirectly by changing from (ci, ti) to (nil, nil) first. That is, it must be that at some time

T5 in the period (T4, T0), ci sends a (YIELD, ti) message at line 15, clears respi[j] value at line 18,

and later ci receives a (RESPONSE, ci’, ti’) from r j. By the previous assumption, r j does not receive

any (YIELD, ti) message from ci at or after time T0, so it must receive a (YIELD, ti) message in the

period (T5, T0). Since period (T5, T0) is within the period [T3, T1], the (cowner, towner) value of r j when

r j receives this (YIELD, ti) message must be (ci, ti), which means r j must send a (RESPONSE, ci, ti)

message back to ci. If ci receives this RESPONSE message after time T0, again we are done. If ci

receives this RESPONSE message before time T0, then we can apply the above argument again to

find another YIELD message, another RESPONSE message and so on. Since the period before T0

only allows sending a finite number of YIELD messages, the above argument cannot continue

forever, so it must be that ci receives a RESPONSE message from r j after time T0. This message

then cause ci to update respi[j]to a non-(nil, nil) value, and the lemma holds.

Case 4. Client ci sends an (INQUIRY, ti) message to r j in line 17. The argument for this case is exactly

like the one for Case 3.

Therefore, the lemma holds for all the possible cases. �

34

Lemma 8 (Progress (a) with a finite number of clients) Suppose that there are only a finite number of

clients requesting to enter their critical sections. Suppose m ≤ n-f. If a correct client is in its trying section at

time t, then at some time t’ > t some correct client is in its critical section.

Proof. Let c be a correct client. Suppose for a contradiction that there is a time T0, such that at time T0 client

c is in its trying section, but after time T0, no correct client is in its critical section any more. Let Σ0 be the

set of clients that ever request to enter their critical sections. Σ0 is finite by the assumption of the lemma.

Clients in Σ0 can be divided into two disjoint sets: Σ1 and Σ2. Σ1 is the set of correct clients that eventually

stay in their trying sections forever after time T0, and Σ2 is the set of clients that either crash eventually, or

stay in their exit or remainder sections forever. It is easy to see that Σ0 is the union of Σ1 and Σ2, and Σ1 and

Σ2 are disjoint.

Let Tb be the earliest time at which some client in Σ1 enters its last trying section. Let Π1 be the set of

correct servers in the period [Tb, +∞). Since the clients in Σ1 stays in their last trying sections forever, Π1 is

also the set of correct servers in the period when some client is in its trying section. By Definition 1 we

have |Π1| ≥ n-f. For each ci∈Σ1, let ti be the timestamp generated on ci at the beginning of its last trying

section.

By Lemma 5, for any ci∈Σ2, eventually (ci, -) does not appear as the (cowner, towner) value on any server. So

there is a time after which for any server r j, the (cowner, towner) value on r j must be a value from {(ci, ti) |

ci∈Σ1}. Let T1 > T0 be such a time.

Now for all the (ci,ti) values where ci∈Σ1, they can be ordered by the predetermined order used by the

algorithm. Without loss of generality, let (c0, t0) be the first entry according to this order. Since c0 sends

(REQUEST, t0) at the beginning of the trying section to all servers, and all the servers in Π1 as well as c0

are correct since time Tb, we can apply the Quasi-Reliability property of the channels and have that

eventually all servers in Π1 receive this message and put (c0, t0) either in their (cowner, towner) value or in their

ReqQ. Once a server receives (REQUEST, t0), (c0, t0) will stay in its (cowner, towner) or ReqQ forever, because

35

the server never receives a (RELEASE, t0) message from c0 again (by the fact that c0 is correct and stays in

its trying section forever). Let T2>T1 be the time at and after which (c0, t0) stays in (cowner, towner) value or in

the ReqQ on all servers in Π1.

Claim 1. For any server r j∈Π1, there is a time t ≥ T2 such that at or after time t the (cowner, towner) value on r j is

always (c0, t0).

