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ABSTRACT

We present a structured speech model that is equipped with
the capability of jointly representing incomplete articulation and
long-span co-articulation in natural human speech. Central to this
model is compact statistical parameterization of the highly regular
dynamic patterns (exhibited in the hidden vocal-tract-resonance
domain) that are driven by the stochastic segmental targets. We
provide a rigorous mathematical description of this model, and
present novel algorithms for learning the full set of model para-
meters using the cepstral data of speech. In particular, the gradi-
ent ascend techniques for learning variance parameters (for both
resonance targets and cepstral prediction residuals) are described
in detail. Phonetic recognition experiments are carried out us-
ing two paradigms of N-best rescoring and lattice search. Both
sets of results demonstrate higher recognition accuracy achieved
by the new model compared with the best HMM system. The
higher accuracy is consistently observed, with and without com-
bining HMM scores, and with and without including the references
in the N-best lists and lattices. Further, the new model with rich
parameter-free structure uses only the context-independent, single-
modal Gaussian parameters, which are fewer than one percent of
the parameters in the context-dependent HMM system with mix-
ture distributions.

1. INTRODUCTION

Natural human speech exhibits dynamic acoustic patterns that re-
flect contextual influences known as coarticulation as well as in-
complete articulation known as reduction. We have in recent
years been developing a statistical generative model with long-
span contextual dependency to explicitly take into account these
two closely related effects. Our model employs cross-phone tem-
poral filtering of vocal tract resonance (VTR) targets as the basis
for joint characterization of long-span coarticulation and reduc-
tion. Since this long-contextual-span model treats the VTR trajec-
tories (constructed in a non-recursive manner) as an unobserved
stochastic process, we call it hidden trajectory model (HTM). One
specific prediction of the HTM is “static” speech-class confusion.
That is, the VTR frequencies taken at fixed, mid-points in the
phones, as well as any related acoustic parameters such as cepstra,
associated with different phones tend to move closer to each other
as speech utterances become more casual [3]. Recent acoustic
measurements on recorded speech with a range of speech style
and speaking rate variations show such reduced vowel formant fre-
quency separations, rendering a support for our model [8].

Similar motivations to ours for modeling contextual and re-
duction effects have appeared in other earlier work. For exam-
ple, an empirical predictive relationship between reduced and non-
reduced spectra with the same underlying phones was modeled in
[1] based on psychoacoustic mechanisms. The prediction in [1]
is deterministic, and follows the direction from reduced speech to
non-reduced one in the observed (non-hidden) domain. In contrast,
our HTM provides statistical prediction of the reduction effect in
the reversed direction and in the hidden domain. Another related
work to our model is temporal decomposition [2], where the co-
articulated speech observations are modeled as a time-varying lin-
ear sum of a set of pre-fixed deterministic vectors in the same do-
main as the speech observations. Our HTM extends this concept of
coarticulation modeling in three ways: 1) The pre-fixed determin-
istic vectors are extended to be segmental random vectors (which
we call segmental random targets) where all distributional parame-
ters are learned via maximum likelihood (ML); 2) Co-articulation
as a linear sum of targets is represented in the hidden VTR domain,
distinct from the observed acoustic domain in [2] and with explicit
statistical relations provided between the two domains; and 3) The
linear weights that are used to implement coarticulation are care-
fully constrained so as to produce realistic VTR trajectories under
all speaking conditions (with or without reduction).

Several aspects of the HTM and its preliminary evaluation in
phonetic recognition have been presented in our earlier publica-
tions [4, 5, 10], including the training algorithms for a partial set
of model parameters. In this paper, we provide the training algo-
rithms for the entire set of model parameters, and in particular, we
present details of gradient descent techniques for learning the co-
variance matrices for both the residuals and targets. Further, the
current paper presents more comprehensive evaluation results on
the HTM than in the earlier work. The work in [4, 5] showed the
effectiveness of the HTM for phonetic recognition mainly when
the reference transcripts are included in the N-best lists where
N = 1000. This success was more recently extended to lattice
search with an equivalent of much larger lists with N in the or-
der of billions to trillions [10]. The evaluation results presented in
this paper demonstrate improvement of phonetic recognition per-
formance over a high-quality HMM recognizer in more rigorous
tests when the reference transcripts are not contained in the N-best
lists and lattices that are generated from the HMM recognizer.

