

Supporting Finite Element Analysis with a Relational Database Backend
Part III: OpenDX – Where the Numbers Come Alive

Gerd Heber, Chris Pelkie, Andrew Dolgert
Cornell Theory Center, [638, 622, 634] Rhodes Hall,

Cornell University, Ithaca, NY 14853, USA
[heber, chrisp]@tc.cornell.edu, ajd27@cornell.edu

Jim Gray
Microsoft Research, San Francisco, CA 94105, USA

Gray@Microsoft.com

David Thompson
Visualization and Imagery Solutions, Inc.,

5515 Skyway Drive, Missoula, MT 59804, USA
dthompsn@vizsolutions.com

December 2005

Technical Report

MSR-TR-2005-151

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 - 2 -

Supporting Finite Element Analysis with a Relational Database Backend

Part III: OpenDX – Where the Numbers Come Alive
Gerd Heber*, Chris Pelkie*, Andrew Dolgert*, Jim Gray†, and David Thompson‡

*Cornell Theory Center, [638, 622, 634] Rhodes Hall, Ithaca, NY 14853, USA

heber@tc.cornell.edu, chrisp@tc.cornell.edu, ajd27@cornell.edu

†Microsoft Research, 455 Market St., San Francisco, CA 94105, USA

gray@microsoft.com

‡Visualization and Imagery Solutions, Inc.

5515 Skyway Drive, Missoula, MT 59804, USA

dthompsn@vizsolutions.com

Abstract: In this report, we show a unified visualization and data analysis approach to Finite Element Analysis
(FEA). The example application is visualization of 3-D models of (metallic) polycrystals. Our solution combines a
mature, general-purpose, rapid-prototyping visualization tool, OpenDX (formerly known as IBM Visualization
Data Explorer) [1,2], with an enterprise-class relational database management system, Microsoft SQL Server
[3]. Substantial progress can be made with established off-the-shelf technologies. This approach certainly has its
limits and we point out some of the shortcomings which require more innovative products for visualization, data,
and knowledge management. Overall, the approach is a substantial improvement in the FEA life cycle, and
probably will work for other data-intensive sciences wanting to visualize and analyze massive simulation or
measurement data sets.

Introduction

This is certainly not the first report on the intriguing combination of a database server and a visualization
environment. Early reports date back to the late eighties and early nineties. Imagining the comparatively immature
state of database systems, visualization tools, and middleware of that period, we admire the vision and courage of
those early adopters. We can understand that after living on the bleeding edge of technology, some of those pioneers
abandoned the idea of combining databases and visualization. The main message of this report is that things have
evolved to a point that, for a large class of applications, the unification of off-the-shelf visualization tools and
database systems can work very well to support both the actual FEA simulation workflow and data management and
for the post-production data analysis tasks. The tools have certainly matured, but it is the scale and complexity of the
data coming from the applications that renders ad hoc data management and data visualization increasingly
impractical. More systematic and general approaches are needed.

Much of the work presented in this
report was done in support of the
DARPA-SIPS (Structural Integrity
and Prognosis System) effort, which
aims to substantially improve life
predictions for hardware like the
Northrop Grumman EA-6B aircraft by
using better material science and
better multi-scale analysis. One
ingredient in an aircraft’s remaining
life assessment is the maximum flaw
size (crack length) detected in a
certain borehole of one of its outer
wing panels. If this flaw size exceeds a critical value the aircraft is considered to have lost its structural integrity and
is taken out of service. At the length scale in question, the material of the wing panel (Al 7075) shows a
microstructure that material scientists commonly refer to as a polycrystal structure (see Appendix A). So, analyzing

Figure 1: The image on the left shows a Northrop Grumman EA-6B of
the U.S. Navy. The right image is a close-up of a bolt hole surface.

 Supporting Finite Element Analysis with a Relational Database Backend 3

polycrystal structures using finite element analysis is a key ingredient to estimating the useful remaining life of an
aircraft.

In this article, we first explain the basic concepts of metallic polycrystals and how they are conceptualized in a finite
element analysis. Next, we discuss how this conceptual model can be mapped to a relational data model, and we
present a requirements analysis for polycrystal visualization. We provide a detailed description of our
implementation using OpenDX, Microsoft SQL Server 2005, and Python. An example screen snapshot of the
visualization system is shown in Figure 2. Before reading this report, we highly recommend watching a 6 minute
video clip [18] which demonstrates the system in use. After that the reader may decide how much she wants to know
about the innards.

Figure 2: A visualization interface for finite element analysis
of polycrystals showing: the visualization data flow in the upper
left panel, interactive visualization controls in the upper right and
lower left, and a histogram and 3-D visualization of the data in the
two foreground panes. The displays can be animated to show how
the model behaves over time. Displays like this are constructed
during all phases of finite element analysis. The system pulls data
from the database, transforms it, and then renders it in intuitive
ways allowing the investigator to explore the model’s structure
and behavior.

Modeling Polycrystals

Polycrystals are inhomogeneous materials composed of crystal domains. Granite is a familiar polycrystalline
material, but most metals and many other materials consist of crystalline grains, each grain being homogenous. (See
Figure 1 and Appendix A for scans of a real microstructure.) The information underlying three-dimensional models
of (metallic) polycrystals can be organized in a hierarchy of topological, geometric, discretization, physical, and
engineering data.1 Figure 3 shows a small part of a polycrystal dictionary.

1 Particles and inclusions, which are an important ingredient in modeling realistic grain structures, are beyond the scope of this
presentation. The reader can think of them as special grains inside of or in-between other grains.

Figure 3: Part of a polycrystal ontology (OWLViz [27]). Basic concepts include topological, geometric, and mesh
entities. Dimension is a topological entity’s’ main attribute. It is related to other topological entities via the incidence
or boundary relation. Topological entities can be embedded into 3-space and have geometric realizations that map
vertices onto points and faces onto polygons. A mesh represents the decomposition of a volume into simple shapes
(bricks, tetrahedra etc.). The fundamental relation (the glue) between mesh objects is the subset relation. Sets of
mesh entities segment geometric entities; for example, curves are segmented into edges, and polygons can be
segmented into triangles and/or quadrilaterals.

 - 4 -

Vertices, strings (edges, loops), faces, and regions (grains) are the basic topological objects. Edges connect vertex
pairs. Ordered (oriented) sets of topological vertices form loops, one or more of which bound planar faces. Each
region is bounded by one or more topological faces. Assigning Cartesian coordinates to vertices embeds them into
Euclidean space. This turns a polycrystalline topology into a geometric object—the grains become polyhedra, with
planar polygonal bounding faces. Figures 4 and 5 show examples of polycrystalline geometries.

Faces and regions are tessellated (subdivided) in order to represent each crystal as a finite element mesh (see Figure
4). The tessellation of the faces is also referred to as the surface mesh. Surfaces include the external as well as the
internal grain boundaries. The surface mesh typically consists of triangles and/or quadrilaterals. The tessellation of
the grains is referred to as the volume
mesh. It typically consists of
tetrahedra or a mixture of elements
including bricks, prisms, and
pyramids. The surface and volume
meshes are compatible, i.e., the
footprint of the volume elements
matches exactly the (initial) surface
mesh.

The geometry and mesh generation
for polycrystals is quite challenging.
The goal is to generate realistic
geometries with “good quality”
surface and volume meshes and with
as few elements as possible.
Minimizing the number of elements
keeps the size of the underlying
system of nonlinear finite element
equations under control while
providing good model fidelity. The
size and element quality of the
surface mesh determines the
resolution of boundary conditions as
well as a characteristic length scale
on the grain interfaces. The quality of
the surface mesh directly impacts the
difficulty of volume mesh generation,
if an advancing front mesh generator2
is used for that purpose. Octree-based
techniques appear inadequate,
because a given surface mesh cannot
be enforced and good quality
surface/volume meshes tend to be
significantly larger, leading to
intractably large systems of
equations. The density of the
resulting mesh varies depending on
the complexity of the geometry. The
mesh typically does not change for an
individual analysis unless, for
example, a convergence study is
performed.

2 Roughly speaking, an advancing front mesh generator creates a volume mesh by starting from the surface mesh and “growing”

elements from the front between tessellated and un-tessellated space. The procedure terminates when the front collapses and
the volume is filled with elements.

Figure 4: A surface mesh for a grain
geometry. A conforming tetrahedral
mesh extends into the interior of the
grains. Depending on its size and the
complexity of the surface mesh, each
grain is decomposed into hundreds or
thousands of tetrahedra. The tessel-
lations respect the grain topology:
there is exactly one mesh vertex
coincident with each grain vertex.
Each topological loop is segmented by
mesh edges. Each surface triangle or
quadrilateral is “owned” by exactly
one topological face and each volume
element (tetrahedron, hexahedron,
prism, or pyramid) is “owned” by (is
inside) exactly one grain.

Figure 5: Three examples of
polycrystal geometries. The grains
are shrunk for visualization purposes.
The corners of the grains correspond
to topological vertices. Grains are
bounded by planar faces, which in turn
are bounded by oriented loops (the
orientation determines the “inside” of
the region to allow faces with holes).
In the upper image, all topological
faces are bounded by exactly one
topological loop. (Multiple loops are
required to represent faces with holes.)
The upper geometry was created from
a Voronoi tessellation [17] so all
grains are convex domains. Physically
more realistic grain geometries, such
as the one shown in the middle image,
generally have some concave faces
and exhibit various anisotropies. The
bottom image shows a polycrystal
with very simple grains that captures
grain anisotropy (elongation) after the
rolling of the raw material.

 Supporting Finite Element Analysis with a Relational Database Backend 5

Figure 7: A database schema diagram showing
the topology tables and relationships. Vertices
compose loops that compose faces that compose
regions. Given any such object, one can quickly
find the related objects by traversing the
relationships.

