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ABSTRACT
Worm containment must be automatic because worms can
spread too fast for humans to respond. Recent work has
proposed network-level techniques to automate worm con-
tainment; these techniques have limitations because there is
no information about the vulnerabilities exploited by worms
at the network level. We propose Vigilante, a new end-to-
end approach to contain worms automatically that addresses
these limitations. Vigilante relies on collaborative worm de-
tection at end hosts, but does not require hosts to trust each
other. Hosts run instrumented software to detect worms
and broadcast self-certifying alerts (SCAs) upon worm de-
tection. SCAs are proofs of vulnerability that can be in-
expensively verified by any vulnerable host. When hosts
receive an SCA, they generate filters that block infection by
analysing the SCA-guided execution of the vulnerable soft-
ware. We show that Vigilante can automatically contain
fast-spreading worms that exploit unknown vulnerabilities
without blocking innocuous traffic.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.5
[Operating Systems]: Reliability; D.4.8 [Operating Sys-
tems]: Performance; D.4.7 [Operating Systems]: Orga-
nization and Design

General Terms
Security, Reliability, Performance, Algorithms, Design, Mea-
surement

Keywords
Worm containment, Data flow analysis, Control flow analy-
sis, Self-certifying alerts
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1. INTRODUCTION
Worm containment must be automatic to have any chance

of success because worms spread too fast for humans to re-
spond [27, 42]; for example, the Slammer worm infected
more than 90% of vulnerable hosts in 10 minutes [26].

Recent work on automatic containment [22, 38, 24, 46] has
explored network-level approaches. These rely on heuristics
to analyze network traffic and derive a packet classifier that
blocks or rate-limits forwarding of worm packets. It is hard
to provide guarantees on the rate of false positives and false
negatives with these approaches because there is no informa-
tion about the software vulnerabilities exploited by worms
at the network level. False positives may cause network out-
ages by blocking normal traffic, while false negatives allow
worms to escape containment. We believe that automatic
containment systems will not be deployed unless they have
a negligible false positive rate.

This paper proposes a new system called Vigilante that
addresses these limitations by using an end-to-end approach
to contain worms automatically. Since hosts run the soft-
ware that is vulnerable to infection by worms, they can
instrument the software to gather information that is not
available to network-level approaches. Vigilante leverages
this information to contain worms that escape network-level
detection and to eliminate false positives.

Vigilante introduces the concept of a self-certifying alert
(SCA). An SCA is a machine-verifiable proof of a vulnera-
bility: it proves the existence of a vulnerability in a service
and can be inexpensively verified.

SCAs remove the need for trust between hosts. This en-
ables cooperative worm detection with many detectors dis-
tributed all over the network, thereby making it hard for
the worm to avoid detectors or to disable them with denial-
of-service attacks. Additionally, cooperation allows hosts to
run expensive detection engines with high accuracy [21, 4,
30, 9, 28] because it spreads detection load. For example,
a host that does not run a database server can run a ver-
sion of the server instrumented to detect infection attempts
in a virtual machine. This instrumented version is a hon-
eypot; it should not receive normal traffic. Therefore, the
host will incur little overhead for running the detection en-
gine, whereas a production database server would incur an
unacceptable overhead.

SCAs also provide a common language to describe vulner-
abilities and a common verification mechanism, which can
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Figure 1: Automatic worm containment in Vigi-
lante.

be reused by many different detection engines to keep the
trusted computing base small. SCAs could be verified using
the detection engine that generated them but this would re-
quire all vulnerable hosts to run and trust the code of all
detection engines. SCAs make it possible to increase aggre-
gate detection coverage by running many distinct detection
engines and by deploying new engines quickly.

In Vigilante, hosts detect worms by instrumenting network-
facing services to analyze infection attempts. Detectors use
this analysis to generate SCAs automatically and they dis-
tribute them to other hosts. Before a host distributes an
SCA or after it receives an SCA from another host, it veri-
fies the SCA by reproducing the infection process described
in the SCA in a sandbox. If verification is successful, the
host is certain that the service is vulnerable; the verification
procedure has no false positives.

Alerted hosts protect themselves by generating filters that
block worm messages before they are delivered to a vulner-
able service. These filters are generated automatically using
dynamic data and control flow analysis of the execution path
a worm follows to exploit the vulnerability described in an
SCA. Each vulnerable host runs this procedure locally and
installs the filter to protect itself from the worm. These
filters introduce low overhead, have no false positives, and
block all worms that follow the same execution path to gain
control. Figure 1 illustrates automatic worm containment
in Vigilante.