2. MODEL OVERVIEW

The HTM presented in this paper is a structured generative model,
from the top level of phonetic specification to the bottom level of
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acoustic observations. We now provide an overview of this genera-
tive chain and the statistical characterizations for the various levels
in the chain.

2.1. Stochastic segmental targets and phonetic units

The HTM presented in this paper assumes that each phonetic unit
is associated with a multivariate distribution of the VTR targets
(with the exception of several compound phonetic units where two
distributions are used). Each phone-dependent target vector, ts,
consists of four low-order resonance frequencies appended by their
corresponding bandwidths, where s denotes the segmental phone
unit. The target vector is a random vector — hence stochastic tar-
get — whose distribution is assumed to be a (gender-dependent)
Gaussian:

p(t|s) = N (t; μTs
,ΣTs). (1)

2.2. Target filtering for modeling coarticulation and reduction

The generative process in the HTM starts by temporal filtering the
stochastic targets and it results in a time-varying pattern of sto-
chastic hidden VTR vectors zs(k). The filter is constrained so
that the smooth temporal function of zs(k) moves segment-by-
segment towards the respective target vector ts but it may or may
not reach the target depending on the degree of reduction. These
phonetic targets are segmental in that they do not change over the
phone segment once the sample is taken, and they are assumed to
be largely context independent. In the current implementation, the
generation of the VTR trajectories from the segmental targets is by
a bi-directional finite impulse response (FIR) filtering:

zs(k) = hs(k) ∗ t(k) =

k+D

τ=k−D

cγγ
|k−τ |
s(τ) ts(τ), (2)

where cγ is the normalization factor, which is needed to produce
VTR target undershooting, instead of overshooting, for casually
uttered speech. Parameter γs controls the spatial extent of coar-
ticulation and is correlated with speaking effort. The length of the
filter’s impulse response hs(k), 2D + 1, determines the temporal
extent of coarticulation.

The linearity between z and t as in Eq.(2) and Gaussianity
of the target t make the VTR vector z(k) (at each frame k) a
Gaussian as well. We now discuss the parameterization of this
Gaussian process:

p(z(k)|s) = N [z(k); μz(k),Σz(k)]. (3)

The mean vector above is determined by the filtering function:

μz(k) =

k+D

τ=k−D

cγγ
|k−τ |
s(τ) μTs(τ)

= ak · μT . (4)

Each f -th component of vector μz(k) is

μz(k)(f) =

L

l=1

ak(l)μT (l, f), (5)

where L is the total number of phone-like HTM units as indexed
by l, and f=1,..., 8 for 4 VTR frequencies and 4 corresponding
bandwidths.
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Fig. 1. Numerical values of time-varying co-articulatory vectors
ak’s for a TIMIT utterance.

The covariance matrix in (3) can be similarly derived to be

Σz(k) =

k+D

τ=k−D

c2
γγ

2|k−τ |
s(τ) ΣTs(τ) .

Approximating the covariance matrix by a diagonal one for each
phone unit l, we represent its diagonal elements as a vector:

σ2
z(k) = vk · σ2

T . (6)

where the target covariance matrix is also approximated as diago-
nal:

ΣT (l) ≈

σ2
T (l, 1) 0 · · · 0

0 σ2
T (l, 2) · · · 0

...
...

. . .
...