Proof of Claim 1. Let (ci, ti) be the (cowner, towner) value on r j at time T2. If (ci, ti) = (c0, t0), we are done, since

(c0, t0) is already the (cowner,towner) value, and because by definition (c0, t0) is the first in the predetermined

order among all (ci, ti) where ci∈Σ1 and those are the only possible values showing up as (cowner,towner) after

time T2, (c0, t0) will never be swapped out of the (cowner,towner) value.

Now suppose (ci, ti) > (c0, t0). By the definition of T2, (c0, t0) must be in ReqQ of r j at and after time T2.

There must be a time t’≤T2 such that t’ is the last time when r j sends a (RESPONSE, ci, ti) message to ci by

time T2, and from time t’ to T2, the (cowner,towner) value of r j remains (ci, ti). By the Quasi-Reliability property

of the channels, ci receives this message and updates its resp[j] to (ci, ti). At this time there are two possible

cases concerning the resp[] array on ci:

• Case 1. For at least m servers r j’∈Π, resp[j ’] is not (nil, nil). According to line 11 of the algorithm,

ci checks if at least m elements in resp[] are (ci, ti). This condition cannot be true, because otherwise

ci enters its critical section after it completes its last trying section (by timestamp ti, it is known that

ci is in its last trying section) --- contradicting the assumption that ci stays in its last trying section

forever. Therefore, ci must send out a (YIELD, ti) message to r j (line 15) because resp[j] = (ci, ti).

By the Quasi-Reliability property of the channels, this (YIELD, ti) message is received by r j. This

(YIELD, ti) message must be received by r j after time T2, because otherwise it is received in the

period (t’ , T2], but since in this period the (cowner,towner) value of r j remains (ci, ti), r j sends another

(RESPONSE, ci, ti) message to ci in this period, violating the definition of time t’ . When r j receives

this YIELD message after T2, since (c0, t0) is in ReqQ at this time and (c0, t0) is the first entry in the

36

predetermined order, (c0, t0) must be the new value set to (cowner,towner). After this time, (c0, t0) will

never be swapped out of (cowner,towner). So the Claim 1 holds in this case.

• Case 2. There are less than m servers r j’∈Π such that resp[j’] is not (nil, nil). Since |Π1| ≥ n-f, and n-

f ≥ m, there must be some r j’∈Π1 such that resp[j’] = (nil, nil). By Lemma 7, for every r j’∈Π1 such

that resp[j’] = (nil, nil), there must be a later time at which resp[j’] is not (nil, nil). So there must be

later time at which for at least m servers r j’∈Π, resp[j ’] is not (nil, nil). Then we can use the same

argument in Case 1 to show Claim 1for this case.

With Claim 1, we can see that eventually for all r j∈Π1, the (cowner,towner) value of r j will always be (c0, t0).

Thus, there is a time T3 > T2 at and after which for all r j∈Π1, on c0 the resp[j] is either (nil, nil) or (c0, t0).

The Claim 3 shows this is even true for r j∈Π \ Π1. Before showing Claim 3, we proof the following claim

first.

Claim 2. Every client ci ∈Σ1 executes line 11 of the algorithm, and then sends YIELD, INQUIRY or

REQUEST messages to servers for an infinite number of times in its last trying section.

Proof of Claim 2. By Lemma 7, for every server r j∈Π1, there is a time at which the respi[j] value is not (nil,

nil) after ci sends out the initial REQUEST message in TSi. Since |Π1| ≥ n-f ≥ m, there is a time at which the

condition in 10 is true, and line 11 is executed. The condition is line 11 cannot be true, since ci never leaves

its last trying section. Thus ci sends out a YIELD, INQUIRY or REQUEST message to the servers from

which it received RESPONSE messages and clear the resp[] array (lines 14--18). By Lemma 7 again, for

every server r j∈Π1, there is a time at which the respi[j] value is not (nil, nil) after ci sends out those YIELD,

INQUIRY or REQUEST messages, so condition in 10 will be true again, and line 11 will be executed.