Once the mesh is defined, material (e.g.,
density) and dynamic (e.g., temperature)
properties can be assigned to nodes or grains.
Discretized mechanical fields are defined on
finite element nodes (some of which are hosted
by mesh vertices) or at Gauss points
(integration points) of finite elements. For
example, the displacement field is defined at
nodes, whereas the stress field is defined at the
Gauss points. Fields of the latter kind can be
(and for visualization purposes are) interpolated
at the nodes, but the highest accuracy is
achieved at the Gauss point level and stored
there for checkpoint/restart purposes.

The simulation model computes derived values that are assigned to mesh grains, faces, and vertices. These values
can be aggregated (summarized) as crystal-grain properties or at coarser levels. The visualization can render these
fields defined on positions (vertices) or over connections (such as triangular polygons or tetrahedral voxels). The
necessary interpolation is usually done in the database before the data is sent to the visualization environment as in
Figure 6.

A Relational Data Model for Polycrystal Models

For the purposes of this discussion of databases integrated
with visualization, we view the data model from the
perspective of visualization, although visualization is clearly
not the only source of requirements. The previous two reports
described the other requirements. It is fortuitous that all these
requirements can be met by the same design.

As stated earlier, the basic topological objects are topological
vertices, edges, loops, faces, and regions. These basic building
blocks are “glued” together by relating vertices to loops
(Which sequence of vertices forms a loop?), loops to faces
(Which oriented loops make up the boundary of a face?), and
faces to regions (Which oriented faces make up the boundary
of a grain?). These entities and their interrelationships are in
turn represented in a relational schema (see Figure 7).3 A
given topological face is either shared by exactly two grains
or adjacent to exactly one grain. We call the former an
internal topological face (InnerTFaces) and the latter an
outer topological face (OuterTFaces). Some of the
adjacency relations (TFaceTLoops, TRegionTFaces) carry
an orientation flag (InOut) which determines whether the
orientations of the two objects are coherent.

In practice, most polycrystal geometry modelers directly
create geometry and thereby implicitly generate a topology
which is extracted before populating the database. The
separation of geometry and topology is essential for
normalization and results in higher efficiency.

To produce the isolation effects shown, for example, in
Figures 2, 4, and 5, certain topological faces, loops, and

3 Simple JOIN operations on the base tables tell which vertices are corners of a face, or which loops are on a grain’s surface.

Figure 6: Visualization of a
physical field (some quantity)
for a subset of grains. The
subset was generated by shoot-
ing a ray into the model and
selecting all intersecting grains.
Without being able to limit the
number of grains to be displayed
to “interesting” subsets, the
visualization is fairly useless
since most grains and features
are hidden under the surface of
the polycrystal.

 - 6 -

vertices need to be replicated.4 Even if visualization tools supported this for arbitrary polyhedra (they don’t!), there
are good reasons to duplicate topological features in the model. When modeling the mechanical response of a
polycrystal, the grains are assigned material properties following certain statistical distributions. The interfaces
between the grains — the grain boundaries — are either assumed to be of infinite strength or they are assigned
material properties which allow them, following a certain constitutive law, to soften or break (de-cohere). In other
words, duplicate entities are needed to support the physical modeling of the two sides of grain boundary behavior.
As a result, two polycrystal models are stored in the database, one with and one without duplicate entities. A client
application can select whichever view is appropriate. The object replication is implemented within the database as a
stored procedure that replicates topological vertices (the number of copies depends on the number of sharing grains)
and that generates a multi-valued mapping (InterfaceTVertexMap in Figure 7) from the unduplicated to the
replicated topology. The replica can then be easily obtained via JOIN with the InterfaceTVertexMap table.

A mesh generator is used to decompose the polycrystal geometry into simple shapes that respect the topological
structure of the model. For each topological vertex there is exactly one coincident mesh vertex. Each topological
loop is split into a chain of mesh edges. Each topological face is divided into triangles and/or quadrilaterals. Each
grain is tessellated with tetrahedra, hexahedra, prisms, or pyramids. The fundamental relation is the element-vertex
adjacency relation. Besides the basic objects (vertices, elements) and this relation, we have to store the mappings of
mesh edges to topological loops and triangles to topological faces. (The fact that two vertices are on the same loop
and may be even closer than any two other vertices on that same loop does not imply that there is a mesh edge
between them.)

The topology replication carries through to the mesh level. The mapping defined at the topology level is “pushed
down” to the finer mesh level. Mesh objects in the interior of grains are unaffected by this replication. However,
vertices, edges, triangles, etc., on grain surfaces need to be duplicated accordingly. In addition, the vertices of
elements adjacent to internal grain interfaces have to be remapped. At this point, special elements so-called
interface elements which model the mechanical response of the grain interfaces, are introduced. The reader can
think of them as triangular prisms (wedges) or bricks of zero thickness. They are generated by extrusion from the
triangles and/or quadrilaterals that form the surface mesh on the internal faces.

The two meshes (with and without duplication) can be used to define finite elements. The resulting node sets are
kept separate from the meshes, because the same mesh topology can be used to define different finite element
meshes depending on, for example, the order of the shape functions5. A node set is defined by a choice of a mesh
(replicated, unreplicated) and a shape function order (linear, quadratic, etc.). We typically store four node sets in a
database.

Following our metadata discussion in Part I [3], mesh attributes like boundary conditions and material properties are
stored in XML documents. Client-side scripts and user-defined functions consume these documents to instantiate
attributes for the FEA.6 A complete set containing a finite element mesh and attributes defining a unique solution is
called a case. The resulting fields and state variables from an FEA case are stored in tables tagged with their case
ID. In practice, there are around 80 cases for each model. This is a fairly sizeable subset of all possible combinations
of shape functions, boundary conditions, and material models and properties. (Certain combinations are impossible:
For example, if a material model requires quadratic shape functions, it cannot be combined with linear shape
functions.)

The final schema has about 65 tables, 25 views, and 80 user-defined functions (stored procedures, scalar- and table-
valued functions.) Data sets from simulations result in additional tables for case-dependent state variables. The latter
tables are by far the storage dominant part (99%). The former serve as metadata to interpret the latter. The relatively
large number of tables is due the number of modeling dimensions (with or without interfaces, with or without
particles, linear or quadratic elements, etc.).

4 Note that the term ‘replicate’ is used in the sense of ‘creating copies’ leaving the number of copies unspecified. For internal

faces, exactly two copies of that face are created. Generally the same is not true for either a face’s bounding loops or its
vertices.

5 For higher order shape functions, certain associations between nodes and mesh entities must be stored. For example, quadratic
elements have nodes associated with the midpoints of their edges.

6 The XML support in SQL Server 2005 allows doing most of the XML processing on the server (via XQuery) and the full
documents are actually never transferred to the client.

 Supporting Finite Element Analysis with a Relational Database Backend 7

Visualization Requirements

The following are some key requirements for an environment to visualize models of polycrystals:

1. The environment must be able to display all aspects and forms of (meta-) data associated with polycrystals,
including topology/geometry, (FEM) discretization, and physics/mechanics.

2. It must scale to models with ~105 grains. At the same time, it must be able to adapt to different resource
constraints and models of increasing size. For example, it must prevent users from requesting amounts of data
which exceed their local resources.

3. The environment must be a rapid-prototyping environment. All excessive and needless programming must be
avoided.

4. The environment must allow nearly real-time interaction with the models.

5. The underlying data sources and data access must be self-describing, aid self-configuring applications, and
accommodate relational, image, and XML data.

6. The system can only use standard off-the-shelf hardware and software.

We want a tool that works for the entire FEA process from model definition, to topology/geometry generation, to
discretization, to simulation, and then to numerical analysis, visualization, and post-processing.

To be physically relevant, models must have at least 10,000 grains. For models with more than 100 grains, it is
difficult for an end-user to estimate the amount of data involved in a display request. Certain safeguards must be
built into the system to maintain a highly responsive system, hence the second requirement.

It must be easy to extend or add new visual components. A good visualization is often the result of experimentation,
of trial and error. Environments which do not support rapid prototyping hinder and discourage the willingness to
experiment, and result in sub-optimal visualization. The real time interaction is essential to allow people to interact
with and explore the data — it vastly improves productivity.

Requirement 5, self-describing data, echoes the first requirement and goes beyond the scope of visualization. Since
the visualization environment shares almost all data with other applications and the underlying data sets are quite
large, replication must be avoided and a special purpose data repository for visualization alone seems undesirable.

The requirement for commodity hardware and software is economic in nature: it keeps accessibility high and does
not require us to reinvent the wheel.

OpenDX

OpenDX (or “DX”)7 is a visual programming environment whose main purpose is to produce visual representations
of data. That is, to “write a program,” we select and place graphical boxes called modules — representing (in a loose
sense) “functions” — on a workspace (the canvas), then we drag connecting wires between these boxes. The wires
indicate data-flow paths from outputs of upstream modules to the inputs of downstream modules. No explicit wiring
loop-backs (circular logic) are permitted; some situations that resemble loop-backs are explained later.

Each module is, of course, already precompiled for the host architecture. The DX Executive (“dxexec”) process runs
separately from the DX User Interface (“dxui”) process and watches while you program, assembling the execution
dependency graph. In fact, DX will prevent you from creating a loop-back or from making some other types of
illegal connections. When a valid network program (a net in DX-speak) has been constructed, it may be immediately
executed. No compilation is necessary and, generally speaking, execution is quite rapid. Naturally, extremely large
data sets require more time to read in, and there are a few modules whose very nature makes them slow, but most
nets exhibit quite acceptable performance.

7 OpenDX was originally developed and marketed for several years by IBM’s Watson Research group as IBM Visualization Data
Explorer. It was open-sourced in 1998 and is now freely available [1]. The user interface requires X Windows, though there is a
project to create a native Microsoft Windows version discussed later in this report. In the interim, on our Windows machines, we
use Hummingbird Exceed’s X-server product.