We have implemented a prototype of Vigilante for x86
machines running Windows. The paper presents results of
experiments using three infamous real worms: Slammer,
CodeRed, and Blaster. These results show that Vigilante
can effectively contain fast-spreading worms that exploit un-
known vulnerabilities without blocking innocuous traffic.

The key contributions of this paper are:

• the concept of SCAs and the end-to-end automatic
worm containment architecture it enables,

• mechanisms to generate, verify, and distribute SCAs
automatically, and

• an automatic mechanism to generate host-based filters
that block worm traffic.

Section 2 introduces the concept of SCA and describes
procedures to verify, generate, and distribute SCAs. The
automatic filter generation mechanism is presented in Sec-

tion 3. Section 4 presents our experimental results and Sec-
tion 5 describes related work. We conclude in Section 6.

2. SELF-CERTIFYING ALERTS
This section describes the format of SCAs, as well as the

mechanisms to verify, generate, and distribute alerts.

2.1 Alert types
An SCA proves that a service is vulnerable by describing

how to exploit the service and how to generate an output
that signals the success of the exploit unequivocally. SCAs
are not a piece of code. An SCA contains a sequence of mes-
sages that, when received by the vulnerable service, cause it
to reach a disallowed state. SCAs are verified by sending the
messages to the service and checking whether it reaches the
disallowed state. We use detection engines combined with
message logging to generate SCAs at detectors.

We have developed three self-certifying alert types for
Vigilante that cover the most common vulnerabilities that
worms exploit:

Arbitrary Execution Control alerts identify vulnerabilities
that allow worms to redirect execution to arbitrary pieces
of code in a service’s address space. They describe how to
invoke a piece of code whose address is supplied in a message
sent to the vulnerable service.

Arbitrary Code Execution alerts describe code-injection vul-
nerabilities. They describe how to execute an arbitrary piece
of code that is supplied in a message sent to the vulnerable
service.

Arbitrary Function Argument alerts identify data-injection
vulnerabilities that allow worms to change the value of argu-
ments to critical functions, for example, to change the name
of the executable to run in an invocation of the exec system
call. They describe how to invoke a specified critical func-
tion with an argument value that is supplied in a message
sent to the vulnerable service.

These alert types are general. They demonstrate how the
worm can gain control by using the external messaging in-
terface to a service without specifying the low-level coding
defect used to gain control. This allows the same alert types
and verification procedures to be used with many different
types of detection engines. Detection engine diversity re-
duces the false negative rate.

The three types of SCAs have a common format: an iden-
tification of the vulnerable service, an identification of the
alert type, verification information to aid alert verification,
and a sequence of messages with the network endpoints that
they must be sent to during verification.

The verification information allows the verifier to craft
an exploit whose success it can verify unequivocally. It is
different for the different types of alerts. The verification
information for an arbitrary execution control SCA speci-
fies where to put the address of the code to execute in the
sequence of messages (e.g., in which message and at which
offset.) Similarly, the information for arbitrary code exe-
cution SCAs specifies where to place the code to execute
in the sequence of messages. Arbitrary function argument
alerts have information to specify a critical function, a crit-
ical formal argument to that function, and where to put
the corresponding actual argument value in the sequence of
messages.



Service: Microsoft SQL Server 8.00.194
Alert type: Arbitrary Execution Control
Verification Information: Address offset 97 of message 0
Number messages: 1
Message: 0 to endpoint UDP:1434
Message data: 04,41,41,41,41,42,42,42,42,43,43,43,43,44,44,44,44,45,45,45,
45,46,46,46,46,47,47,47,47,48,48,48,48,49,49,49,49,4A,4A,4A,4A,4B,4B,4B,4B,
4C,4C,4C,4C,4D,4D,4D,4D,4E,4E,4E,4E,4F,4F,4F,4F,50,50,50,50,51,51,51,51,
52,52,52,52,53,53,53,53,54,54,54,54,55,55,55,55,56,56,56,56,57,57,57,57,58,58,
58,58,0A,10,11,61,EB,0E,41,42,43,44,45,46,01,70,AE,42,01,70,AE,42,......

Figure 2: An example arbitrary execution control
SCA for the Slammer worm. The alert is 457-bytes
long and has been reformatted to make it human
readable. The enclosed message is 376-bytes long
and has been truncated.