When applying the above arguments repeatedly, we thus show Claim 2.

Claim 3. There is a time T4 > T2 at and after which for all r j∈Π \ Π1, on c0 the resp[j] is either (nil, nil) or (c0,

t0).

37

Proof of Claim 3. Suppose, for a contradiction, that for any time t > T2, there is always a time t’ > t and

there is a r j∈Π \ Π1 such that on c0 resp[j] is neither (c0, t0) nor (nil, nil). By Claim 2, resp[j] will always be

cleared at a later time. Since the number of servers is finite, there must be a server r j ∈Π \ Π1 such that for

an infinite number of time points resp[j] is neither (c0, t0) nor (nil, nil) on c0.

There are two cases in terms of the number of crash failures server r j has.

Case 1. There is a finite number of crash failures on r j, and r j does not recover after the last crash

failure. By Claim 2, there is a time after r j’s last crash when resp[j] is cleared to (nil, nil) on c0.

After this time, resp[j] will not be changed because r j never recovers after the last crash. This

contradicts the assumption that for an infinite number of time points resp[j] is neither (c0, t0) nor

(nil, nil) on c0.

Case 2. There is a finite number of crash failures on r j, and r j recovers after its last crash. So there is a

time t > T2 after which server r j does not have any more failures. Before the last failure, r j only sent

a finite number of messages. By the Finite Duplication property, every client only receives a finite

number of messages from r j sent before r j’s last failure. Thus without loss of generality, assume t is

also the time after which no client in Σ1 ever receives any message from r j after time t. By the

assumption, after t there is a time t’ at which resp[j] is neither (c0, t0) nor (nil, nil). By Claim 2

above, there is a time t’’ > t’ at which c0 clears all resp[] entries. There are two subcases.

o From time t’ to t’’ , resp[j] is changed to (c0, t0) at some point. If so, ci must receive a

(RESPONSE, c0, t0) from r j. By the definition of t this RESPONSE message is sent by r j after

its last failure. This means (c0, t0) is the (cowner,towner) value on r j and it will never be replaced by

any other value.

o From time t’ to t’’ , resp[j] is not changed to (c0, t0). Thus at t’’ , resp[j] ≠ (c0, t0). By Lemma 5,

eventually only (ci, ti) remains as (cowner, towner) for ci∈Σ1, so without loss of generality, resp[j] =

(ci, ti) for some ci∈Σ1. Then by the definition of (c0, t0), we have (c0, t0) < (ci, ti). According to

38

line 16 of the algorithm, at time t’’ c0 sends a (REQUEST, ti) message to r j. Since r j has no

failure any more, r j eventually receives this message and insert it in ReqQ, assuming (cowner,

towner) = (ci, ti) > (c0, t0) (otherwise, we are done). Fro this time on, the (cowner, towner) value of r j

either remains (ci, ti) forever, or due to the receipt of a (YIELD, ti) message from ci, it changes

to (c0, t0) and then remains (c0, t0) forever. The latter case is what we want. So we show that the

(cowner, towner) value of r j will not remain (ci, ti) forever. If the opposite is true, then eventually

the only RESPONSE message that r j sends is (RESPONSE, ci, ti). By Claim 2, ci sends YIELD,

INQUIRY, or REQUEST messages to r j an infinite number of times. It is impossible that ci

sends INQUIRY or REQUEST messages to r j an infinite number of times, because each such

message implies that ci receives a (RESPONSE, c, t) message from r j with (c, t) different from

(ci, ti), but this contradicts to the fact that eventually the only RESPONSE message that r j sends

is (RESPONSE, ci, ti). Therefore, eventually ci sends a (YIELD, ti) message to r j, and this

message causes r j to change its (cowner, towner) value to (c0, t0).