 - 8 -

Successive executions run even faster, since, by default, DX caches all intermediate results in local memory.
Pointers to cache objects are passed from module to module; only those data components that change are duplicated
in memory before being modified.8 And only those modules whose inputs change require re-execution.

The chief input channel to OpenDX from the outside world is the Import module, and it is most commonly used to
directly open a static file from disk. However, Import offers a powerful alternative input scheme which we employ
in the polycrystal viewer. In place of an explicit pathname/filename, one can substitute a string of the form:

!executable (e.g., script name, compiled program, etc.) arg1 arg2 …

The bang (!) indicates that the executable directive is to be handed to the operating system where it runs using the
supplied arguments. The implicit output “pipe” connects to OpenDX’s standard input. When the executable returns,
it must write a stream in the form of a valid OpenDX object. OpenDX blocks until the stream is complete,
whereupon it proceeds in normal fashion to process and render the data object as an image. From our PreView and
PView nets, we invoke Python scripts; in other projects, we have used Perl, shell scripts, or programs compiled in
other languages.

OpenDX offers the user an interactive environment in two distinct ways. From the point of view of a developer, the
immediate feedback provided by executing a growing net permits rapid prototyping and easy changes. For the end
user, various widgets (called interactors) can be displayed on one or more Control Panels. As shown in the video,
[6], with these interactors, the viewport window created by the Image module is not a static display of the visual
representation: it may be directly manipulated by zooming, rotating, panning, and picking on the objects displayed.

How can OpenDX have interactions if there are no loop-backs in the OpenDX net? These interactions must “loop
back” else there would be no response to the user. To clarify, we need to examine the OpenDX execution and event-
handling model more closely.

In a simple OpenDX net, one can Import an object, perform a simple realization operation such as “generate lines to
show the connections of the mesh” (ShowConnections), then send the result to Image to display the visual
representation. For a static file, this needs only one execution of the net, caused by the user selecting Execute Once
from a menu.

Now, let us suppose the analyst wants to rotate the mesh to see it
from another perspective. This can be done by direct action using
Rotate mode while dragging in the Image window. Actions
performed on the Image window force an automatic execution, so
when the mouse button is released, the new view is calculated and
shown. In Execute on Change mode, the object transforms smoothly
while the drag is taking place and comes to a stop when the mouse
is released. This “loop-back” doesn’t have far to go, as the effect is
simply to modify the transformation matrix applied to the object by
the renderer, all of which takes place in the Image module itself.

We can add to the sophistication of this net by creating a Control
Panel holding a Scalar widget. A corresponding Scalar module is
added to the network program and is wired to other modules in the
normal manner. This module “wirelessly” receives its current value
from its Control Panel interactor counterpart (labeled “Color
opacity:” in Figure 8). We insert a Color module between
ShowConnections and Image, and connect the Scalar output to the
opacity input of Color.9 With OpenDX in Execute on Change mode,
the Image window’s representation immediately updates to show
changing object transparency as the user modifies the Scalar
interactor’s output value, by clicking arrows or typing numbers into the control widget. If Import is the source of our
data “river,” and Image the outlet, Control Panel interactor values feed like tributaries into the data-flow path.

8 How would data change? OpenDX’s Compute module provides a powerful array calculator containing many typical math and

logic operations with which the user can modify arrays on the fly. Besides such user-specified changes, many OpenDX
modules create and/or modify component arrays.

9 The Color module can affect either or both color and transparency of objects: here, we use it only for transparency/opacity.

Figure 8: The design canvas for an
OpenDX network and a control panel to
adjust the opacity of an Image.

 Supporting Finite Element Analysis with a Relational Database Backend 9

In both cases — direct image interaction and input values via Control Panels — OpenDX handles the events as
inputs to the next execution. This is important to understand: you observe, you interact, the result is “looped back,”
OpenDX responds, you see the new state. The only difference is that Image manipulations force a new execution.
This is a good thing because you should not have to move the mouse away from the Image window to select the
“execute” command from a menu each time, then return to rotate the object just a bit more. Control Panel changes
do not force a new execution when in Execute Once mode. This permits the user to make changes to several
interactors before requesting a new execution using all changed values.

We’ve examined the two most common user interactions within the OpenDX environment. But this report is about
interactions between a user, a visualization environment, and a database. We have to create a larger event loop to
incorporate new input data from the database. Here’s how it works.

First, let us assume we are starting with a small data set. This means that there is no terrible performance penalty to
keeping OpenDX in Execute on Change mode. To fetch different data, say a different subset of grains that meet
some changing criterion of interest, the user needs a way to describe the desired data set. A simple approach is to
give her minimum and maximum scalar interactors and a menu interactor that permits choosing an attribute field of
interest. These parameters, the min and max range, and the field name, are provided as arguments to a Format
module which constructs a string from a template, like:

!Python_script.py dbserver database field min max10

This string is fed to Import. Since Execute on Change is selected, when the user changes any of the three input
arguments via the Control Panel, Import fires off a new “python executable and arguments” request to the OS and
sits back and waits. The Python script constructs a SQL query based on those arguments, calls SQL Server (via
ODBC), receives the results, constructs a valid OpenDX object, and returns the stream to Import. Import ingests this
DX object, then passes it downstream to the Image module. Result: an image, say with polygonal surfaces colored
according to the attribute data that falls within the min-max range specified.11

Figure 9: The Polycrystal Viewer pipeline connects OpenDX and SQL Server via Python (and its ODBC/DBI
module). By invoking scripts with UI control generated arguments, OpenDX triggers the dynamic SQL query
generation. SQL Server responds with streams of data which are transformed into DX objects by Python scripts.

The user, observing the current image (the result of the preceding execution), decides she wants a larger range,
tweaks one of the interactors, and off the whole process goes again. This is key: because OpenDX sees a new
argument list, the old data that is cached internally by Import is now seen as out-of-date so a new execution begins,
starting at Format, then Import, and on down to Image. If instead of changing the data range, our analyst simply
changes the orientation of the view, the new execution caused by releasing the mouse after rotating would only
cause Image to re-execute. Rotation does not change Import’s arguments, ergo the cached data is current, so the
database would not be called, new data would not be received, and unnecessary operations upstream of Image
would not be performed again. Likewise, if the user merely tweaks the opacity of the colored surfaces, only
operations at and below the Color module would re-execute.

This internal caching and adaptive re-execution is a two-edged sword. Most of the time, this is an enormous
productivity enhancement in an interactive session. If the user happens to reselect the same min and max values, DX
will recognize that it holds a cache object matching that specification and will quickly regenerate the resulting image

10 dbserver and database are strings provided by other Control Panel interactors. They generally remain the same for an entire

session.
11 And it generally takes far less time for all that activity than it took you to read this footnote.

Session OpenDX Python

SQL

Data DX Object

Arguments

 - 10 -

(no call is issued to Python). But the other edge of the sword is exposed if the database is being dynamically
updated. DX would not know the external data had changed, so would show the previously cached data associated
with a particular parameter string.12 In our system, we effectively sandbox the user’s access to a particular set of
databases for which the contents are static during any user visualization session.

Now that we’ve introduced the concept of (effective) loop-back to an otherwise rigidly top-to-bottom data-flow
scheme, we can describe the Pick feature. Like the Scalar module in our previous example, a Pick module is placed
on the canvas and wired into the net; it has no initial value until a pick is made. Picking is a direct interaction with
the Image window. The user clicks the mouse on any part of the displayed object. A ray, normal to the screen, is
“fired” through the object, intersecting each surface the ray passes through. The result is a pick object. We generally
prefer to fetch the precise data value associated with an actual mesh vertex rather than an interpolated value from an
in-between point. Because our aim is not always true, DX can determine the closest vertex on the actual mesh to the
arbitrary intersection point of the ray (a list, if the ray intersects multiple faces). Appendix C: The Initial Grains DX
Object shows how “grain ID” data is made dependent on grain positions in Component 5 (attribute “dep”
“positions”). Knowing the precise position of the closest vertex, DX recovers the corresponding exact data value. It
is this data — the list of grain IDs — we receive from the pick ray we shot through the polycrystal.

As with other Image interactions, picking generates a result that is not available until the next iteration of the DX
net. Consider that you must have an object displayed to make a pick, so the execution that first makes the object
cannot also contain the result of a pick. Succeeding executions can include both the object and a pick result. Unlike
the other transformation operations, Pick’s results are only useful upstream of Image, akin to the way we insert
Control Panel values into the data flow. In Execute on Change mode, picking will appear to have immediate results.
In the polycrystal viewer, the intersection of the ray with multiple faces returns a list of grain IDs. These numbers
are fed back into the net and permit us to make transparent all grains that are not in the pick list, leaving only a
“shish kebab” of picked grains (Figure 6).

More than one Pick tool can coexist in a net. Currently, we employ four; each is preset to only “hit” specified scene
objects. One is used as just described to return a list of grain IDs. Another is designed to pick subsets of tetrahedra
adjacent to grain edges. A third permits the user to select any arbitrary mesh point to become the new center of
rotation and scaling — very handy when trying to examine local regions in extreme close-up.

The fourth Pick illustrates a remarkable bit of cooperation between OpenDX and SQL Server. We named this the
Histogram_Bar Pick tool. In the polycrystal database, each grain or tetrahedron or mesh triangle may be
characterized by more than one descriptive data field. For example, mesh triangles have area, aspect ratio, and alpha
(a shape measure). These sorts of measures lend themselves to traditional visualization, i.e., charting. We first added
a simple histogram (bar chart) using the Plot module to view any specified range of these measures.