Figure 2 shows an example arbitrary execution control
SCA generated for the Slammer worm. The SCA identi-
fies the vulnerable service as Microsoft SQL Server version
8.00.194 and the alert type as an arbitrary execution con-
trol. The verification information specifies that the address
of the code to execute should be placed at offset 97 of mes-
sage 0. The SCA also contains the 376 byte message used
by the Slammer worm.

2.2 Alert verification
Verifying an SCA entails reproducing the infection pro-

cess by sending the sequence of messages in the alert to a
vulnerable service. It is important to run the verification
procedure in a sandbox because SCAs may come from un-
trusted sources. The current implementation runs the verifi-
cation in a separate virtual machine to contain any malicious
side effects. Hosts must use the same configuration to run
the production instance of a service and the sandboxed in-
stance for verification, because some vulnerabilities can be
exploited only in some program configurations.

To verify SCAs, each host runs a virtual machine with a
verification manager and instrumented versions of network-
facing services. Each service is instrumented by loading a
new library into its address space with a Verified func-
tion that signals verification success to the verification man-
ager. In addition, critical functions (e.g., exec system calls)
are wrapped using a binary rewriting tool [20]. The wrap-
pers call Verified if the actual value of a critical argument
matches a reference value specified by the verification man-
ager. Otherwise, they call the original functions. Since we
do not require access to the source code of the services, we
can instrument any service. The host also runs an SCA ver-
ifier process outside the virtual machine that provides other
processes with an interface to the verification module and
acts as a reverse firewall to ensure containment.

Figure 3 illustrates the SCA verification procedure. When
the SCA verifier receives an SCA for verification, it sends the
SCA to the verification manager inside the virtual machine.
The verification manager uses the data in the SCA to iden-
tify the vulnerable service. Then it modifies the sequence of
messages in the SCA to trigger execution of Verified when
the messages are sent to the vulnerable service. The modifi-
cations involve changing the byte string at the offset of the
message specified in the verification information according
to the alert type. This byte string is changed to:

• the address of Verified for arbitrary execution control
alerts,
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Figure 3: SCA verification.

• the code for call Verified for arbitrary code execu-
tion alerts,

• or the reference critical argument value for arbitrary
function argument alerts.

After performing these modifications, the verification man-
ager sends the sequence of messages to the vulnerable ser-
vice. If Verified is executed, the verification manager sig-
nals success to the SCA verifier outside the virtual machine.
Otherwise, the SCA verifier declares failure after a timeout.

The state of the virtual machine is saved to disk before
any verification is performed. This reference state is used to
start uncompromised copies of the virtual machine for verifi-
cation. After performing a verification, the virtual machine
is destroyed and a new one is started from the reference state
in the background to ensure that there is a virtual machine
ready to verify the next SCA. The experimental results in
Section 4 show that the memory and CPU overheads to keep
the virtual machine running are small.

Vigilante’s alert verification procedure has three impor-
tant properties:

Verification is fast. The time to verify an SCA is similar
to the time it takes the worm to infect the service because
the overhead of the instrumentation and the virtual machine
are small. Additionally, we keep a virtual machine ready to
verify SCAs. This is important for ensuring timely distribu-
tion of alerts.

Verification is simple and generic. The verification proce-
dure is simple and independent of the detection engine used
to generate the alert. This is important for keeping the
trusted computing base small, especially with many distinct
detectors running in the system.

Verification has no false positives. If the verification pro-
cedure signals success, the service is vulnerable to the ex-
ploit described in the SCA. A successful verification shows
that attackers can control a vulnerable service through its
external messaging interface.

The current implementation has some limitations that
may lead to false negatives (but not false positives). First, it
assumes that the target address, code, and argument values
in SCAs can be supplied verbatim in the messages that are
sent during verification. This is the case in many vulner-
abilities, but in others these values are transformed by the
vulnerable service before being used, for example, integer
values could be decoded from ASCII characters. We are ex-



tending our implementation to specify a conversion function
for these values in SCAs.

Second, the current implementation assumes that send-
ing the sequence of messages in an SCA to the vulnerable
service is sufficient to replay the exploit during verification.
This is true for all previous worms that we are aware of,
but it may be insufficient for some worms. For example, the
success of some exploits may depend on a particular choice
of scheduling order for the threads in a service. We could
address this limitation by including other events in SCAs
(e.g., scheduling events and other I/O events) and by re-
playing them during verification. There is a large body of
work in this area [14, 13] that we could leverage.