From the above discussion on the two subcases, we conclude that eventually the (cowner, towner) value

of r j remains to be (c0, t0) forever. This means that eventually the only RESPONSE message r j

sends is (RESPONSE, c0, t0) message. This contradicts the assumption that there are an infinite

number of times at which resp[j] on c0 is neither (c0, t0) nor (nil, nil), because the later requires that

c0 receive a infinite number of (RESPONSE, c, t) message with (c, t) different from (c0, t0).

So, we show that in Case 2 we reach a contradiction with the assumption at the beginning of the

proof.

Case 3. There are an infinite number of crash failures on r j. It is easy to see that there is a time after

which the only messages sent and received in the system are messages pertaining to (ci, ti) with

ci∈Σ1, due to the Finite Duplication property. By Claim 2, every client in Σ1 clears its resp[] an

infinite number of times, so there is a time after which the only values appearing in resp[] on any

client are (ci, ti) with ci∈Σ1. Let T3 > T2 be such a time. Let Σ1 = {c0, c1, ... , ck}, with the order (c0, t0)

39

< (c1, t1) < … < (ck, tk). Consider ck first. By Claim 2, ck clears its resp[] an infinite number of times

after T3. Consider the value respk[j] right before it is cleared each time after T3. By the definition of

T3, respk[j] must be (ci, ti) for some ci∈Σ1. Since (ck, tk) is the largest among these values, when

respk[j] is cleared, ck sends a YIELD or INQUIRY message, but does not send a REQUEST

message. So ck only sends (REQUEST, tk) a finite number of times to r j. By the Finite Duplication

property, r j receives the (REQUEST, tk) from ck only a finite number of times. Since r j has an

infinite number of crash failures, there is a time T4 > T3 after which the (cowner, towner) and ReqQ are

reset to their initial values and they will never have (ck, tk) in it any more. Then there is a time T5 >

T4 after which (ck, tk) does not appear in any client’s resp[j] any more. We can now apply the same

argument to (ck-1, tk-1), and then to (ck-2, tk-2), and so on, and show that there is a time after which

none of these values appear in any client’s resp[j] any more --- this is a contradiction to the

assumption made at the beginning of the proof of Claim 3.

By the argument in Case 1, 2 and 3, we show that Claim 3 holds.

Now with Claim 1, 2 and 3 we are ready to prove the lemma. With Claim 1 and 3, we know that there is a

time after which for all resp[] entries on c0, they have to be either (c0, t0) or (nil, nil). By Claim 2, after this

time, there is a time when c0 executes line 11 again. This implies that at this time there are at least m entries

in resp[] that are not (nil, nil). So they must all be (c0, t0). However, in this case the condition in line 11

must be true, which means that c0 would execute line 12 and successfully enter its critical section at this

moment. This is a contradiction to the assumption at the beginning of the proof that all clients in Σ1 stay in

their trying sections forever. �

Lemma 9 (Progress (b)) If a correct client requests to leave the critical section, then at some time later it

enters its remainder section.

Proof. This is obvious according to lines 19--23 of the algorithm. �

40

Theorem 1 (Correctness with a finite number of clients) Suppose that there are only a finite number of

clients requesting to enter their critical sections. If f < n/3, then the algorithm in Figure 1 with m= 2n/3
solves the fault-tolerant mutual exclusion problem, that is, it satisfies the Well-formedness, Mutual

exclusion, and Progress properties of the fault-tolerant mutual exclusion specification.

Proof. By Lemma 1, Lemma 4, Lemma 8, and Lemma 9, and the fact that (a) 2m-n = 2* 2n/3 -n ≥ 2 *

2n/3 -n = n/3 > f, and (b) n-m = n - 2n/3 = n/3 ≥ f. �

Definition 2. A total order on the set of requests {(ci, ti) | ci ∈Σ, ti is an output of GetTimeStamp()} is

eventually fair if for any (ci, ti) and for any ci’ ≠ ci, if ci’ calls GetTimeStamp() in the algorithm infinitely

often, then eventually for all ti’ returned from GetTimeStamp(), we have (ci, ti) < (ci’ , ti’).