It occurred to us that the bar chart itself could serve as an interactive control. By recomposing the bar chart as a set
of quadrilateral connections with dependent data values (the counts or frequencies), we created a new object that can
be Pick’ed on. We determined that it was more efficient to manufacture this histogram in SQL Server and return it
as a DX object ready for display; it is not a very large stream, so communication time is not an issue. The call looks
like:

!Histogram.py dbserver database field number_of_bins chart_min chart_max

Naturally, the user can control the latter four arguments to customize the chart. When the histogram object is
displayed, the user simply clicks a bar and the value range for that bar is retrieved and sent via Format, Import, and
a different Python script to the database:

!Histogram2Grains.py dbserver database field bar_min bar_max

This returns an object structure containing a mask value of 1 for selected grains, that is, those grains containing
elements whose field data lies within the selected bar range, and 0 for unselected grains. Note that the grain ID data
is not contained in the bar: it is retrieved indirectly during the database procedure. Thus, we create a visualization of
data in which the visual representation itself (the bar chart) carries sufficient information to be employed as a control
to affect another visual representation (the 3-D display of the polycrystal). One use is for identifying the physical
location of outliers, like tetrahedra or triangles with undesirable aspect ratio (splinters or needles). The analyst

12 There is a menu operation that will reset the cache and force the entire program to execute from scratch, thereby fetching the
latest data from the source.

 Supporting Finite Element Analysis with a Relational Database Backend 11

displays a chart of a shape measure, then simply clicks on the most extreme bars to light up the corresponding 3-D
geometric objects (see Figure 10).

We have covered some of the essentials of OpenDX’s operational model. Next, we turn to a discussion of the
OpenDX data model in general, the specific objects we derived from that model, and the relationship or mapping
between our OpenDX object representations and our SQL data objects.

Figure 10: A Pick based on a histogram is shown. The user requested a 50-bin histogram for the JSM (Jacobian
shape measure) of tetrahedra in the range [0, 0.05]. (Tetrahedra in this range are known to be of particularly poor
quality.) The histogram caption tells us that there are 8,782,315 Tetrahedra in that model of which 1,922 fall into the
specified range. Then, the user picked the histogram bar covering the range [0.037755102, 0.038775507]. The query
sent back to the database determined that there are 24 tetrahedra in that range (noted in the 3-D image caption), and
returned the grains containing them. Pointer lines, radiating from the object center, guide the user’s attention to these
small (sub-pixel) objects.

 - 12 -

OpenDX Data Model

The fundamental power and longevity of DX (now over a dozen years old) is based on its profoundly well-
conceived and implemented data model. Figure 11 shows our formal ontological description of the OpenDX data
model. It may help to refer to this when reading the following.

OpenDX and its data model sprang from a careful analysis of how the majority of scientists and engineers organize
their data, and the elucidation of the common elements that underlie such data organization. Fundamental to this
model is the assumption that we sample data in a topological space, associate the samples with spatial locations, and
embed them in a Cartesian space for the purpose of visualizing the arrangement using computer graphics techniques.
Measurements are made at discrete times and locations in either discrete or continuous space-time. In continua, we
assume that values at other locations and times can be estimated by interpolation paths that join known
measurements.

In DX terminology, sample locations are positions, interpolation paths are connections, and sampled values are data.
Scattered data (data on unconnected positions) are supported. Regular and irregular mesh topologies are supported
as are both regular positions and irregular positions; regular positions and connections permit more efficient use of
memory (a luxury not available in our models). 1-, 2-, and 3-dimensional positions are visualizable.13 Scalar and
vector14 data, real and complex, of virtually any type (float, int, byte, etc.) may be associated with either positions or
connections, and are called position-dependent data and connection-dependent data, respectively.

 Positions, connections, and data are keywords for Components, and are bound together in Field objects.15 The Field
is the most generally useful basic object as it represents a self-contained visualizable entity. Other Field components
of interest include colors, opacities, normals, invalid positions, and invalid connections (the latter two serve as
masks).

13 Higher dimension positions are supported, but must be “sliced” to a visualizable dimension to be displayed.
14 A tuple may have many elements, for example, a 3-vector of [i, j, k]. One author has personal experience with manipulating

57-element vector data in DX.
15 For clarity, we’ll capitalize Field when referring to a DX Field Object, in distinction to the general notion of a physical or

mechanical field. Likewise, we’ll capitalize Group, Array, and some other DX keywords where the context might be
ambiguous. Other DX keywords will be italicized.

Figure 11: A dictionary of core DX concepts (OWLViz [27]) is shown. At the first level are scalar types, standard
DX Objects, and — what we prefer to call — function objects. Function objects are not DX Objects. They are
relations between and qualifiers of DX Objects. DX Components are prime examples of function objects. They relate
DX Objects to Fields (as their components). DX provides standard templates for Array objects which represent
structured positions or connectivity and which are listed under PositionsArray and ConnectionsArray. Standard DX
array components are listed under ArrayComponent.

 Supporting Finite Element Analysis with a Relational Database Backend 13

Connections over which interpolation may be performed include: lines (1-D topology which may have 1-D, 2-D, or
3-D positions); triangles and quads (planar polygons in 2-D or 3-D space); cubes and tetrahedra (volumetric
polyhedra in 3-D space). In addition — and key to our project — DX supports an edges–loops–faces construct to
describe arbitrary polygons. We assemble multiple polygonal faces to form the appearance (but not the actual
substance) of arbitrary volumetric polyhedra (which do not exist in DX as primitives).16 We also have complete
volumetric tetrahedral space-filling meshes for each grain.

Fields can be joined into Groups. Groups may contain other Groups and/or Fields, as well as other esoteric objects
such as lights, cameras, and so on. Special-purpose Groups include Series and Multigrid.17 These constrain member
type and permit some modules to work over the domain of all members within the Group. For example, the
Colormap module can automatically find the minimum and maximum value of the data in an input Field and then
generate a colormap that spans the complete range. Likewise, when a Multigrid or Series is fed to Colormap, the
module will scan all members and find the joint minimum and maximum of all the data Components. This is usually
the desirable range when showing a time series, since the values associated with “blue” and “red” will be fixed
throughout the animation.

Groups may be arbitrarily nested hierarchies (sans recursion). We take great advantage of this capability. Appendix
C: The Initial Grains DX Object shows the deeply nested structure of the initial object that contains the menu
contents for a visualization session with the polycrystal viewer.

Groups, Fields, and Components may each have any number of Attributes. Some of these are required, such as the
Attribute that declares which dependency a data Component has (example: attribute “dep” “positions”). User-
generated Attributes (“date of measurement,” “instrument model,” etc.) are passed through modules without
complaint to be accessed by the Attribute module when needed for a caption or other purpose.

Data-like Components may also have user-provided names (like “aspect ratio,” “alpha,” etc.). Component Arrays
may be multi-valued or constant. The ConstantArray is convenient for compactly assigning the same value (like
grain ID) to all parts of an object that might be Pick’ed, since anywhere you hit the object, you get the same value.

OpenDX provides a scheme in which a user-defined cache object can be created, retrieved, manipulated, and stored
iteratively within the scope of a macro. This serves, in effect, as a “For” loop construct, allowing the programmer to
accumulate a sum, append items to a list, etc. However, this routine more than any other in OpenDX exposes the
weakness of run-time versus compiled execution. The desirability of using the Get and Set modules decreases as the
number of iterations rises; at some point, the wait becomes noticeable (or irritating) to the user. We avoid using this
technique, but occasionally, it is the optimal solution to perform a necessary task.

The most efficient DX operations are Group- or Array-oriented. It is much faster to do an operation on all members
of a Group or an Array using a precompiled module than to iterate explicitly using Get and Set. When we perform a
Group or Array operation, the necessary iteration is part of the compiled module’s code. The programmer writes no
explicit iteration code: the “For” loop is implicit. Thus, whenever possible, we try to construct our objects to
facilitate such operations.

With this background on OpenDX, we can now describe how we implemented the polycrystal viewer application.

Polycrystal Viewer Implementation Highlights

A polycrystal analysis session works like this. The user can start at either Step 1 or Step 8.

1) User launches PreView (OpenDX program)

• when the DX net executes the first time, the XML file app.config (see Appendix E) is processed
by a Python script to generate a DX Object that populates variable menus

• generally, the net is kept in Execute on Change mode and responds to changes as the user makes
them

2) Choosing from these menus, the user determines a database

16 One may determine the value at any interpolated point inside an OpenDX cube or tetrahedron connection; the interior of our

arbitrary polyhedral grain is empty.
17 The OpenDX Multigrid does not have a constraint that members abut without gaps or overlap. It serves as a general-purpose

packaging scheme.

 - 14 -

3) OpenDX invokes a Python call to SQL
• a low-resolution view of a polycrystal is retrieved and displayed
• grains are simple cubes rather than arbitrary polyhedra
• cubes are scaled proportionately to grain size
• cubes may overlap/intersect in this low-res view
• cubes have colors based on any user-specified parameter

4) With various techniques, user selects a subset of grains to examine more closely
5) Selection parameters determine additional Python calls to SQL

• new data is fetched, returned, and displayed
6) Steps 2–5 are repeated ad libitum
7) When the user is satisfied, he “commits the session”

• a Python script triggers the creation of a table in the SQL Server tempdb database
• the same Python script writes a .dxsession file in the user’s work directory

8) User launches PView (OpenDX program)
• XML file app.config is processed by a Python script to generate a DX Object that populates

variable menus
• if .dxsession is present, the user can designate that it constrain the work session to the previously

selected grains (those in the tempdb table)
• PView displays the full-resolution version of the specified polycrystal or grain subset.

Here are some of the typical operations available to the analyst using PView (see also [18] for a live demonstration
of many of these operations).

1) Display an aggregate of polycrystal grains (Figure 5)
• smaller databases may be shown completely
• larger databases are best first sub-selected with PreView, as their complexity may exceed available

machine resources
• Value: observe 3-D grain structure and shape

2) Display a histogram (Figures 2 and 10)
• chart any physical field or mesh attribute data
• select bin count and specify range of interest
• chart becomes a pickable “interactor” (item 7, below)
• Value: traditional “big picture” chart-based analysis

3) Isolate grains (Figures 2, 4, 5)
• by shrinking their vertices and faces toward each grain’s local “region center”
• Value: useful for seeing “inside” the polycrystal

4) Distinguish and display 3 grain sets with a slice plane (Figure 2)
• sets are: intersected by, “in front of,” and “behind” the plane
• opacity of each set may be varied from fully transparent (hidden) to fully opaque
• animate the slice plane over a range along its normal direction
• Value: reveal interior structure of the polycrystal

5) Select grains with a slice plane
• the grain set intersected by the plane becomes the selected set
• in distinction from item 4, this operation also returns additional data needed for intersection (item

12, below)
• Value: select a set of adjacent grains over an area

6) Select grains with a pick ray (Figure 6)
• the grain set along the ray becomes the selected set
• highlight all selected grains
• show any single grain on the intersection list
• invert the set (show “unselected” grains)
• pick ray may be constrained to hit grains within only one of the current slice plane sets (item 4

above)
• Value: select a set of adjacent grains along a line

 Supporting Finite Element Analysis with a Relational Database Backend 15

7) Select a grain set by histogram bar picking (Figure 10)
• highlight the grains that contain field values in the range of any histogram bar
• invert the set
• Value: explore the polycrystal indirectly by field data selections

8) Select grains by text ID
• type in a list of one or more grain IDs
• invert the set
• Value: provides direct access/return to known IDs

9) Show surface mesh features (Figure 4)
• wireframe (triangle edges)
• all triangles (as polygons)
• triangles within a criterion range for a specified attribute field
• triangles within the field range specified by the complete current histogram or the currently picked

histogram bar
• Value: search for and inspect badly-formed elements (mesh generation artifacts)

10) Show volumetric features
• same choices as for surface mesh, with attribute field types appropriate for tetrahedral volume

elements
11) Display pointer rays (Figure 10)

• rays emanate from the center of the polycrystal bounds box and terminate at the centers of selected
triangles or tetrahedra

• Value: highlight very tiny elements which may be invisible at default zoom length
12) Intersect selections

• intersect the current mesh (item 9) or volume selection (item 10) with the current grain selection
(items 5–8)

• display only the common elements
• Value: reduce complexity of display and focus on correlations

13) Display topological edges
• these are elements of the representative polyhedral faces (distinct from the computational mesh

edges)
• color edges by edge ID or by junction count (number of faces sharing that edge)
• display edge ID labels
• select a topological edge to show the tetrahedra in adjacent grains that share that edge

14) Display statistics (Figures 2 and 10)
• “number of current triangles,” “IDs of grains currently selected,” and so on

15) Display continuous physical/mechanical fields (Figure 6)
• fields are mapped from the FEM to the appropriate geometric elements by SQL Server
• user can manipulate colormaps
• color is interpolated across surface or volume mesh by OpenDX renderer
• Value: displays the results of FEA on either the computational mesh or the representative (face)

objects
16) Animate time step data

• for data sets with “cases”
• play flip-book animation over a series
• Value: observe temporal change of a parameter

17) Change view point
• rotate, pan, zoom, fly
• set the point of rotation and center of zoom to any selected feature or to the polycrystal as a whole
• Value: enables close inspection of details in 3-D

Let’s talk in detail about a few of these PView operations. First are the general techniques for selecting a set of
grains.

 - 16 -

Grain Sets (Nos. 4–8)18

Earlier, we described how the analyst makes a selection with the pick ray and histogram bar pick tools. Now, we
describe how OpenDX and SQL communicate this information to each other.

When PView is launched, a data set is selected and the parameters are sent via Python to SQL Server. The returned
DX object is a Group (Appendix C: The Initial Grains DX Object). This Group contains three members: a Field with
the true bounding box of the polycrystal,19 a Field with the bounding box of all vertices in the polycrystal database,20
and a Multigrid containing the geometry and initial data values for each grain. Since each grain Field object is
structurally similar, we bundle them into a Multigrid.21 The chief virtue of bundling is that Multigrid members have
“grain ID” string identifiers by which we can select subsets. Each Field carries the positions, edges, loops, and faces
that permit us to display the grains as (hollow) polyhedra. Each Field also contains Components that hold grain ID,
region center (3-vector), and data which identifies each grain’s set membership.

To change the visibility of grains based on a selection, we could ask the database for a new Multigrid of grains, in
which each member has the appropriate set membership data. If a grain is selected, this value is 1; if a grain is to be
hidden, the value is 0.22 Theoretically, we could substitute the new Multigrid for the initial grains Multigrid since the
two objects would have the same structure, member order, and member count. In practice, that would be inefficient.

There are two communication issues here: first, how do we tell SQL Server which grains are selected? And second,
isn’t it going to be costly to send all the geometry and face data for grains, over and over again, each time a new
selection is made? After all, the only things that change due to a selection are the set membership values.

As to the first point, we promptly discarded the idea of sending a variable-length string list via Python as likely to be
fraught with difficulty. Very large polycrystals subjected to arbitrary selections would generate potentially very long
character strings. This would almost certainly wreak havoc in the handoff from OpenDX to Python to SQL Server.
Instead, our selection routines are designed to send small (no more than a few dozen bytes), fixed size, and clearly
defined packages of information to the server. For the slice plane operations (items 4 and 5), the direction of the
normal and a point on the plane are sufficient to parameterize a stored procedure that can determine, on the SQL
Server, into which set each grain falls. The histogram bar pick needs only send the currently selected field attribute
and the minimum and maximum value of the selected bar for SQL to determine which grains contain data in that
range.

With regard to the issue of minimizing data transfers, we structured our objects to take advantage of the inherent
efficiency of Group-oriented operations. On the first execution of PView , we acquire a full “initial” Multigrid with
all the necessary geometry information at a very coarse level of detail. Conveniently, the Replace module permits us
to “copy and paste” Components from one object to another, as long as the structures of the objects are compatible.
To update all the data Components (one per Field) in the initial object, we discovered that we need only return a
“skeletal” Multigrid object from SQL Server: it has to retain the same member count and order of members but each
member contains only a single Array. Replace traverses the two objects member by member, and performs a one-to-
one substitution overwriting the Arrays in our old data Components in the full Multigrid with the new data Arrays,
thereby changing the set membership of each grain as we drill down and refine the level of detail in some regions of
the model. The replacing object is illustrated in Appendix D: The Histogram Bar Selected Grains DX Object. The
replacement Multigrid is member 0 of the Generic Group; members 1 and 2 contain ID lists used for captions and
the intersection routines (item 12 in the operations list above). The new Multigrid always has the same number of
members, equal to the number of grains in the initial object. The user controls the display of the 2 or 3 grain sets,
and may hide any or all by making their opacity equal to 0.

Selections based on a pickray or text-based ID selections are even easier and are both made entirely on the DX side
with no communication to the database. The pick ray passes through the polycrystal object. As it intersects a face of
a grain, OpenDX determines the closest actual vertex (found in the grain positions). Since we associated a grain ID
with each position in the original Multigrid, that data value is easily recovered. The ray passes through each grain an

18 Nos. refer to items in the immediately preceding operations list.
19 Even if no grains are selected, this box visually indicates the polycrystal’s domain — the valid target area for picking.
20 Some databases may have vertices that are not connected to any face; these probably should be cleaned out, but this box serves

as a diagnostic of their existence.
21 Their structural similarity logically implies — but does not require — the use of a Multigrid. In fact, a Generic Group would

work.
22 In the slice plane display mode (No. 4), the intersected set has value 2, the “behind the plane” set is 1, and the “in front” set is

0.

 Supporting Finite Element Analysis with a Relational Database Backend 17

even number of times, entering and exiting more than once if the grain has a complex shape, so the pick ray’s grain
ID list will have at least two identical entries. We use the Categorize module to reduce the list to unique grain IDs.
For text-based selection, the ID list is taken directly from the dialog box. Recall that each member of the grains
Multigrid is identified by its grain ID. When fed the string list of names and the grains Multigrid, the Select module
extracts the subset of named members.23

In contrast to the Multigrid Replace scheme, the output of Select is a Multigrid with (generally speaking) fewer
members than were in the input. The opacity of the single resulting subset is under user control. Unselected grains
are not included in this reduced set, so do not show at all.

To summarize: in some cases we send and receive minimal information, because finding the grain set is more
efficient using SQL Server procedures and spatial indices. In other cases, OpenDX provides a fast native scheme to
show only selected items without any communication with the database.

Grain Isolation (No. 3)

While OpenDX’s Isolate module can shrink DX-native volumetric objects toward their respective centers, this
module does not accept our arbitrary polyhedral grains. To achieve the same effect, we added the region center
Component to the initial Multigrid of grains. It is a trivial and efficient Group and Array operation in Compute to
scale each vertex along the direction vector from the grain’s region center to the original vertex location, with the
expression:

Position_A + (scale_factor * (Region_Center_A – Position_A))

where Position_A is an array of vectors with variable values, Region_Center_A is a constant array with effectively
the same vector value at each index, and scale_factor is a single scalar provided by the user via a Control Panel.

Because edges, loops, and faces are all attached to positions by reference (directly or indirectly), they are
automatically dragged along to the new locations, retaining the same polyhedral shape.24

This operation is very efficient because DX automatically iterates over each Multigrid member to fetch its data and
region center Components, then iterates down these two lists of items to generate the corresponding output list. This
doubly-nested iteration is handled entirely by a single Compute, using the expression shown.

This is an example of a routine that we first tried implementing in the database. The user controlled an “isolate
factor” Scalar and that value was relayed to SQL Server which calculated and sent back new grain geometry. That
was a far more costly approach (communication time and network load) and was abandoned once we thought of the
region center solution. It serves, though, to make the larger point that our system has such flexibility that we can
pick and choose where best to perform operations, depending on a number of determining factors, such as
computational efficiency, communication load, and interactive performance. While our first solution worked, when
we began optimizing our overall data-flow, we saw that shipping the small additional region center component at
the outset permitted arbitrary resizing of grains with a much smaller total communication cost.

Histogram (No. 2)

The display of a data histogram illustrates the benefits of both SQL Server and OpenDX. It is not feasible to ship all
the stored field data for all cases from SQL to OpenDX — that’s why we’re using a database in the first place! The
trade-off then becomes whether we send requested data in the form of an array of values or if we send a more
structured object. If we send only an array, it would reduce network traffic, but when it arrived, we would have to
wrap it in a structure (like a Field) to display it. The structuring work takes a bit of extra time and consumes more
memory. After experimenting with both solutions, we chose to return a complete DX Object from SQL. This
OpenDX Field object consists of a list of 1-D positions (along the X-axis) spanning the minimum to maximum of
the desired range, connected by lines (the number of lines equals the number of bins requested by the user), with the
data (counts) mapped to each connection element. OpenDX’s Rubbersheet module extrudes each line segment in
the Y direction, proportional to the data, converting our 1-D line into a set of 2-D quadrilaterals (the bars).
AutoColor applies a color based on the count for each segment. The AutoAxes module dresses the graph with labels
and tick marks. By virtue of being DX objects, the bars may be picked to return information about their individual
ranges; we described earlier how this is used by the histogram bar pick routine. This shows a typical division of

23 Select actually ignores duplicate entries, but we also send this list to a menu for the user to select one grain at a time; there,

duplicate entries would be annoying.
24 Shape is retained within limits, especially in the case of complex grain shapes with concavity. Things will get ugly if you

shrink them too far!

 - 18 -

labor between SQL and OpenDX. SQL does the subsetting and some basic calculations; OpenDX does all the work
needed to render the information.

Physical/Mechanical Field Display (No. 15)

Case studies generate enormous amounts of physical data, far too much to ship to OpenDX before it is requested. In
fact, until the user specifically calls for a particular field mapped onto a particular geometry, the data for that
mapping may not even explicitly reside in a database table. That is, many physical or mechanical measures
inherently “live” on tetrahedral volumetric finite elements within grains. But the user may wish to see that data
mapped to the surface mesh of a grain. These values are only computed on demand.

Similar in overall structure to our grains Multigrid, the initial surface mesh Multigrid is a Group of Fields whose
connections are triangles (instead of edges, loops, and faces). This mesh is downloaded from the database and
displayed when the user requests it. Initially, the data values are simply grain IDs. This is a large object due to all
the positions and triangle connections it contains to describe a complex mesh, so we only ship it once.

When a request is received to map physical data to this surface mesh, a SQL Server stored procedure performs the
necessary interpolation from volume element-based data to node-based (position-dependent) data. The overall
structure of this sparse Multigrid with (only) mapped field data matches the initial surface mesh Multigrid,
permitting Replace to efficiently swap the new physical data for the placeholder data.

Intersection of Selections (No. 12)

Triangles and/or tetrahedra may be displayed independently of the current grain selection. Once a grain selection has
been made, it can be intersected with either a triangle selection or a tetrahedron selection or both. The intent of
intersection is to simplify the display so we can more easily identify the grains that contain certain mesh elements,
like triangles with distorted aspect ratios. That permits viewing tiny mesh elements in the larger context of the grains
which contain those elements; generally, one would adjust the grain opacity to a semi-transparent setting, turn on the
“pointer rays” feature (No. 11), then zoom in for close inspection of the elements at the end of the pointers.

Triangles and tetrahedra are selected in one of three ways: by specifying an attribute and a criterion range for that
attribute (such as “triangle aspect ratio” between 0.01 and 0.03); by specifying a histogram field and range; or by
selecting a histogram bar, thereby choosing its field and sub-range.

Our DX object description of the selected triangle set is a Group containing a Multigrid with a member for each
face. Within each member, a Field holds the geometry and topology for the one or more triangle elements on that
face that meet the current selection criteria; if no triangles on a face meet the criteria, the face is excluded from the
Multigrid.

The top-level Group also contains an Array that holds the list of unique face IDs in the current selection. There is no
efficient way to derive this Array in OpenDX (we would have to iterate over the Multigrid member names), but it is
simply done in SQL Server. We decided it was, on balance, more efficient to ship this list instead of building it
iteratively in OpenDX.

When we make a grain selection with the histogram pick tool or with the slice plane selector, SQL Server knows
which grains are in the “selected” set and it attaches to the replacement object an Array listing these IDs. Appendix
D: The Histogram Bar Selected Grains DX Object shows the replacement object structure. It is a Group with three
members. The first member is the “skeletal” Multigrid we described above in our discussion of Grain Sets. The
latter two members contain the string list of currently selected grains, and the list of all faces on those selected
grains. Each list contains only a single reference to each unique value. The object returned from a slice plane
selection has the same structure.

In the Grain Sets discussion, we described how a pick ray selection returns a list of unique grain IDs. We have to do
a bit more work to generate the unique face list for a pick ray selection. Since we do not communicate with SQL
Server, we have to accomplish this in OpenDX, and this requires Get-Set iteration. (Figure 12) For each grain in the
Multigrid, we extract its face ID Component (face ids str in Appendix C: The Initial Grains DX Object) and build
one list from these input Arrays.25 Once we have that combined list object, we resume efficient native DX operations
and Categorize the unique face ID list.

25 The number of iterations equals the number of grains in the input list. A pick ray will contain O(n1/3) items, where n is the

number of grains in a roughly cubic polycrystal. We decided this would not be onerous for n � 105.

 Supporting Finite Element Analysis with a Relational Database Backend 19

At this point, we have a grain selection and the face list on those grains, and a triangle selection and the face list
containing those triangles. How do we intersect these different kinds of objects?

To intersect the triangles object with the grains object, we simply Extract the face IDs Arrays from each object and
append one list to the other. We know in advance that each list contains only one reference to any particular face ID.
This joint list is then run through Categorize to build a lookup table of face IDs in the joint list. CategoryStatistics
returns a count of the number of occurrences of each unique face ID. If there is only one occurrence, that face ID
only occurs in one list or the other, so we eliminate it. If there are two, we know that face must occur in both lists, so
we include it in the list of faces to Select from the faces Multigrid for display.

Intersecting tetrahedra is similar but we use the grain ID lists provided in each object to build our joint list. We don’t
need to iterate, since we already have a complete unique grain ID list regardless of selection method.

To close our discussion of visualization techniques, we illustrate the iterative macro that builds the list of faces. The
OpenDX networks are shown in Figures 12 and 13. The point of this illustration is to point out the lone case where
“circular logic” (or “data running uphill” if you like) is permitted in OpenDX. The right-hand connection from
SetLocal to GetLocal shows that they share a common cache object, here the growing list of face ID values. On
entry into this macro, GetLocal has a null value. On each iteration, the data (list of face IDs) from the next member
of the input Multigrid is appended within List, then stored in the cache, for retrieval on the next iteration. After all
input items are processed, the complete list is emitted from the macro’s output. The macro is shown as it appears in
a net, in Figure 13 below.

Figure 12. An iteration macro
(BuildListFromMultigrid)

Figure 13. The BuildListFromMultigrid used in a
network program

CAVE

We already discussed visualization techniques to limit view complexity. An immersive projection environment can
increase the richness of what we are able to comprehend visually by providing more pixels, by providing 3-D, and
by providing a wrap-around visual space. Immersive environments aid distance perception in two main ways:
stereoscopic view by showing separate images for the left and right eyes, and motion parallax by changing the
display as the viewer’s head moves. Complicated geometry is easier to understand in stereo on a desktop or in a
fully immersive environment.

Rewriting the visualization application to run immersively was not an option – that would be too much work. There
are several visualization packages, similar to OpenDX, which run either on the desktop or completely in a CAVE,
meaning that every menu, dialog box, and window appears within the immersive environment where the user can
change values and manipulate the simulation (AmiraVR, COVISE [32].) We determined that a simple extension to
OpenDX would give us both stereo display on the desktop and immersive display in the CAVE without significant
modifications to the DX net.

 - 20 -

We wrote an extension module for OpenDX which sends geometry over the network to client applications. We then
wrote two client applications, one to show stereo images on the desktop and one to run immersively in the CAVE.
The result is that a researcher with a Tablet PC can walk into the CAVE, load an OpenDX visualization on the
tablet, and fly through it immediately using the CAVE wand controller.26 Because we need to enter numbers and
navigate the quite complicated DX net, a hybrid solution using both the Tablet PC for net manipulation and typical
CAVE controllers for exploring the resulting model works quite well.

The CAVE program is written in SGI Performer for Windows. It talks with OpenDX using .NET27 Remoting or
sockets. A disadvantage of sending the model across the network every time the DX net changes is that each change
to a model initiates a transfer to the CAVE of all the model structure, which can take up to a few seconds. While this
seems quick, it is too slow for smooth movies. We may be able to use caching mechanisms in the future to enable
the CAVE program to show movies as smoothly as OpenDX on a local client.

OpenDX for Windows

OpenDX was originally developed by IBM as the IBM Visualization Data Explorer (DX) product supported on
IBM’s Power Visualization Server (PVS), SP series of supercomputers, and on a variety of UNIX Workstations.
IBM open-sourced the software in 1998 as OpenDX. Since then the open source community has provided support
and new development. Microsoft recently funded the enhancements described below.

The DX/OpenDX software package originally consisted of two major parts — an Execution Environment that
interprets visualization programs and produces visual displays, and a Visual Programming Environment that
supports creation of visual programs through an intuitive drag-and-drop and connect-inputs-to-outputs style. The
code in both of these parts utilized a sophisticated (and complex) multi-process architecture, drawing on elements of
UNIX process structure and on X11 client/server communication. OpenDX windowing and window management
are based on X11/Motif, for the most part using fairly basic windowing primitives, rather than the higher level
windowing libraries which are more common today. Though this structure has aged quite well over the years since
its original development, it is clearly time to update the architecture to match current technologies and demands.

Since 2002, Microsoft has funded a major overhaul of OpenDX, to eliminate platform dependencies via a system
independent core, then add comparable but separate code threads that support both a UNIX-native and a new
Windows-native implementation. One benefit of this work will be that OpenDX is available using native Windows
capabilities — with consequent performance benefits. A less obvious but very significant aspect of the work is a
cleanup of the common core code, ranging from its windowing to process management, which should provide
benefits to UNIX and Windows users, as well as to those in the open-source community who are working to extend
the code. Because this overhaul affects the base architecture, it has been a major project with the potential to “touch”
virtually every line of code in the system. It is now nearing successful completion, and the new code should be
released soon [31].

To help describe what is new and better, it is helpful to describe the OpenDX overhaul in a bit more detail. There
are two key aspects in revising the code. The first step is to develop a basic, system-independent strategy for inter-
process communication — something that will work for both UNIX/X11 and for Windows. This is then applied to
produce a common core, with separate UNIX/X11 and Windows threads from that core. The second step is to
develop a basic, system independent strategy for windowing — something that will work for both X11 and
Windows. Again, this has to be applied to produce a common core, with separate UNIX/X11 and Windows threads.

With this as the basic strategy, work started first on the Execution Environment. The work went as planned, and
produced the common core, UNIX thread, and a new native Windows code thread. The changes required in the core
were few but significant. The changes were (for the most part) transparent in the UNIX environment. And for the
first time a version of the Execution Environment was available that executed on Windows systems. Prior to this
there had been a version of OpenDX available that had some internal “tweaks” to patch the process management and
used an X11 emulator to manage the windowing on Windows systems. The new version of the OpenDX Execution
Environment has redesigned process management to utilize Windows process management capabilities, and more

26 A wand controller is a hand-held pointing device (“virtual stick”) commonly used to navigate and manipulate immersive

spaces.
27 .NET is a Microsoft coinage of recent vintage. DX has called its programs “nets” and saved them with the suffix “.net” since

1991.

 Supporting Finite Element Analysis with a Relational Database Backend 21

importantly now displays OpenGL and non-OpenGL native graphics windows without requiring any X-Windows
emulation. This version has been widely distributed over the last 18 months and has proven to be very robust [31].

The second step of the project was to create a comparable native executable for the Visual Programming
Environment (VPE). Due to major differences between the two windowing paradigms, X11 code (particularly its
process management features) could not simply be mapped directly to comparable Windows constructs. Instead
protocols were developed to translate X-based “patterns” to comparable Windows-based patterns. These include the
following.

• For window manipulation, we developed a “proof of concept” version of the UI under which the core code, minus
X11/Motif dependencies, pops up a Windows Forms-based wrapper VPE which loads visual programs, executes
them, and displays the resultant image within an Image window.

• For the complex X11 process-to-process and client/server dependencies, threads now communicate with sockets
instead of using X11 client/server calls. Communication between graphic windows is passed across threads. The
VPE is integrated with the Executive by recasting the Executive as a thread instead of a separate process. The
major changes occur within the VPE code. Very little of the core Executive code has to change from the original
UNIX-based renderer.

• To promote additional development, we developed a simple C# application to show users how to interact with the
new threaded executive. This also helps illustrate our vision for how the UI should be redesigned.

At this time, the entire VPE is being rewritten to use Microsoft's C# programming language, retaining the original
structure wherever possible but also recreating key parts of the system to better match with Windows windowing
capabilities. We have recreated C# versions of the key base classes of the UI. What remains is to push this process
through the entire system, collect and test the parts, and prepare the system for public distribution.

Practical Considerations

For scalability, the polycrystal viewer actually consists of two DX applications, the previewer called PreView and
the actual viewer called PView. The previewer is mainly a navigation aid, allowing the user to quickly identify a
grain subset of interest, and it operates at reduced geometric resolution (grains rendered as boxes). Typical
selections for subsets include the grains contained in box-shaped or spherical probes, grains hit by pick rays, grains
intersected by slice planes, or all surface grains. Such a subset can then be further explored at the full geometric
resolution in the main viewer. The previewer and the viewer do not communicate directly, but via a “session” table
in the database. In session mode PView uses this table to factor out subquery requests.

When opening the Windows Task Manager, a user running PView will notice four key players competing for local
CPU and RAM resources: dxexec.exe (DX Executive), dxui.exe (DX User Interface), python.exe, and
exceed.exe (X Windows and OpenGL rendering). OpenDX is not noted for its small memory footprint so
having plenty of RAM is important. For PView, 2 GB of RAM is the recommended minimum on 32-bit systems.
Generally, we have seen better performance on systems with multiple CPUs or CPUs which support
Hyperthreading. We did some experiments with multi-threaded versions of the Python scripts, multiple connections,
and query re-ordering. We found that performance improved by 10-40% on slow Internet connections; likewise,
performance was enhanced on true SMP systems (no Hyperthreading). In our experiments, the physical network
(100 Mbit/s Ethernet or better) has virtually never been a bottleneck. With a few exceptions, in the application
design we tried to limit the traffic across the network as much as possible and favored data processing (like
interpolation) on the server, especially when it resulted in a traffic reduction.

The amount of data in a polycrystal model largely depends on the geometric complexity of the model. The
complexity can be quantified to some extent by considering orders of magnitude for object counts like the ones
listed in Table 1.

 Faces per Grain Vertices per Loop Triangles per Face Tetrahedra per Region

Type 1 101 100 101 103

Type 2 101 100 102 103

Type 3 102 101 102 104

 - 22 -

Table 1: Orders of magnitude for object counts.

The scatter for a particular model can be considerable: we have seen models which had grains with as many as
328,000 and as few as 15 tetrahedra in the same model. (Particles, which we haven’t discussed in this report,
amplify this effect even further.)

The topological decomposition of a polycrystal into vertices, loops, and faces is the backbone of any visualization
using PView and is loaded at startup. A description of the underlying DX object can be found in Appendix C. At its
heart is a DX Multigrid with as many members as there are grains in the model. Each member in turn contains
Arrays for positions, edges, loops, and faces. What comes across the wire from the database is not the DX object; it
is assembled by a Python script. Besides adding the right keywords, it has to renumber all objects, since DX
positions are assumed to start at 0 (within each member!) and to be contiguous.28 For not particularly small models
(>50 grains) that can take longer than transferring the raw data! Depending on its type, say for a 1000-grain model,
the size of the corresponding DX object varies between 2 and 15 MB (ASCII). Another basic object which is
important for rendering physical data is the surface mesh. For a 1000-grain model, a surface mesh has roughly 105–
106 triangles. Ignoring the vertex positions, each triangle accounts for 16 bytes (triangle ID + 3 corner ID integers).
However, the associated DX object is more than twice the total size. Since each grain has its “own” surface mesh
there are two copies of each triangle (except the ones owned by external topological faces). In terms of the above
example (1 M triangles), this translates into about 40 MB and a few seconds across a Fast Ethernet connection.
Again, the renumbering is the bottleneck and takes about twice as long as the transfer across the network. Because
of the “Replace trick,” which is described in the section on implementation highlights, the load of the topological
decomposition and the surface mesh is a one-time cost. Switching to a binary format and tasking the database server
with the renumbering will result in a speedier startup and take a load off the client CPU.

Towards Visual SQL

“The translation of one language into another is not a process of translating each proposition of the one into a
proposition of the other, but only the constituent parts of propositions are translated.” (Wittgenstein [30], 4.025)

Although we have been quite successful in meeting the requirements set out for the polycrystal visualization, the
design we finally arrived at is far from exhausting what is feasible with today’s commodity hardware and software
and it required a substantial effort of various domain experts. What is worse, we effectively did what Wittgenstein
suggests is the wrong way to translate the problem — we laboriously translated the concepts more or less one-for-
one. The more general question we are trying to answer is this: what is our vision for a system in which a single
researcher or engineer could obtain comparable results, a more customized solution, in a matter of a few days?

Even today, the interaction between scientists and visualization experts looks frequently as described in [2]:
“Visualization experts are often called upon to help scientists to import and visualize their data. The scientists may
not be able to completely (or even consistently) describe how their data set is organized, but the information may be
available, embedded inside the data file.” (Chapter 6, page 92). Very much to the point, the chapter is entitled
“Mystery Data.” It contains a description of a nifty little tool — the DX Data Prompter — which allows a user to
examine the data stored in a file and gather additional information needed to produce a rudimentary visualization.
The simplicity of a Q&A type interface to create visualizations is certainly intriguing, but has its clear limitations
when it is solely based on files and not augmented by additional domain knowledge.

The development of the original desktop version of PView went roughly as follows: there was an extensive
exploratory phase during which we probed different targets in the DX data model to map the polycrystal models
onto. (At that point, the polycrystal models were already stored in SQL Server 2000 databases.) Once we had a
satisfactory solution the remaining activities consisted of the following:

• Adding new features

• Programming around deficiencies in the DX event handling and UI programming

• SQL optimizations (indexing, user-defined functions)

• Plumbing (Python, XML)

28 The correct thing to do is to push the renumbering, which is nothing but a join with a lookup table, back onto the server. The
lookup tables can be generated as part of the general initialization after bulk loading the model.

 Supporting Finite Element Analysis with a Relational Database Backend 23

We can certainly think of quite a few cosmetic changes to both database interfaces and visualization tools, which
would have made our job a lot easier. For example, having a DX database module or a way to embed SQL into
Python would be neat. With the .NET integration into SQL Server 2005 [4], it would be fairly straightforward to
build some kind of a “DX shell” into SQL Server. We call these changes “cosmetic” not because we want to suggest
they are easily made, but because they do not fundamentally change the way we’ve done visualization so far.

In a more abstract sense, creating a visualization of a scientific or engineering domain (like metallic polycrystals)
means to translate or mimic concepts of the application domain ontology [24,25,25] in the visual domain (visual
language [22]) and vice versa. In practice, the main impediment in this mapping or coupling process are mystery
data — the absence of an explicit and/or formalized representation of a domain’s ontology, including its data model.
The database schema is an example of a data model — a file format is not! A populated database — an instantiated
schema, — stores facts about objects and the relational calculus can be used to derive new facts. SQL is quite
exceptional in that in addition to a data definition language brings with it an “ontology engine” through the
relational calculus. However, more general ontology frameworks are necessary (not all data sets live in databases!)
and can be defined, for example, in the Web Ontology Language (OWL) [25] and instances can be defined using a
framework like the Resource Description Framework (RDF) [24]. Given descriptions of both the application data
model and the visualization data model plus an interpretation — a user provided coupling of base objects — a
compiler-like generator should be capable of creating mappings to the respective back ends (e.g., SQL queries, DX
objects) and synthesize an (initial) custom visualization application.

Summary

This concludes the trio of articles describing an FEA system with an off-the-shelf visualization system and a
database backend. The first article laid out the requirements for a modern Finite Element Analysis system. It argued
that one needs an integrated system to design the model, create the mesh, run and steer the simulation, manage the
data outputs of each of these steps, and then manage the visualization and analysis of the resulting data. The second
article described how we mapped the data management problem onto a modern relational database system,
Microsoft SQL Server 2005, and discussed the benefits and limitations of that approach. This article discussed the
actual analysis of the resulting simulation data and the use of an off-the-shelf visualization system OpenDX. It
showed OpenDX lets us interactively analyze a multi-terabyte database resulting from a week-long simulation run.
This system has been deployed and is being used by a dozen people at Cornell and in the SIPS project.

We believe our experience with FEA of polycrystalline metals has broader applicability. Most of the FEA
simulations we see seem to have similar data management and visualization problems. It seems likely that the
techniques described here could be applied in other disciplines.

 - 24 -

Acknowledgements

We gratefully acknowledge the support of the Cornell Theory Center, DARPA, Microsoft, Microsoft Research, and
Northrop Grumman. We would like to thank the following researchers for providing microstructure modelers and
data sets: Anthony R. Ingraffea and the Cornell Fracture Group, Anthony D. Rollett and Steve Sintay of Carnegie
Mellon University, and Antoinette Maniatty and David Littlewood of the Rensselaer Polytechnic Institute.

References

1. http://www.opendx.org
2. Thompson, D., Braun, J., Ford, R.: OpenDX – Paths to Visualization. Visualization and Imagery Solutions, Inc. (2001)
3. Heber, G., Gray, J.: Supporting Finite Element Analysis with a Relational Database Backend – Part I. Microsoft

Research Technical Report, MSR-TR-2005-49 (2005)
4. Heber, G., Gray, J.: Supporting Finite Element Analysis with a Relational Database Backend – Part II. To appear.
5. http://www.microsoft.com/sql
6. Butler, D.M., Bryson, S.: Vector-bundle classes form powerful tool for scientific visualization. Comput. Phys. 6 (6)

576-584 (1991)
7. Butler, D.M., Pendley, M.H.: A visualization model based on the mathematics of fiber bundles. Comput. Phys. 3 (5)

45-51 (1989)
8. Daconta, M.C., Obrst, L.J., Smith, K.T: The Semantic Web. ISBN: 0-471-43257-1, Wiley Publishing (2003)
9. Passin, T.B.: Explorer’s Guide to the Semantic Web. ISBN: 1-932394-20-6, Manning Publications (2004)
10. Haber, R., Lucas, B., Collins, N.: A data model for scientific visualization with provision for regular and irregular

grids. Proceedings of the 2nd conference on Visualization '91 , IEEE (1991)
11. Howe, B., Maier, D., Baptista, A.: A Language for Spatial Data Manipulation. Journal of Environmental Informatics 2

(2) 23-37 (2003)
12. Kochevar, P., Ahmed, Z., Shade, J., Sharp, C.: Bridging the gap between visualization and data management: a simple

visualization management system. Proceedings of the 4th conference on Visualization '93, IEEE (1993)
13. Kochevar, P.: Database Management for Data Visualization. Technical Report 94/40, University of California,

Berkeley (1994)
14. Zeiler, M.: Modeling Our World – The ESRI Guide to Geodatabase Design. ISBN: 1-879102-62-5, ESRI Press (1999)
15. Lucas, B., Abram, G.D., Collins, N.S., Epstein, D.A., Gresh, D.L., McAuliffe, K.P.: An architecture for a scientific

visualization system. Proceedings of the 3rd conference on Visualization '92, IEEE (1992)
16. Treinish, L.A.: A function-based data model for visualization. In Proceedings of IEEE Visualization (1999)
17. Zomorodian, A.J.: Topology for Computing. ISBN: 0-521-83666-2, Cambridge University Press (2005)
18. The Cornell Fracture Group Polycrystal Viewer – A video prepared by Chris Pelkie, Cornell Theory Center (2004)
19. http://www.python.org
20. http://activestate.com/Products/ActivePython/
21. Pilgrim, M.: Dive Into Python. Apress, ISBN: 1-59059-356-1 (2004)
22. Chang, S.-K., Ichikawa, T., Ligomenides, P.A.: Visual Languages. ISBN: 0-306-42350-2, Plenum Press (1989)
23. Cavalcante-Neto, J.B. et. al.: An Algorithm for Three-Dimensional Mesh Generation for Arbitrary Regions with

Cracks. Eng. Comput. (Lond.) 17(1): 75-91 (2001)
24. Powers, S.: Practical RDF. ISBN: 0-596-00263-7, O’Reilly (2003)
25. Web Ontology Language OWL/W3C Semantic Web Activity
26. Date, C.J.: The Database Relational Model: A Retrospective Review and Analysis: A Historical Account and

Assessment of E. F. Codd’s Contribution to the field of Database Technology. ISBN: 0-201-612941, Addison-Wesley
(2000)

27. The Protégé Ontology Editor and Knowledge Acquisition System, Stanford Medical Informatics (2005)
28. SWOOP — Hypermedia-based OWL Ontology Browser and Editor (2005)
29. Lacy, L.W.: OWL: Representing Information Using the Web Ontology Language. ISBN: 1-4120-3448-5, Trafford

(2005)
30. Wittgenstein, L.: Tractatus Logico-Philosophicus. Translated by C. K. Ogden, ISBN: 0-7607-5235-4, Barnes & Noble

Books (2003)
31. http://www.opendx.org/developer.html
32. http://www.hlrs.de/organization/vis/covise/

 Supporting Finite Element Analysis with a Relational Database Backend 25

Appendix A: Modeling Microstructure

Figure 14: RD, TD, and ND views of a scanned
polycrystalline microstructure and its re-
presentation in a model. (Scanned microstructure
and data courtesy of Anthony D. Rollett, Carnegie
Mellon University). The microstructure shown
here is the result of rolling the raw material: a
structure of (more or less) evenly shaped grains
turns into a stacked structure of pancake-like
grains. The top scan shows the structure from the
perspective of an observer looking into the rolling
direction (RD). The middle scan is a view from
the side through the layers of the pancake stack
(TD). The scan at the bottom shows the stack
viewed from the top of the stack — the flat side of
the pancakes (ND).

 - 26 -

Appendix B: The Menu Initialization DX Object

 Supporting Finite Element Analysis with a Relational Database Backend 27

Appendix C: The Initial Grains DX Object

 - 28 -

 Supporting Finite Element Analysis with a Relational Database Backend 29

Appendix D: The Histogram Bar Selected Grains DX Object

 - 30 -

Appendix E: The Structure of app.config

<?xml version=’1.0’ encoding=’UTF-8’?>

<appSettings>

 <server name=’server1’>

 <db name=’model1’ />

 <db name=’model2’ hasVolumeMesh=’true’ />

 </server>

 <server name=’server2’>

 <db name=’model3’ hasMechanics=’true’>

 <Case id=’4711’ steps=’0 12 25 34 55’ hasFCC=’true’ />

 </db>

 </server>

</appSettings>

This configuration file informs the PreView and PView applications (via the menu initialization DX
object described in Appendix B) about models’ features and lets them customize the menus on the
various control panels accordingly. Database server server1 hosts models model1 and model2.
Since no further attributes are provided, the applications will assume that only the unmeshed
topological decomposition of a polycrystal is available. When model1 is the current model, the set of
fields for which a histogram can be generated will automatically be limited to an appropriate subset
and, for example, an option for plotting the area distribution for surface triangles will not be available.
Switching to model2 will enable this option, since the hasVolumeMesh attribute indicates that, in
addition to a surface mesh, there is actually a volume mesh stored as part of the model. The server
called server2 hosts a database called model3 for which an FEA was performed, as indicated by
the hasMechanics attribute. The database contains results (e.g., displacement and stress fields) for
a case with the id 4711 and at least steps 0, 12, 25, 34, 55 (there could be more). The hasFCC
attribute indicates that the model was run with an FCC plasticity material model which triggers DX to
provide additional options (plastic slip, etc.) among the features that can be explored. Although it can
be generated manually, app.config is typically generated by a Python script which, given a list of
servers and models, gathers all relevant information (features) from the databases.