2.3 Alert generation
Hosts generate SCAs when they detect an infection at-

tempt by a worm. Vigilante enables hosts to use any de-
tection engine provided it generates an SCA of a supported
type. SCA generation follows the same general pattern for
all detection engines and services, but some details are nec-
essarily detection engine specific.

To generate SCA’s, hosts log messages and the networking
endpoints where they are received during service execution.
We garbage collect the log by removing messages that are
included in generated SCAs or that are blocked by our filters.
We also remove messages that have been in the log more
than some threshold time (e.g., one hour).

When the engine detects an infection attempt, it searches
the log to generate candidate SCAs and runs the verifica-
tion procedure for each candidate. The strategy to generate
candidate SCAs is specific to each detection engine, but ver-
ification ensures that an SCA includes enough of the log to
be verifiable by others and it filters out any false positives
that detectors may generate. SCA generation returns a can-
didate SCA when that SCA passes verification.

There are many engines to detect worms at the host level
with different tradeoffs between coverage and overhead [47,
10, 23, 21, 16, 4, 9, 30, 2]. We implemented SCA gen-
eration for two different detection engines: non-executable
(NX) pages [1] and dynamic dataflow analysis [43, 9, 11,
30]. We chose these engines because they represent extreme
points in the tradeoff between coverage and overhead: the
first detector has low overhead but low coverage whereas the
second has high overhead and high coverage. Furthermore,
neither of them require access to source code, which makes
them widely applicable.

2.3.1 Non-executable pages
The first detection engine uses non-execute protection on

stack and heap pages to detect and prevent code injection
attacks. It has negligible runtime overhead with emerging
hardware support and has relatively low overhead even when
emulated in software [1]. This detector can be used to gen-
erate arbitrary execution control or arbitrary code execution
SCAs as follows.

When the worm attempts to execute code in a protected
page, an exception is thrown. The detector catches the ex-
ception and then tries to generate a candidate SCA. First,
the detector traverses the message log from the most recently
received message searching for the code that was about to
be executed or for the address of the faulting instruction.
If the detector finds the code, it generates a candidate ar-
bitrary code execution SCA, and if it finds the address of

the faulting instruction, it generates a candidate arbitrary
execution control SCA. In both cases, the message and the
offset within the message are recorded in the verification
information, and the single message is inserted in the can-
didate SCA.

The detector then verifies the candidate SCA. Since most
worms exploit vulnerabilities using only one message to max-
imize their propagation rate, this candidate SCA is likely to
verify. However, it will fail verification for multi-message
exploits. In this case, the detector includes additional mes-
sages by taking longer suffixes of the message log and in-
cluding them in the candidate SCA. The detector keeps in-
creasing the number of messages in the candidate SCA until
the SCA verifies or the message log is empty.

The search through the log is efficient when detectors are
run in honeypots because the detection engine will receive
only anomalous traffic and the message log will be small. We
optimize for this case by including all the logged messages
in the first candidate SCA when the log size is smaller than
a threshold (e.g., 5).

2.3.2 Dynamic dataflow analysis
Dynamic dataflow analysis is a generic detection engine

that has been proposed concurrently by us [9] and others [43,
11, 30]. It can be used to generate the three types of alerts
discussed in the previous sections.

The idea is to track the flow of data received in certain
input operations; for example, data received from network
connections. This data and any data derived from it is
marked dirty. The engine blocks dangerous uses of dirty
data and signals attempts to exploit vulnerabilities:

• If dirty data is about to be loaded into the program
counter, it signals an attempt to exploit an arbitrary
execution control vulnerability.

• If dirty data is about to be executed, it signals an
attempt to exploit an arbitrary code execution vulner-
ability.

• If a critical argument to a critical function is dirty,
it signals an attempt to exploit an arbitrary function
argument vulnerability.

Vigilante implements dynamic dataflow analysis on x86
CPUs using binary re-writing [25] at load time. We instru-
ment every control transfer instruction (e.g., RET, CALL,
JMP), every critical function, and every data movement in-
struction (e.g., MOV, MOVS, PUSH, POP).

The instrumented data movement instructions are used to
maintain data structures that indicate not only which CPU
registers and memory locations are dirty but also where the
dirty data came from. Each dirty register and memory lo-
cation has an associated integer that identifies the input
message and offset where the dirty data came from. These
identifiers are simply a sequence number for every byte re-
ceived in input messages. There is a bitmap with one bit
per 4K memory page; the bit is set if any location in the
page is dirty. For each page with the bit set, an additional
table is maintained with one identifier per memory location.
We also keep a table with one identifier per CPU register.
Finally, we keep a list with the starting sequence number for
every input message to map identifiers to messages.