Lemma 10 (Lockout-freedom with a finite number of clients) Suppose that (a) there are only a finite

number of clients requesting to enter their critical sections; (b) m ≤ n-f, f<m; and (c) the total order used by

the algorithm is eventually fair. If no client stays in its critical section forever and a correct client requests

to enter the critical section, then at some time later it enters the critical section.

Proof (sketch). The proof follows the same structure as the proof of Lemma 8. Suppose by a contradiction

that a correct client c enters its trying section at time T0 but never enters the subsequent critical section.

Define Σ0, Σ1 and Σ2 in the same way as in the proof of Lemma 8. By assumption, c∈Σ1. This time, there is

another class of clients, defined as Σ3, which is the set of clients that enter their critical sections an infinite

number of times. Because there is no client staying in its critical section forever, Σ1, Σ2 and Σ3 is a complete

classification of Σ0.

We then show that Σ3 must be an empty set. Suppose it is not empty. For any ci∈Σ3, ci enters its trying

sections for an infinite number of times. Because the total order used by the algorithm is eventually fair,

eventually the (ci, ti) value for ci’s trying sections will always be greater than (c0, t0), where (c0, t0) is

defined as in the proof of Lemma 8. It is easy to verify that Claim 1 in the proof of Lemma 8 also holds

here, so eventually (c0, t0) is the only value appearing as the (cowner, towner) value of all the servers in Π1. So

41

eventually, on ci, for any server r j∈Π1, the respi[j] value cannot be (ci, -). Thus, if respi[j] = (ci, -), the server

r j must be in Π\Π1. Since |Π\Π1| = n - |Π1| ≤n - (n-f) = f < m, ci will never get supports from enough servers

to enter its critical section. That is, ci cannot enter its trying (and critical) sections for an infinite number of

times. Therefore, Σ3 must be empty.

Since Σ3 is empty, the rest of the proof follows the same structure of the proof of Lemma 8 to reach a

contradiction. �

Theorem 2 (Correctness plus Lockout-freedom with a finite number of clients) Suppose that there are

only a finite number of clients requesting to enter their critical sections. If f < n/3, then the algorithm in

Figure 1 with m = 2n/3 and an eventually fair total order on requests solves the fault-tolerant mutual

exclusion problem, plus it satisfies the Lockout-freedom property.

Proof. By Lemma 1, Lemma 4, Lemma 9, and Lemma 10, and the fact that (a) 2m-n = 2* 2n/3 -n ≥ 2 *

2n/3 -n = n/3 > f, (b) n-m = n - 2n/3 = n/3 ≥ f, and (c) f < n/3 ≤ 2n/3 = m. �

Definition 3 A total order on {(ci, ti) | ci ∈Σ, ti is an output of GetTimeStamp()} is bounded-time fair if for

any (ci, ti), there is a time t such that for any ci’ ≠ ci, for any output ti’ that is obtained by calling

GetTimeStamp() on ci’ after time t, we have (ci, ti) < (ci ’, ti’).

Lemma 11 (Lockout freedom with an infinite number of clients) Suppose that (a) m ≤ n-f; (b) the total

order used by the algorithm is bounded-time fair; and (c) there is no server that crashes and recovers for an

infinite number of times. If no client stays in its critical section forever and a correct client requests to enter

the critical section, then at some time later it enters the critical section.