0 0 · · · σ2
T (l, 8)

The f -th element of the vector in (6) is

σ2
z(k)(f) =

L

l=1

vk(l)σ2
T (l, f). (7)

In (5) and (6), ak and vk are frame (k)-dependent vectors.
They are constructed for any given phone sequence and phone
boundaries within the coarticulation range (2D + 1 frames) cen-
tered at frame k. Any phone beyond the 2D + 1 window con-
tributes a zero value to these “co-articulation” vectors’ elements.
They are both a function of the phones’ identities and temporal
orders in the utterance, and are independent of the VTR dimen-
sion f . As an illustration, we plot in Fig. 1 the ak values for a
TIMIT utterance. At each time frame k, the values of the vector
(L components in total) represent the coarticulatory effect quanti-
fied as how much adjacent phones contribute to the current phone
at frame k in its VTR value. The sum of such contributions over all
phones is constrained to be one. And as shown in Fig. 1, the tem-
porally closer phones exert greater coarticulatory effects than the
phones farther away. We note that these time-varying vectors ak

play a similar role to the linear weighting parameters in temporal
decomposition [2].

2.3. Generating acoustic observations

The next generative process in the HTM provides a forward prob-
abilistic mapping or prediction from the stochastic VTR trajectory
z(k) to the stochastic observation trajectory o(k). The observa-
tion takes the form of LPC cepstra or LPCC (and their frequency-
warped version) in this paper. An analytical form of the nonlinear
prediction function F [z(k)] was presented in [4] and summarized
as:

Fj(k) =
2

j

P

p=1

e
−πj

bp(k)
fs cos(2πj

fp(k)

fs
), (8)
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where fs is the sampling frequency, P is the highest VTR order
(P = 4 in this work), and j is the cepstral order.

We now introduce the cepstral prediction’s residual vector:

rs(k) = o(k)−F [z(k)].

We model this residual vector as a Gaussian parameterized by
residual mean vector μrs(k)

and covariance matrix Σrs(k) :

p(rs(k)|z(k), s) = N rs(k); μrs(k)
,Σrs(k) . (9)

Then the conditional distribution of the observation becomes:

p(o(k)|z(k), s) = N o(k);F [z(k)] + μrs(k)
,Σrs(k) . (10)

2.4. Linearization of the cepstral prediction function

In order to compute the acoustic observation likelihood (see next
section), we need to characterize the cepstrum uncertainty in terms
of its conditional distribution on the VTR, and to simplify the dis-
tribution to a computationally tractable form. That is, we need to
specify and approximate p(o|z, s). We take the simplest approach
to linearize the nonlinear mean function of F [z(k)] in (10) by us-
ing the first-order Taylor series approximation:

F [z(k)] ≈ F [z0(k)] + F ′[z0(k)](z(k)− z0(k)), (11)

where the components of Jacobian matrix F ′[·] can be computed
in a closed form of

F ′
j [fp(k)] = −4π

fs
e
−πj

bp(k)
fs sin(2πj

fp(k)

fs
) (12)

for the VTR frequency components of z, and

F ′
j [bp(k)] = −2π

fs
e
−πj

bp(k)
fs cos(2πj

fp(k)

fs
) (13)

for the VTR bandwidth components of z.
Substituting (11) into (10), we obtain the approximate condi-

tional acoustic observation probability where the mean vector μos

is expressed as a linear function of the VTR vector z:

p(o(k)|z(k), s) ≈ N (o(k); μos(k),Σrs(k)), (14)

where

μos(k)
= F ′[z0(k)]z(k)+[F [z0(k)]−F ′[z0(k)]z0(k)+μrs(k)

]. (15)

3. LIKELIHOOD COMPUTATION

An essential aspect of the HTM is its ability to provide the likeli-
hood value for any sequence of acoustic observation vectors o(k)
in the form of cepstral parameters. The efficiently computed like-
lihood provides a natural scoring mechanism comparing different
linguistic hypotheses as needed in speech recognition. No VTR
values z(k) are needed in this computation as they are treated as
the hidden variables. They are marginalized (i.e., integrated over)
in the likelihood computation. Given the model construction and
the approximation described in the preceding section, the HTM
likelihood computation by marginalization can be carried out in a
closed form. The final result of the computation is as follows:

p(o(k)|s) = p[o(k)|z(k), s]p[z(k)|s]dz

= N o(k); μ̄os(k), Σ̄os(k) (16)

where the time-varying mean vector is

μ̄os
(k) = F [z0(k)] + F ′[z0(k)][ak · μT − z0(k)] + μrs(k)

and the time-varying covariance matrix is

Σ̄os(k) = Σrs(k) +F ′[z0(k)]Σz(k)(F ′[z0(k)])Tr. (17)

To facilitate the development of the parameter learning algo-
rithms for VTR targets’ distributional parameters, we assume di-
agonality of the prediction cepstral residual’s covariance matrix
Σrs . Denoting its j-th component by σ2

r(j) (j = 1, 2, ..., J), we
decompose the multivariate Gaussian of (16) element-by-element
into

p(o(k)|s(k)) =

J

j=1

1

2πσ2
os(k)

(j)
exp −

(ok(j) − μ̄os(k) (j))
2

2σ2
os(k)

(j)
,

(18)

where ok(j) denotes the j-th component (i.e., j-th order) of the
cepstral observation vector at frame k.

4. PARAMETER LEARNING

We describe the parameter learning algorithms for the HTM using
the cepstral observation data as the training set. The criterion used
for this training is to maximize the observation likelihood in (18).
We describe the algorithms for the full set of model parameters, in-
cluding an outline of the algorithm derivation and with more detail
given to the covariance matrices’ parameter estimation (for both
the residuals and targets) that has not been described in our earlier
papers.

4.1. Learning cepstral residuals’ distributional parameters

This subset of the HTM parameters consists of 1) the mean vectors
μrs

and 2) the diagonal elements σ2
rs

in the covariance matrices
of the cepstral prediction residuals. Both of them are conditioned
on phone or sub-phone s.

4.1.1. Mean vectors

To find the ML estimate of parameters μrs
, we set

∂ log K
k=1 p(o(k)|s)
∂μrs

= 0,

where p(o(k)|s) is given by (16), and K denotes the total duration
of sub-phone s in the training data. This gives

K

k=1

o(k)− μ̄os
= 0

This leads to the estimation formula of

μ̂rs
=

k o(k) − F [z0(k)] −F ′[z0(k)]μz(k) + F ′[z0(k)]z0(k)

K
.

(19)
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4.1.2. Diagonal covariance matrices

Denote the diagonal elements of the covariance matrices for the
residuals as a vector σ2

rs
. To derive the ML estimate, we set

∂ log K
k=1 p(o(k)|s)
∂σ2

rs

= 0.

This gives

K

k=1

σ2
rs

+ q(k)− (o(k)− μ̄os
)2

[σ2
rs

+ q(k)]2
= 0, (20)

where vector squaring above is the element-wise operation, and

q(k) = diag F ′[z0(k)]Σz(k)(F ′[z0(k)])Tr . (21)

Due to frame (k) dependency of the denominator in (20), no sim-
ple closed-form solution is available for solving σ2

rs
from (20).

We have implemented three different techniques for seeking ap-
proximate ML estimates which we outline here.

1. Frame-independent approximation: Assume the dependency
of q(k) on time frame k is mild, or q(k) ≈ q̄. Then the denomina-
tor in (20) can be cancelled, yielding the approximate closed-form
estimate of

σ̂2
rs
≈

K
k=1 (o(k)− μ̄os

)2 − q(k)

K
. (22)

2. Direct gradient ascent: Make no assumption of the above, and
take the left-hand-side of (20) as the gradient∇L of log-likelihood
of the data in the standard gradient-ascent algorithm:

σ2
rs

(t + 1) = σ2
rs

(t) + εt∇L(oK
1 |σ2

rs
(t)),

where εt is a heuristically chosen positive constant controlling the
learning rate at the t-th iteration.

3. Constrained gradient ascent: This technique improves on the
previous standard gradient ascent by imposing the constraint that
the variance estimate is always positive. The constraint is estab-
lished by the parameter transformation: σ̃2

rs
= log σ2

rs
, and by

performing gradient ascent for σ̃2
rs

instead of for σ2
rs

:

σ̃2
rs

(t + 1) = σ̃2
rs

(t) + ε̃t∇L̃(oK
1 |σ̃2

rs
(t)),

Using chain rule, we show below that the new gradient ∇L̃ is re-
lated to the gradient∇L before parameter transformation in a sim-
ple manner:

∇L̃ =
∂L̃

∂σ̃2
rs

=
∂L̃

∂σ2
rs

∂σ2
rs

∂σ̃2
rs

= (∇L) exp(σ̃2
rs

).

At the end of algorithm iterations, the parameters are transformed
via σ2

rs
= exp(σ̃2

rs
), which is guaranteed to be positive.

For efficiency purposes, parameter updating in the above gra-
dient ascent techniques is carried out after each utterance in the
training, rather than after the entire batch of all utterances.

4.2. Learning VTR targets’ distributional parameters

This subset of the HTM parameters consists of 1) the mean vectors
μTs

and 2) the diagonal elements σ2
Ts

in the covariance matrices
of the stochastic segmental VTR targets. They also are conditioned
on phone segment s.

4.2.1. Mean vectors

Optimizing the log likelihood function of Eq.(18) with respect to
the joint parameter set μT (i.e., including each phone indexed by
l and each of the vector component indexed by f in μT (l, f)) re-
sults in a large full-rank linear system of equations. The deriva-
tion and solution implementation of this system of equations have
been described in detail in [5]. We now turn to the variance esti-
mation problem where higher complexity arises and approximate
solutions are needed.

4.2.2. Diagonal covariance matrices

To establish the objective function for optimization, we take log-
arithm on the sum of the likelihood function Eq.(18) (over K
frames) to obtain

LT ∝ −
K

k=1

J

j=1

(ok(j) − μ̄os(k)(j))
2

σ2
rs

(j) + q(k, j)
+log[σ2

rs
(j)+q(k, j)]

(23)
where q(k, j) is the j-th element of the vector q(k) as defined in
(21). When Σz(k) is diagonal, it can be shown that

q(k, j) =
f

σ2
z(k)(f)(F ′

jf )2 =
f l

vk(l)σ2
T (l, f)(F ′

jf )2,

(24)
where F ′

jf is the (j, f) element of Jacobian matrix F ′[·] in (21),
and the second equality in the above is due to (7).

Using chain rule to compute the gradient, we obtain

∇LT (l, f) =
∂LT

∂σ2
T (l, f)

(25)

=
K

k=1

J

j=1

(ok(j) − μ̄os(k) (j))
2(F ′

jf )2vk(l)

[σ2
rs

(j) + q(k, j)]2
− (F ′

jf )2vk(l)

σ2
rs

(j) + q(k, j)

Gradient-ascend iterations then proceed as follows:

σ2
T (l, f)← σ2

T (l, f) + ε∇LT (l, f),

for each phone l and for each element f in the diagonal VTR target
covariance matrix.

5. RECOGNITION EXPERIMENTS

We have carried out a set of phonetic recognition experiments
aimed at evaluating the HTM and the parameter learning algo-
rithms described in this paper. The standard TIMIT phone set with
48 labels is expanded to 58 (as described in [6]) in training the
HTM parameters using the standard 4620 training utterances. Pho-
netic recognition errors are tabulated using the commonly adopted
39 labels after the label folding. The results are reported on the
standard core test set of 192 utterances by 24 speakers [7].

While the full decoder is currently under development for the
HTM, we report in this paper the N-best rescoring and lattice
rescoring results. For each of the core test utterances, a standard
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decision-tree-based triphone HMM is used to generate a large N-
best list (N = 1000) and a large lattice. These N-best lists and
lattices are used for the rescoring experiments with the HTM.

The HTM system is trained using the algorithms described in
Section 4. Learning rates in the gradient ascent techniques have
been tuned empirically.

5.1. Results on N-best Rescoring

Table 1 shows N-best rescoring results with the use of two types
of language models (LM) for the HTM and HMM systems, re-
spectively. One is the standard bi-phone (or bi-gram) LM trained
from the TIMIT training set, and another uses a zero-value LM
score denoted as “Flat-LM”. Phonetic recognizers’ performance
is measured by percent phone recognition accuracy (i.e., including
deletion errors) for the core test set. Two types of acoustic observa-
tions are used. First, LPC cepstra (LPCC) as described in Section
2.3 give the most straightforward system implementation. Second,
to overcome the lack of perceptual correlate of LPCC, we imple-
mented an extended HTM system (not described in this paper) us-
ing frequency-warped LPCCs [9] for both acoustic features and
the observation-prediction component of the HTM. The accuracy
performance in Table 1 is achieved with no reference hypotheses
included in the N-best lists, except for the much greater accuracy
numbers in parentheses for the HTM system where references are
included. (Note that inclusion of references does not change the
HMM system’s performance.) The HTM outperforms the HMM
in all cases. Note that no HMM scores are used to combine with
the scores of the HTM in Table 1. The sole role of HMM for the
HTM system is to create the 1000-best lists on which rescoring is
carried out.

Table 1. N-best rescoring results where N=1000. No HMM scores
are used to combine with scores of the HTM.

Acoustic HMM Recognizer HTM Recognizer
Features Bi-gram Flat-LM Bi-gram Flat-LM

LPCC 68.2 64.0(64.0) 73.0 72.8 (95.3)
W-LPCC 71.4 68.1(68.1) 74.3 73.5 (96.0)

When the HMM scores are combined with those of the HTM,
further performance improvement is observed, as shown in Ta-
ble 2, for both accuracy and correctness measures (the latter does
not count deletion as errors). We had expected greater improve-
ment after the use of HMM scores. However, since the selection
of the N-best hypotheses by the HMM already embeds much of
the HMM-based discriminative information, the additional infor-
mation from the weighted HMM scores provides understandably
only a minor contribution to the final performance. Selected val-
ues of the relative score weights in this experiment are provided in
Table 2.

5.2. Results on Lattice Search

The use of lattices provides much richer hypothesis candidates
than N-best lists for evaluating the HTM, but due to the long-
contextual-span property of the model, the search algorithm is
complex. We refer the interested readers to the detailed technical
description of this A*-based search algorithm we have success-
fully developed described in [10].

Table 2. N-best rescoring results where N=1000. The HMM
scores and bi-gram LM scores in the N-best lists are combined
with the HTM scores using various weights as shown.

HTM Wt. HMM Wt. LM Wt. Accuracy/Correct(%)

1 0 1 73.60 / 76.20
1 0 5 74.26 / 77.08
1 1 5 74.23 / 77.12
1 5 5 74.04 / 77.23
1 1 1 74.53 / 77.70
1 1.5 1 74.59 / 77.73

This search algorithm is applied to the warped-LPCC version
of the HTM, where the warping factor for the testing is fixed at
α = 0.48. With adjustments of relative weights of various scores
as well as the phone insertion penalty value, we obtained sizable
performance improvement, as shown in Table 3, over the best re-
sult in N-best rescoring.

Table 3. Lattice search results. The HMM scores and bi-gram LM
scores in the lattices are combined with the HTM scores using var-
ious weights. Phone insertion penalty (IP) is also varied. Warping
factor is fixed at α = 0.480.

HTM Wt. HMM Wt. LM Wt. IP Acc/Corr(%)

1 2 14 0 73.34 / 76.90
1 3 18 0 74.23 / 78.03
1 4 28 0 74.80 / 78.07
1 8 40 0 74.39 / 78.82
1 5 35 0 74.91 / 78.22
1 5 35 -0.5 74.99 / 78.25
1 5 35 -1 75.02 / 78.25

Finally, we empirically optimized the warping factor in the
warped-LPCC version of the HTM, with detailed results shown in
Table 4. The best accuracy achieved so far is 75.1% (or phone error
rate of 24.9%). This performance is better than any HMM system
as summarized in [7], and is approaching the ever best result in
the same task (phone error rate of 24.4%) obtained by using many
heterogeneous classifiers reported in [7].

Table 4. Lattice search results. Performance as a function of the
warping factor α. The weights for the HTM score, HMM score,
and bi-gram LM score are fixed at 1, 5, and 35, respectively. In-
sertion penalty is fixed at -1.

α Accuracy/Correct(%)

0.420 74.51 / 78.42
0.450 74.58 / 77.87
0.470 74.79 / 78.04
0.475 74.96 / 78.21
0.478 75.07 / 78.28
0.480 75.02 / 78.25
0.482 74.92 / 78.17
0.490 74.62 / 78.00
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Fig. 2. Male and female VTR-frequency means (F2 as shown) are
separated apart after the training while having the same initial
values before the training.

5.3. Results on model learning

We show in this subsection limited results (due to the space con-
straint) demonstrating the effectiveness of the training algorithms
presented in Section 4, as well as their correct implementation.
First, a monotonic increase of the likelihood on the training data
is observed over the training iterations. A typical training score
sequence is shown in Table 5. Second, typical VTR target mean
values (F2) for selected vowels and consonances before and after
training are shown in Fig. 2, separated out for male and female
speakers. Whereas male and female gender-dependent VTR tar-
get mean vectors are initialized with identical values (pp. 364 in
[6]), they become well separated after the training. The estimated
female’s F2 are higher than the male’s counterpart by an amount
consistent with acoustic-phonetic intuition. Detailed analysis has
been carried out to assess acoustic-phonetic reality of the training
results and overwhelming consistency has been found.

Table 5. Log likelihood for the entire training set as a function of
the training algorithm iteration number.

Iteration Number Log-Likelihood

1 10233229.0
2 57950989.4
3 60116655.8
4 60986576.2
5 61038928.8
6 61041398.8

6. DISCUSSION AND CONCLUSIONS

While the main motivation of the HTM is to capture the struc-
ture of the underlying speech dynamics to account for long-span
coarticulation and phonetic reduction in an integrative manner, to
facilitate implementation we evaluated the model thus far only on
the TIMIT database as presented in this paper. It is known that
the speech data in TIMIT suffer less from incomplete articula-
tion and long-span contextual influences than those in free-style
speech data such as in Switchboard databases. Hence, in our future
work we expect greater advantages of the HTM for these difficult
databases than the already demonstrated superiority for TIMIT as
demonstrated in this paper.

In our earlier work on TIMIT [4, 5], we found that the ora-
cle error rate for the N-best lists (N as large as 2000) produced
by the HMM is as high as 18%. This accounts for the large dif-
ference between the N-best rescoring accuracies with and with-
out including the reference hypotheses in the N-best lists. That is,

the effect known as “error spreading” associated with any long-
span model would hurt recognition when local errors occur. Use
of the lattices reduces the oracle error rate for the phone identi-
ties. However, when phone segmentation is considered (TIMIT
provides such information), the lattice oracle error rate is found
to be still very large. Despite this, strong results are obtained on
these lattices as we showed in Section 5.2. To further improve
recognition accuracy, we are currently expanding the lattices for
reducing the oracle errors related to phone segmentation so as to
mitigate the error-spreading effect. We are also developing a time-
synchronous decoder for the HTM free from the lattice constraint
and thus are able to eliminate this effect. Further, we are contin-
uing the research on improving the quality of the current HTM
and on improving the efficiency of the search techniques that are
specific to long-contextual-span models. Finally, since TIMIT ex-
hibits relatively minor problems of phonetic reduction, we expect
greater benefits of the HTM over the HMM for more challenging
tasks of conversational speech in our future work.
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