The dynamic dataflow algorithm is simple: whenever an
instruction that moves data from a source to a destination



mov al,byte ptr [msg] //move first byte to AL
add al,0x10 //add 0x10 to AL
mov cl,0x31 //move 0x31 into CL
cmp al,cl //compare AL to CL
jne out //jump if not equal
mov cl,byte ptr [msg] //move first byte to CL
xor eax,eax //move 0x0 into EAX
loop:
mov byte ptr [esp+eax+4],cl //move byte into buffer
mov cl,byte ptr [eax+msg+1] //move next byte to CL
inc eax //increment EAX
test cl,cl //test if CL equals 0x0
jne loop //jump if not equal
out:
mov esp,ebp
ret

Figure 4: Vulnerable code.

is executed, the destination becomes dirty if the source is
dirty and becomes clean otherwise. When a destination be-
comes dirty, it is tagged with the identifier associated with
the source. Whenever data is received from a network con-
nection, the memory locations where the data is written
are marked dirty and tagged with sequence numbers corre-
sponding to each received byte. The instrumented control
flow instructions signal an infection attempt when dirty data
is about to be executed or loaded into the program counter,
while the instrumented critical functions signal an infection
attempt when all the bytes in a critical argument are dirty.

The detector generates a candidate SCA of the appropri-
ate type when it signals an infection attempt. The addi-
tional information maintained by this engine eliminates the
need for searching through the log to compute the verifica-
tion information: this information is simply read from the
data structures maintained by the engine. The identifier for
the dirty data is read from the table of dirty memory loca-
tions or the table of dirty registers. The identifier is mapped
to a message by consulting the list of starting sequence num-
bers for input messages and the offset in the message is com-
puted by subtracting the starting sequence number from the
identifier. Then, the detector adds the single identified mes-
sage to the candidate SCA and attempts to verify it. This
verification will succeed for most worms and it completes
the generation procedure. For multi-message exploits, the
detector follows the same search strategy to compute candi-
date SCAs as the detector based on non-executable pages.

We will use the vulnerable code in Figure 4 as an ex-
ample to illustrate SCA generation with dynamic dataflow
analysis. We assume that the buffer msg contains a mes-
sage received from the network. The code starts by adding
0x10 to the first byte in the message and then comparing
the result with a constant (0x31). If they match, the bytes
in msg are copied to a stack-based buffer until a zero byte is
found. This is a potential buffer overflow that could over-
write the return address on the stack and it is representative
of vulnerabilities in string libraries.

Figure 5 shows the state of memory before and after the
vulnerable code is executed. In this example, the bytes
in the incoming attack message were mapped to identifiers
from 100 to 400. Before the code is executed, the mem-
ory region where the message was received is marked dirty
with identifiers from 100 to 400. When the ret instruction is
about to execute, a portion of the stack has also been marked
dirty with identifiers from 100 to 400 because the message
data was copied to the stack buffer by the instrumented
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vulnerable code

(b) Memory after 
vulnerable code

id 100
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Figure 5: Example of SCA generation with dynamic
dataflow analysis. The figure shows the memory
when (a) a message is received and the vulnerable
code is about to execute, and (b) after the vulnera-
ble code executes and overwrites the return address
in the stack. Grayed areas indicate dirty memory
regions and the identifiers of dirty data are shown
on the left.

data movement instructions. Since the copy overwrites the
return address in the stack, the ret instruction attempts to
load dirty data into the program counter. Therefore, the
detector generates an arbitrary execution control alert: it
computes the verification information from the identifier of
the dirty data pointed to by the stack pointer and adds the
identified message to the SCA. The message in the verifica-
tion information is the attack message because the identifier
of the dirty data falls in the 100 to 400 range, and the offset
is computed by subtracting 100 from the identifier. The de-
tector verifies this SCA and sends it to the distribution and
protection modules.

Dynamic data flow analysis suffers from a small but non-
negligible false positive rate, for example, an integer value in
a message can be used to index a jump table after checking
if it is within bounds, or a critical function can be called
with a dirty critical argument that was checked by the pro-
gram. It also suffers from poor performance when imple-
mented in software [30]. Hardware implementations of dy-
namic dataflow analysis [43, 11] perform well but they have
not been implemented yet and they lack flexibility (for ex-
ample, they cannot track the origin of dirty data to aid SCA
generation).