Proof (sketch). The proof follows the same structure as the proof of Lemma 8. Suppose by a contradiction

that a correct client c enters its trying section at time T0 but never enters the subsequent critical section. Let

t be the timestamp of c’s last trying section. Since the total order used by the algorithm is bounded-time fair,

there is a time T1 > T0 such that any client ci entering a trying section with timestamp ti after time T1 will

have (ci, ti) > (c, t). So we only consider the clients that make their last requests by time T1. Let Σ0 be this

42

set of clients. By the assumption of our model in Section 2, there are only a finite number of clients making

requests by time T1, so Σ0 is finite. Σ0 can be divided into Σ1 and Σ2, in the same way as the proof of Lemma

8. Since all other clients make requests after time T1, with (ci, ti) > (c, t), their (ci, ti) will not be the (cowner,

towner) value of any servers in Π1 (same as Claim 1 in the proof of Lemma 8).

For servers not in Π1, we can also show Claim 3 here as in the proof of Lemma 8. The reason is (a) the

Cases 1 and 2 in the proof of Claim3 of Lemma 8 still hold here, and (b) there is no Case 3 by the

assumption of this lemma. 2

The rest of the proof follows the same structure of the proof of Lemma 8 to reach a contradiction. �

Theorem 3 (Correctness plus Lockout-freedom with an infinite number of clients) Suppose that there

is no server that crashes and recovers for an infinite number of times. If f < n/3, then the algorithm in Figure

1 with m= 2n/3 and a bounded-time fair total order on the requests solves the fault-tolerant mutual

exclusion problem, plus it satisfies the Lockout-freedom property.

Proof. By Lemma 1, Lemma 4, Lemma 9, and Lemma 11, and the fact that (a) 2m-n = 2* 2n/3 -n ≥ 2 *

2n/3 -n = n/3 > f, and (b) n-m = n - 2n/3 = n/3 ≥ f. �

B. Proof of Theorem 4

Theorem 4 Consider a system in which (a) servers may crash and recover, (b) servers start from their initial

states after recovery, (c) client processes do not communicate with each other, and (d) communication

channels are reliable. Let n be the total number of servers and f be the maximum number of faulty servers

during any epoch of any client. If f ≥ n/3, then there is no algorithm that solves the fault-tolerant mutual

exclusion problem in the system.

2 The argument in Case 3 of Lemma 8 does not work here, because we cannot claim that there is a time after which the
only values appearing in resp[] on any client are (ci, ti) with ci∈Σ1, as we did for Lemma 8. A new client can always
come in, sends a request to a server that just recovers from a crash, which will take this new client as its cowner value
and then cause other clients to have a resp[] value that is neither (c0, t0) nor (nil, nil).

43

Proof (sketch). Suppose, for a contradiction, that an algorithm A solves FTME in the system when f=n/3.

We separate the servers into three disjoint groups, G1, G2, and G3, with f processes each. Suppose first that a

client ci requests to enter its critical section. Client ci can only communicate with the servers. Consider a

run R in which all messages to and from servers in G3 are delayed, and servers in G3 do no take any steps

initially. From other clients and servers’ point of view, servers in G3 have crashed. In this case, algorithm A

should allow ci to enter its critical section eventually, since only f servers in G3 may crash. Suppose ci enters

its critical section at time t. Suppose after time t, (a) servers in G2 crashes and recovers immediately and

start themselves in their initial state, (b) messages to and from servers in G1 are delayed, (c) communication

between G2 and G3 and the clients are resumed, and (d) messages to and from G1 before time t are still

delayed. Suppose after time t, a client c2 requests to enter its critical section. From the point of view of

client c2 and the servers in G2 and G3, the servers in G1 have crashed, and servers in G2 and G3 are correct

servers after time t, and these servers have no knowledge about client c1 being granted access to its critical

section already. So eventually c2 enters its critical section at some time t’ > t. After time t’ , all delayed

messages are delivered and all servers are working correctly.

Hence, we constructed a run R in which at most f servers (those in G2) are faulty during the epochs of the

clients c1 and c2, but both c1 and c2 are in their critical sections at the same time, violating the Mutual

exclusion property. Therefore, no such algorithm exists. �

