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ABSTRACT

One serious difficulty in the deployment of wideband speech
recognition systems for new tasks is the expense in both time and
cost of obtaining sufficient training data. A more economical ap-
proach is to collect telephone speech and then restrict the applica-
tion to operate at the telephone bandwidth. However, this gener-
ally results in suboptimal performance compared to a wideband
recognition system. In this paper, we propose a novel EM al-
gorithm in which wideband acoustic models are trained using a
small amount of wideband speech augmented by a larger amount
of narrowband speech. Experiments performed using wideband
speech and telephone speech demonstrate that the proposed mixed-
bandwidth training algorithm results in significant improvements
in recognition accuracy over conventional training strategies when
the amount of wideband data is limited.

1. INTRODUCTION

The deployment of speech recognition systems for new tasks is
often hindered by a lack of sufficient training. Collecting ample
training data is especially problematic for applications that process
wideband speech. For example, a large vocabulary desktop dic-
tation system requires a large corpus of wideband training data.
However, there are many resource-poor languages for which such
a corpus does not exist. A similar lack of training data inevitably
occurs as new tasks arise. For example, the amount of available
wideband training data for automatic meeting transcription is cur-
rently very limited [1].

In such cases, collecting a sufficient amount of wideband train-
ing data may be prohibitively expensive and time-consuming. Al-
ternatively, recording speech over the telephone is a relatively eco-
nomical and efficient way to collect large amounts of data from
a wide variety of geographic regions. However, this requires that
the deployed speech recognizer process narrowband speech. This
is suboptimal, as narrowband recognition systems generally per-
form worse than those that process wideband speech [2].

In [3], we proposed an alternative approach in which wideband
acoustic models are trained using a small amount of wideband
speech and a large amount of narrowband speech. In this work,
a front-end processing stage called Feature Bandwidth Extension
(FBE) was used to convert narrowband feature vectors into wide-
band features vectors. These estimated wideband features were
then pooled with available wideband data to train the recognizer in
the conventional manner. While moderate improvements over con-
ventional training methods were obtained, this approach had some

significant drawbacks. Because FBE only generates point esti-
mates of the wideband features, the subsequent training algorithm
implicitly assumed that these wideband feature estimates were as
representative of the wideband speech as the actual wideband data.
Because the estimation error was not accounted for, the resulting
model parameters were suboptimal.

In this paper, we present a principled EM algorithm for train-
ing a wideband speech recognizer using mixed-bandwidth train-
ing data. In the proposed approach, the wideband model parame-
ters are iteratively updated using both wideband and narrowband
speech data. This is accomplished by treating the spectral com-
ponents missing from the narrowband speech as additional hid-
den variables. By training the recognizer in this way, we over-
come the drawbacks of the previous FBE method, and obtain wide-
band acoustic models that perform significantly better than fully
trained narrowband models or wideband models trained from lim-
ited wideband data. Yet, because the proposed algorithm only re-
quires a modest amount of wideband training data, we are still able
to avoid the large costs associated with collecting large amounts of
wideband speech.

The methods proposed in this paper are related to previous
research in training mixture models from incomplete feature vec-
tors [5]. However, this work is not directly applicable to speech
recognition applications because of the idiosyncrasies of the fea-
ture extraction process, namely the computation of mel-frequency
cepstral coefficients. Missing data techniques have also been used
to improve the robustness of ASR systems to additive noise for
decoding, e.g. [6, 7].

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the feature extraction process and introduce the
missing data paradigm for mixed-bandwidth speech. We then show
how to train a Gaussian mixture model from log mel spectral fea-
tures using mixed-bandwidth training data in Section 3. We then
describe the modifications required to generate models of cepstral
features in Section 4 and show how the proposed algorithm can be
used to train a large vocabulary HMM-based speech recognition
system in Section 5. Section 6 describes a series of experiments
that show the efficacy of the proposed method. Finally, we present
some conclusions in Section 7.

2. FEATURE EXTRACTION FOR ASR

In this work, we assume that mel-frequency cepstral coefficients
(MFCC) are the features used for recognition. For wideband data
sampled at a 16 kHz, the log mel spectral coefficients represent the
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energy in a series of overlapping frequency regions which range
from approximately 100 Hz to 8 kHz. This log mel spectral vector
x is then converted to a cepstral vector z via a DCT as

z = Cx. (1)

where C is the DCT matrix. Dimensionality reduction is also usu-
ally performed, so the DCT matrix C is M × L with M ≤ L.
Typically, 13-dimensional cepstra are computed from 20-40-dimen-
sional log mel spectral vectors.

We assume that the narrowband speech has been upsampled
to match the sampling rate of the wideband speech. If this speech
is then transformed to a sequence of log mel spectral vectors, the
components derived from mel filters that cover frequencies outside
the original signal bandwidth will contain no information. We re-
fer to these components as missing. In contrast, the components of
the spectral vector that do contain reliable content are considered
observed. Thus, a log mel spectral vector x can be partitioned as

x = [xo,T xm,T ]T (2)

where xo contains all components of x that are observed and xm

contains all components that are missing. For wideband speech
originally sampled at the target sampling rate, xo = x and xm =
[ ], i.e. there are no missing components.

In a similar manner, we can express a cepstral vector z as the
sum of linear transformations of xo and xm. Decomposing the
DCT matrix into two sub-matrices, Co, an M ×Lo matrix, where
Lo is the length of xo and Cm, an M × Lm matrix, where Lm is
the length of xm, we can write

z = Cx = [CoCm]
xo

xm = Coxo + Cmxm = zo + zm (3)

3. TRAINING A GAUSSIAN MIXTURE MODEL ON
MIXED BANDWIDTH LOG SPECTRA

We are interested in training an HMM-based speech recognizer
using cepstral features derived from mixed-bandwidth speech data.
However, for simplicity, we begin by first discussing how to train
a Gaussian mixture model (GMM) from mixed-bandwidth log mel
spectral features. A GMM has the form

p(x) =
K

k=1

p(x|k)p(k) =

K

k=1

N (x; μk,Σk)p(k) (4)

where μk and Σk and p(k) are the mean vector, covariance ma-
trix and prior probability of the kth Gaussian mixture component,
respectively.

We seek to train this model using a combination of narrow-
band and wideband speech data using EM [4]. To do so, we use
hidden variables to represent the unseen log mel spectral compo-
nents xm in the narrowband training samples. Thus, we start with
the following EM auxillary function

Q(λ, λ̂) =

N

i=1

K

k=1

log(p(xo
i ,x

m, k; λ))p(xm, k|xo
i ; λ̂)dxm

(5)
where i is the frame index, k is the hidden state variable indicating
the Gaussian index, λ is the set of model parameters we seek to
optimize and λ̂ is the current estimate of these parameters.

In order to perform EM using (5), we need to factorize p(x|k)
into its conditional and marginal densities as

p(x|k) = p(xo,xm|k) = p(xm|xo, k)p(xo|k). (6)

The marginal distribution can be expressed as

p(xo|k) = N (xo; μo
k,Σoo

k ) (7)

where μo
k and Σoo

k are the mean and covariance of the observed
components only. The conditional distribution can be expressed as

p(xm|xo, k) = N (xm; μ
m|o
k ,Σ

m|o
k ) (8)

where μ
m|o
k and Σ

m|o
k are the conditional mean and covariance,

respectively, computed as

μ
m|o
k = μm

k + Σmo
k Σoo,−1

k (xo − μo
k) (9)

Σ
m|o
k = Σmm

k − Σmo
k Σoo,−1

k Σom
k (10)

where μm
k and Σmm

k are the mean and covariance of the unob-
served components, respectively, and Σmo

k and Σom
k are the par-

titions of Σk that represent the covariance between the missing
and observed components. For a derivation of these expressions,
see [8].

Using these expressions, we can derive the update equations
for the Gaussian mixture model parametes. The derivation is omit-
ted due to space considerations. The updated prior probability of
the kth Gaussian can be expressed as

p(k)new =
1

N

N

i=1

p(k|xo
i) (11)

where p(k|xo
i) is the posterior probability of the kth Gaussian

based only on the observed components of each feature vector.
Recall that for wideband speech, because all log spectral compo-
nents are observed, the posterior probabilities are computed from
the full feature vector, i.e. p(k|xo

i) = p(k|xi).
To derive the update formulas for μk and Σk, we first define

x̃ik as

x̃ik =

xi if frame i is wideband
xo

i

μ̂
m|o
ik

if frame i is narrowband
(12)

where μ̂
m|o
ik is computed from (9). We can then express the mean

update formula as

μnew
k =

N
i=1 p(k|xo

i)x̃ik

N
i=1 p(k|xo

i)
(13)

Thus, the mean update expression is similar to that of a conven-
tional GMM, except that the missing vector components of each
narrowband frame are replaced by the state-conditional posterior
means.

The covariance update is also similar to that of a conventional
GMM. We can express the covariance update formula as

Σnew
k =

N
i=1 p(k|xo

i) (x̃ik − μk)(x̃ik − μk)T + Σ̃
m|o
k

N
i=1 p(k|xo

i)
(14)
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where

Σ̃
m|o
k =

0 if frame i is wideband
0oo 0om

0om Σ̂
m|o
k

if frame i is narrowband
(15)

The state-dependent conditional covariance Σ̂
m|o
k in (15) is

computed from (10) and padded with appropriately-sized zero ma-

trices to create Σ̃
m|o
k . This additional covariance term reflects the

uncertainty associated with the absence of these components in the
narrowband training vectors.

4. WORKING WITH CEPSTRAL PARAMETERS

In the previous section, it was assumed that the components of
the feature vector could be partitioned into observed and missing
subvectors. However, most speech recognition systems process
cepstral features, obtained from the log mel spectra via a DCT.
Because of the DCT operation, each cepstral coefficient is a linear
combination of all log mel spectral features, and as a result, the
cepstral vector cannot be partitioned into observed and missing
components.

In order to perform the required marginalization, it is neces-
sary to transform the cepstral model parameters back to the log
mel spectral domain. If no truncation occurs, this transformation
can be done trivially via an IDCT. However, most speech recog-
nizers generate cepstra using a truncated DCT. As a result, the
log mel spectral covariance matrices obtained from cepstral co-
variance matrices via an IDCT are rank-deficient. Specifically, if
the DCT matrix is M × L with M < L, then the log mel spectral
covariance matrix is an L × L matrix with at most rank M . This
is problematic because the covariance matrix must be full rank in
order for it to be invertible.

Therefore, we need to increase the rank of the cepstral model
parameters, but must do so without affecting the discriminability
of the models. To do so, we create L-dimensional cepstral models
by augmenting the truncated M -dimensional cepstral models with
an additional R dimensions, where R = L − M . The augmented
cepstral models are of rank L, as are the resulting log mel spec-
tral parameters. If we use the same R-dimensional parameters to
augment all models, we ensure that the additional dimensions will
have no effect on the computation of the posterior probabilities.

We define νk and Φk to be the the M -dimensional cepstral
domain mean and variance, respectively, for the kth Gaussian in
the mixture. The cepstral means νk can be transformed into the
log mel spectral domain as

μk = C−1 νk

νR
= C−1

M C−1
R

νk

νR
= C−1

M νk + b

(16)
where νR represents the vector used to augment the cepstral means.
C−1

M represents the first M columns of the L × L IDCT ma-
trix, C−1

R represents the last R columns of this matrix, and b =
C−1

R νR.
Similarly, we can transform the cepstral variances to the log

spectral domain as

Σk = C−1
M C−1

R
Φk 0T

0 ΦR

C−T
M

C−T
R

=C−1
M ΦkC

−T
M + A (17)

where ΦR is the R × R augmented covariance matrix, 0 is a R ×
M zero matrix, and A = C−1

R ΦRC−T
R . Both Φk and ΦR are

assumed to be diagonal, although (17) does not require it.
In this work, νR and ΦR are computed by computing the

global mean and covariance of L-dimensional cepstra from the
wideband training data, and extracting the last R dimensions of
these parameters.

Thus, in order to train a cepstral domain GMM from mixed
bandwidth training data, the transformations shown in (16) and
(17) are applied to all cepstral model parameters at the beginning
of each EM iteration. Using the resulting log mel spectral para-
meters, the model parameters updates can be computed according
to (11), (13), and (14). At the end of each iteration, a truncated
DCT is used to transform the updated model parameters back to
the cepstral domain.

5. HMM TRAINING WITH MIXED BANDWITH DATA

The proposed algorithm for training a GMM using mixed-bandwidth
speech data can be readily extended to HMM training. In fact, the
only change required is to replace the posterior probability p(k|xo

i)
with γikq , the posterior probability of the qth Gaussian in HMM
state k given the observation sequence X o = {xo

1 . . .xo
N}. In our

case, γikq is defined as

γikq =
αikβik

K
k′=1 αik′βik′

p(xo
i |k, p)ckq

Q
q′=1 p(xo

i |k, q′)ckq′
(18)

where αik and βik are the conventional forward and backward
variables, ckq is the mixture weight of the qth Gaussian in state
k, and p(xo

i |k, q) = N (xo
i ; μ

o
kq,Σ

oo
kq), the likelihood of the given

Gaussian measured using the observed components only.
While this is mathematically the only change required to apply

the proposed mixed-bandwidth training algorithm to HMMs, some
practical issues limit its direct application. In practice, when train-
ing a large vocabulary speech recognizer, there are many HMM
states that have low occupancy counts, i.e. there are only a few
observations which contribute to the sufficient statistics of that
state. In such states, the covariance matrix Σoo

kq obtained after
marginalization is frequently rank-deficient, and thus, cannot be
inverted. Because of this, the state posterior γikq and the state-
conditional posterior distribution p(xm|xo, k, q), which both de-
pend on Σoo,−1

kq , cannot be computed.

5.1. Using Globally Shared Wideband Posterior Distributions

In cases of data sparseness such as this one, one method of improv-
ing the robustness of such calculations is to share data among dif-
ferent HMM states. In this work, this sharing is performed by as-
suming that the state-conditional posterior distribution of the wide-
band features can be approximated by a single global distribution
shared by all states, i.e. we assume p(xm|xo

i , k, q) ≈ p(xm|xo
i).

Thus, the posterior distribution is conditioned only on the obser-
vation but no longer on the state.

For each frame of narrowband speech xo
i , we obtain this dis-

tribution using a front-end processing stage. Using a GMM that
has been trained on the available wideband cepstra, a single E-
step of the training algorithm described in Sections 3 and 4 is per-
formed. This generates the state posterior probability p(k|xo

i), and
the posterior distribution p(xm|xo

i , k) = N (μ
m|o
ik ,Σ

m|o
k ) for each

Gaussian k. The global distribution p(xm|xo
i) is then obtained by
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computing the first and second moments of p(xm|xo
i , k) and mar-

ginalizing over all Gaussians, as

E[xm|xo
i ] =

k

p(k|xo
i)μ

m|o
ik (19)

E[xmxm,T |xo
i ] =

k

p(k|xo
i) Σ

m|o
k + μ

m|o
ik μ

m|o,T
ik (20)

The mean and covariance of the global posterior distribution for
frame i can then be easily computed from these parameters. Note
that we can convert these parameters to the cepstral domain in
order to obtain a globally shared cepstral posterior distribution
p(z|xo

i) = N (z; ẑi,Γi) where

ẑi = Coxo
i + Cm (E[xm|xo

i ]) (21)

Γi = Cm E[xmxm,T |xo
i ] − E[xm|xo

i ]E[xm|xo
i ]

T Cm,T (22)

We assume that Γi is diagonal.
Notice that whereas the posterior mean for frame i was pre-

viously a function of both the state k and the observation xo
i , it

is now a function of the observation only. Additionally, the mar-
ginalization operation has resulted in a posterior variance which is
now strictly a function of the observation, and not the state. Creat-
ing globally shared posterior distributions in this manner requires
slight changes to the HMM update formulae. These will be de-
tailed in Section 5.3.

5.2. Computing State Posteriors for the Narrowband Data

As (18) shows, the marginalized log spectral distributions p(xo
i |k, q)

are required in order to compute γikq for the narrowband data.
However, as mentioned previously, there are many states in which
Σoo

kq is not invertible. Even in cases where it is invertible, per-
forming Gaussian evaluation in the log spectral domain requires
significantly more computation than in the cepstral domain where
diagonal covariances can be used. For large training corpora, this
increased computation may be prohibitively expensive.

In order to efficiently and robustly compute the state posteri-
ors, we convert the marginalized log spectral models back to the
cepstral domain using a M × Lo DCT matrix D, where Lo is the
number of observed log spectral components. Thus, recalling (16)
and (17), the narrowband cepstral model parameters are obtained
from the wideband model parameters as

cnb
qk = cqk (23)

νnb
qk = DP C−1

M νqk + b (24)

Φnb
qk = DP C−1

M ΦkC
−T
M + A PT DT (25)

where P is an Lo × L matrix which selects the observed compo-
nents.

Thus, we can now compute the HMM state posterior probabili-
ties in the cepstral domain for narrowband data. Of course, the nar-
rowband log spectra must be converted to cepstra as znb

i = Dxo
i

in order to do so.

5.3. Implementation Details

The training data for the proposed mixed-bandwidth training algo-
rithm now consists of a sequence of wideband cepstra computed
from the available wideband speech, a sequence of narrowband

cepstra computed from the narrowband speech, and a wideband
cepstral posterior distribution p(z|xo

i) = N (z; ẑi,Γi) for each
frame of narrowband speech. Incorporating this data into the pro-
posed mixed-bandwidth EM algorithm, we can rewrite the HMM
update formulae as

ckq =

Nwb

i=1 γikq + Nnb

j=1 γnb
jkq

Q
q′=1

Nwb

i=1 γikq′ + Q
q′=1

Nnb

j=1 γnb
jkq′

(26)

νkq =

Nwb

i=1 γikqzi + Nnb

j=1 γnb
jkqẑj

Nwb

i=1 γikq + Nnb

j=1 γnb
jkq

(27)

Φkq =

Nwb

i=1 γikq(zi − νkq) + Nnb

j=1 γnb
jkq((ẑj − νkq)

2 + Γj)

Nwb

i=1 γikq + Nnb

j=1 γnb
jkq

(28)

where i indexes the wideband data, j indexes the narrowband data,
γikq is the posterior probability of a wideband cepstral vector zi

computed using the wideband models and γnb
jkq is the posterior

probability of a narrowband cepstral vector znb
j , computed using

the narrowband models obtained using (23)–(25). Nwb is the total
number of wideband observations and N nb is the total number of
narrowband observations.

Training is performed as follows. Using the wideband cepstra,
an initial wideband HMM, typically a monophone model with a
single Gaussian per state, is trained using the conventional Baum-
Welch algorithm. At this point, mixed-bandwidth training pro-
ceeds by splitting the accumulation of the sufficient statistics into
two parts, as implied by (26)–(28). In the first part, the suffi-
cient statistics are accumulated using the wideband models and
the wideband cepstra in the usual manner. In the second part, the
state posterior probabilities γnb

jkq are computed using the narrow-
band cepstra and the narrowband models generated from the cur-
rent wideband models. Using these state posteriors, the sufficient
statistics are accumulated using the wideband posterior means ẑj

and variances Γj . Once all the wideband and narrowband data
have been processed, the sufficient statistics computed by each
part are aggregated to compute the updated wideband model pa-
rameters. From this model, a new updated narrowband model is
produced and the process is repeated until the convergence.