Vigilante addresses both of these issues. Verification elim-
inates false positives and the cooperative detection architec-
ture spreads the detection load.

2.4 Alert distribution
After generating an SCA, a detector broadcasts it to other

hosts. This allows other hosts to protect themselves if they
run a program with the vulnerability in the SCA.

The mechanism to broadcast SCAs must be fast, scalable,
reliable and secure. It must be fast because there is a race
between SCA distribution and worm propagation. Scalabil-
ity is a requirement because the number of vulnerable hosts
can be extremely large. Additionally, SCA distribution must
be reliable and secure because the growing number of hosts
compromised by the worm can launch attacks to hinder dis-
tribution and the number of detectors sending an SCA for
a particular vulnerability can be small. The SCA must be



delivered to vulnerable hosts with high probability even un-
der these extreme conditions. To meet these requirements,
Vigilante uses a secure Pastry overlay [6] to broadcast SCAs.

Vigilante uses flooding to broadcast SCAs to all the hosts
in the overlay: each host sends the SCA to all its overlay
neighbors. Since the overlay is scalable, we can distribute an
SCA to a large number of hosts with low delay in the absence
of attacks. Each host maintains approximately 15 × log16N
neighbors and the expected path length between two hosts
is approximately log16N . Since each host has a significant
number of neighbors, flooding provides reliability and re-
silience to passive attacks where compromised hosts simply
refuse to forward an SCA. Hosts that join the overlay can
obtain missing SCAs from their neighbors.

The secure overlay also includes defenses against active
attacks. It prevents sybil attacks [12] by requiring each host
to have a certificate signed by a trusted offline certification
authority to participate in the overlay [6]. The certificate
binds a random hostId assigned by the certification author-
ity with a public key whose corresponding private key should
be known only to the host. This prevents attackers from
choosing their identifiers or obtaining many identifiers be-
cause these keys are used to challenge hosts that want to
participate in the overlay.

Additionally, the secure overlay prevents attackers from
manipulating the overlay topology by enforcing strong con-
straints on the hostIds of hosts that can be overlay neigh-
bors [6]. These constraints completely specify the set of
neighbors of any host for a given overlay membership. Each
host establishes authenticated and encrypted connections
with its neighbors using the certified public keys. Since com-
promised hosts cannot choose their hostIds, they are not free
to choose their neighbors and they are not able to increase
the number of overlay paths through compromised hosts.

Compromised hosts in the overlay may also attempt to
disrupt SCA distribution with denial of service attacks. Vig-
ilante uses three techniques to mitigate these attacks: hosts
do not forward SCAs that are blocked by their filters or
are identical to SCAs received recently, they only forward
SCAs that they can verify, and they impose a rate limit on
the number of SCAs that they are willing to verify from
each neighbor. The first technique prevents attacks that
flood variants of old SCAs and the second prevents attacks
that flood bogus SCAs to all the hosts in the overlay. Since
hosts only accept SCAs received over the authenticated con-
nections to their neighbors, the third technique bounds the
computational overhead that compromised hosts can impose
on their neighbors. It is effective because the constraints on
neighbor identifiers make it hard to change neighbors.

Requiring hosts to verify SCAs before forwarding raises
some issues. Some hosts may be unable to verify valid SCAs
because they do not have the vulnerable software or they
run a configuration that is not vulnerable. We made overlay
links symmetric to reduce the variance in the number of
neighbors per host and to ensure that there is a large number
of disjoint overlay paths between each pair of nodes. Since
flooding explores all paths in the overlay, the probability
that SCAs are delivered to vulnerable nodes is very high
even when the fraction of nodes that can verify the SCA is
small.

Additionally, verifying SCAs introduces delay. Our ver-
ification procedures are fast but the attacker can increase
delay with denial of service attacks. In addition to the tech-

niques above, we verify SCAs from different neighbors con-
currently to defend against attacks that craft SCAs that take
a long time to verify. Therefore, the attacker can increase
the verification delay at a host by a factor proportional to
the number of compromised neighbors of the host.

Most worms have propagated by randomly probing the
IP address space but they could propagate much faster by
using knowledge of the overlay topology. Therefore, it is
important to hide information about the overlay topology
from the worm. One technique to achieve this is to run the
overlay code in a separate virtual machine and to enforce a
narrow interface that does not leak information about the
addresses of overlay neighbors.

Our preferred technique to hide information about the
overlay topology from the worm is to run an overlay with
super-peers. The super-peers are not vulnerable to most
worm attacks because they run only the overlay code and a
set of virtual machines with sandboxed versions of vulnera-
ble services to verify SCAs efficiently. The super-peers form
a secure Pastry overlay as we described. Each ordinary host
connects to a small number q of super-peers (e.g., q = 2)
that are completely specified by the host’s identifier. This
prevents leaking information about vulnerable hosts because
all neighbors of compromised hosts are super-peers that do
not run vulnerable software.

An overlay with super-peers is also more resilient to de-
nial of service attacks. First, we can give priority to verifi-
cation of SCAs sent by super-peers. Since super-peers are
less likely to be compromised than ordinary hosts, this is a
very effective defense against denial of service attacks that
bombard hosts with SCAs. Additionally, super-peers may
be well connected nodes with very large link capacities to
make it hard for attackers to launch denial of service attacks
by simply flooding physical links.

A secure overlay with super-peers is the best option for
SCA distribution and we believe it is deployable. It could
be supported easily by an infrastructure similar to Akamai’s,
which is already used by anti-virus companies to distribute
signatures [3].

3. LOCAL COUNTERMEASURES
Hosts can take local actions to protect themselves when

they receive an SCA. For example, they can stop the vul-
nerable service or run it with a detection engine to prevent
infection. Stopping the program is not acceptable in most
settings and running a high-coverage detection engine (e.g.,
dynamic dataflow analysis) results in poor performance. Ad-
ditionally, detection engines typically detect the infection
attempt too late for the vulnerable program to be able to
recover gracefully.

Vigilante uses host-based filters to block worm traffic be-
fore it is delivered to the vulnerable service. These filters are
unlikely to affect the correct behavior of the service because
they do not change the vulnerable service and they allow the
service to continue running under attack. Host-based filters
have been proposed before, for example, in Shield [45]. The
novelty is that we describe a mechanism to generate these
filters automatically such that they have no false positives,
are effective at blocking worm traffic, and introduce very
low overhead.

3.1 Automatic filter generation
Before the host attempts to generate a filter, it verifies



the SCA to prevent false positives. If the verification is
successful, the local version of the program with the local
configuration is vulnerable to the exploit described in the
SCA. Therefore, the host generates a filter for the exploit
described in the SCA and suspends the vulnerable program
to prevent infection during the filter generation process. If
the verification fails, the SCA is dropped and the host does
not consume resources generating a filter. This is important
for mitigating denial-of-service attacks because verification
is significantly cheaper than filter generation.

Hosts generate filters automatically by analyzing the ex-
ecution path followed when the messages in the SCA are
replayed. They use a form of dynamic data and control flow
analysis that finds the conditions on the messages in the
SCA that determine the execution path that exploits the
vulnerability.

The dynamic data flow analysis during filter generation is
more elaborate than the one we use to detect worms. It in-
struments all x86 instructions to compute data flow graphs
for dirty data, i.e., data derived from the messages in the
SCA. These data flow graphs describe how to compute the
current value of the dirty data: they include the instruc-
tions used to compute the current value from the values
at specified byte offsets in the messages and from constant
values read from clean locations. We associate a data flow
graph with every memory position, register, and processor
flag that stores dirty data.

The control flow analysis keeps track of all conditions that
determine the program counter value after executing control
transfer instructions, and also conditions used when execut-
ing conditional move and set instructions. We call the con-
junction of these conditions the filter condition. The filter
condition is initially true and it is updated after every in-
struction that uses a dirty processor flag or transfers control
to an address read from a dirty location. The filter condi-
tion is updated to be the conjunction of its old value and
the appropriate conditions on the expressions computed by
the data flow graphs of the dirty flag and address location.

For example, when the instruction jz addr is executed,
the filter condition is left unchanged if the zero flag is clean.
If the zero flag is dirty and the jump is taken, we add the
condition that the expression computed by the data flow
graph for the zero flag be true. If the zero flag is dirty
and the jump is not taken we add the condition that the
expression computed by the data flow graph for the zero flag
be false. As another example, when jmp eax is executed, the
filter condition is left unchanged if the eax register is clean.
If eax is dirty, we add the condition that the expression
computed by eax’s data flow graph be equal to the value
currently stored by eax.