6. EXPERIMENTAL EVALUATION

In order to evaluate the proposed mixed-bandwidth training algo-
rithm, we performed a series of experiments using the Wall Street
Journal (WSJ0) corpus [9]. In order to perform controlled exper-
iments in which the proportion of wideband to narrowband data
is the only variable, we created a parallel telephony training cor-
pus by passing the WSJ0 training set through a telephony filter
designed to the G.712 specifications. The useful bandwidth of the
telephony speech was assumed to be 300-3400 Hz.

The HTK speech recognition system was used to train 3-state
context-dependent triphone models with 24 Gaussians per state.
The feature vectors used for recognition were 13-dimensional cep-
stral vectors derived from 40-dimensional log mel spectra, along
with their delta and acceleration parameters. Frames were 25 ms
in duration with a 10 ms shift between successive frames. Cepstral
mean normalization was performed prior to processing. A trigram
language model was used for decoding. The speech recognizer
was trained using the SI84 training set. Performance was measured
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Fig. 1. Word Error Rate (WER) of the WSJ0 20k test set set versus
the amount of data used to train the recognizer. The leftmost data
point represents 1% of the total training set (0.12 hrs) while the
rightmost datapoint represents the full training set (12.0 hrs). The
figure also shows the WER obtained by a fully trained narrowband
recognition system.

using the WSJ0 20k test set, which consists of 333 utterances (ap-
proximately 42 for each of 8 speakers), and covers a 20,000 word
vocabulary.

In the first series of experiments, we evaluated the wideband
recognition performance when various amounts of wideband speech
were used for training. The complete training set consists of ap-
proximately 12 hours of speech. Subsets of the training set, from
1% up to 80% of the total training set were selected at random, and
used to train the recognizer. Figure 1 shows the resulting Word
Error Rate (WER) as a function of the amount of data used for
training. Note that the x-axis of the figure is displayed on a loga-
rithmic scale. The rightmost point of 10.4% represents the WER
when the full training set is used. This is the upper bound on per-
formance in this experimental framework. For comparison, the
figure also shows the WER obtained by a narrowband recognition
system trained using the full training set. Not surprisingly, the fig-
ure shows that the performance of the wideband system degrades
significantly with fewer training data. As the amount of wideband
training data falls below 20% (approximately 2.4 hours of speech),
better performance is obtained from a fully trained narrowband
system.

6.1. Experiments with Telephony Speech

We will now attempt to improve the performance of wideband
speech recognition systems when the wideband data are limited.
We assume that only a limited percentage of the wideband training
data is available and that the remainder of the training corpus is
available as telephone-bandwidth speech. Telephone speech that
is upsampled to 16 kHz and converted to 40-dimensional log mel
spectral features has 17 out of 40 components that fall outside of
the telephone passband. Specifically, the first 4 and last 13 com-
ponents of the log mel spectral vectors are unobserved.

In order to generate the wideband posterior distribution for
each frame of telephone speech, a GMM was trained from 39-
dimensional cepstral vectors using the available wideband training
data. Using this GMM, a wideband cepstral posterior distribution
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Fig. 2. WER of the WSJ0 20k test set using the proposed mixed-
bandwidth EM training algorithm as a function of the amount of
wideband data available. For comparison, the WERs obtained by a
recognizer trained from limited wideband data only and by a fully
trained narrowband recognizer are also shown.

was estimated for each narrowband training vector. Mean normal-
ization was performed on both the wideband cepstra used to train
the GMM and the narrowband log mel spectra prior to process-
ing in order to mitigate the spectral tilt induced by the telephone
channel.

For a given wideband/narrowband partition of the training ut-
terances, a wideband HMM was trained according to the procedure
described in Section 5.3, and then used to decode the WSJ0 20k
test set. This experiment was performed for partitions of the train-
ing set in which the wideband data accounted for between 1% and
80% of the training corpus, with the narrowband data accounting
for the rest. In all experiments, the front-end GMM was trained
using the available wideband data only.

The performance of the proposed mixed-bandwidth training
algorithm is shown in Figure 2 as a function of the amount of wide-
band training data used. For comparison, the WERs obtained by
a system trained with limited wideband data only and by a fully
trained narrowband system are also shown. As the figure shows, at
all percentages, a significant improvement in the WER is obtained
over the use of the wideband data alone. Perhaps more impor-
tantly, the figure also shows that the proposed mixed-bandwidth
training method results in better performance than a fully trained
narrowband recognizer in all cases. Of course, we expect that as
the amount of wideband training data approaches zero, the narrow-
band system will outperform the proposed method, as there simply
will not be enough wideband data to train a reliable GMM.

6.2. Model Adaptation Reusing the Wideband Training Data

Because the training algorithm maximizes the likelihood of the to-
tal pool of training data, it may not necessarily be ideally matched
to the wideband data. For example, since the wideband posterior
distributions were generated using a front-end GMM, rather than
from the HMMs themselves, there may be a bias in the model pa-
rameter estimates. As a result, we attempted to improve the model
performance further by reusing the wideband training data to per-
form supervised model adaptation on the final wideband acoustic
models. This is different from typical model adaptation in that
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Fig. 3. WER of the WSJ0 20k test set after reusing the wideband
training data to adapt the models generated by the proposed mixed-
bandwidth training. For comparison, the WERs obtained by three
other training methods are also shown: the proposed algorithm
prior to model adaptation, a recognizer trained from limited wide-
band data only, and a fully trained narrowband recognizer.

Table 1. A comparison of the WER obtained using Feature Band-
width Extension (FBE) and the proposed mixed-bandwidth EM
algorithm (MIXBW-EM) on the WSJ0 20k test set for different
proportions of wideband and narrowband training data.

Training Data FBE MIXBW-EM

20% WB + 80% NB 13.5 13.3
10% WB + 90% NB 18.3 13.9

we are not introducing new adaption data, but simply reusing the
available wideband training data. Mean and variance adaptation
was performed using MLLR [10] with two regression classes. The
results obtained after model adaptation are shown in Figure 3. As
the figure shows, significant improvements are seen at all wideband-
narrowband combinations.

6.3. Comparison with Feature Bandwidth Extension

Finally, we compared the proposed mixed-bandwidth EM training
algorithm to the Feature Bandwidth Extension (FBE) algorithm
proposed in [3], The results are shown in Table 1. As described
in Section 1, FBE generates point estimates of the wideband fea-
tures from the narrowband observations, which are then pooled
with actual wideband features to train wideband acoustic models.
Because the error in FBE is unaccounted for during training, the
resulting model parameters are suboptimal. In contrast, the pro-
posed algorithm uses marginalization to compute the state poste-
riors for the narrowband data, and includes the uncertainty associ-
ated with the wideband feature estimates in the model parameter
updates. We note that as more and more wideband data is avail-
able, the wideband feature estimation can be expected to improve,
and thus, the performance of FBE will approach that of the pro-
posed mixed-bandwidth training algorithm.

7. CONCLUSION

In this paper, we have proposed a method for training wideband
acoustic models for HMM-based speech recognition systems using
mixed-bandwidth training data. In this method, a limited amount
of wideband training data is augmented with narrowband training
data in order to train a speech recognizer for the recognition of
wideband speech. The wideband acoustic models are trained using
an EM algorithm in which hidden variables are assigned to the
missing spectral components of the narrowband observations.

Through a series of experiments using parallel corpora of wide-
band and telephone speech, we demonstrated that the proposed
method generates acoustic models that significantly outperform
both a wideband recognizer trained from limited data and a fully
trained narrowband recognizer. Thus, it is a viable method for
training a wideband speech recognition system when collecting
large amounts of wideband training data is not feasible. Moving
forward, we believe the performance of the proposed algorithm
can be further improved by exploring alternative methods for shar-
ing data among the HMM states, rather than the global front-end-
based approach used in this work.
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