We will use the vulnerable code in Figure 4 and the corre-
sponding arbitrary execution control SCA from Section 2.3
to illustrate the filter generation procedure. The filter gener-
ation procedure replays the execution triggered by receiving
the message in the SCA after updating the location speci-
fied by the verification information to contain a verification
nonce. After executing the first instruction al would be
dirty and its data flow graph would be msg[0]. After the
second instruction, al would remain dirty and its data flow
graph would change to msg[0] + 0x10. The zero flag would
become dirty after the fourth instruction and its data flow
graph would become msg[0] + 0x10=0x31. Therefore, the
filter condition would be updated to msg[0] + 0x10=0x31

msg[0] 0x10

ADD 0x31

CMP

Figure 6: Dataflow graph for the zero flag when the
instruction jne out is executed by the program in
Figure 4.

after the fifth instruction because the jump is not taken.
Similarly, executing each iteration of the loop would add a
condition of the form msg[i]�=0 for i > 0.

The termination condition for the filter generation proce-
dure depends on the type of SCA. The idea is to use the
dynamic data flow analysis to stop execution in the same
conditions that we described for detection while using the
verification nonce to prevent false positives. For example,
the filter generation procedure for arbitrary code execution
alerts stops when the program is about to jump to the nonce
value. To remove unnecessary conditions from the filter, the
generation procedure returns the value of the filter condition
after the instruction that overwrites the critical argument or
jump target that causes the worm to gain control. To obtain
the value of the filter condition at this point, we tag write
operations with the current value of the filter condition.

The current implementation only supports filters with con-
ditions on a single message. To deal with SCAs with mul-
tiple messages in their event list, we produce a filter that
blocks a critical message in the list to prevent the attack.
The filter is obtained using the generation procedure that we
described above and removing all conditions except those re-
lated to the critical message. We pick this critical message
to be the one named in the SCA’s verification information
because this is the message that carries the worm code or
the value used to overwrite a control structure or a critical
argument. To prevent false positives, we only install the fil-
ter if this is also the message that gives the worm control
when it is processed.

In the current implementation, each data flow graph has
constants, byte offsets in messages, and x86 opcodes as ver-
tices and the edges connect the operands of an instruction
with its opcode. For example, Figure 6 shows the dataflow
graph associated with the zero flag when the jne out in-
struction is executed (in the example in Figure 4). The filter
condition is represented as a list of graphs with the same for-
mat. Therefore, the filter condition can be translated into
efficient executable x86 code for filtering incoming messages.
Figure 7 shows the translation of the dataflow graph in Fig-
ure 6 into x86 assembly code. The translation is carried out
by doing a depth-first traversal of the graph to generate a
stack-based evaluation of the dataflow expression.

The code generated for the filters is safe. We ensure that
it has no side effects, by saving/restoring the CPU state
when entering/leaving the filter code and by using a sep-
arate stack that we ensure is large enough to evaluate the
dataflow expressions. Filters also check that a message is
at least as long as the largest offset used by the filter code.



mov esi, msg //move address of message into esi
xor eax,eax //clear eax register
mov al,byte ptr [esi + 0x00] //move first byte into al
push eax
push 0x10
pop ebx
pop eax
add al,bl //add 0x10 to al
push eax
push 0x31
pop ebx
pop eax
cmp eax, ebx //compare with 0x31
jne do_not_drop //if not equal, do not drop msg

Figure 7: Filter code generated automatically for
the data flow graph in Figure 6.

Furthermore, the filter code has no loops since it includes
only forward jumps.

Filters generated using this procedure have no false posi-
tives: any message that matches the filter condition would
be able to exploit the vulnerability if received in the state in
which the filter was generated. Additionally, they can filter
many worm variants that exploit the same vulnerability be-
cause the filter captures the exact conditions that determine
the path to exploit the vulnerability. These filters are very
different from filters that block messages that contain a par-
ticular string [22, 38] or sequence of strings [29]. They can
capture arbitrary computations on the values of the input
messages.

3.2 Two filters to reduce false negatives
The filters that we described so far have no false positives

but they may be too specific. They may include conditions
that are not necessary to exploit the vulnerability. For ex-
ample, the filter generated for the Slammer worm would
require a longer than necessary sequence of non-zero bytes.
This filter would not block variants of the worm that used
smaller messages.

We use two filters to reduce false negatives while ensuring
that we have no false positives: a specific filter without false
positives, and a general filter that may have false positives
but matches more messages than the specific filter to block
more worm variants.

Messages are first matched against the general filter. If a
message does not match, it is sent to the program for im-
mediate processing. Otherwise, it is matched against the
specific filter. A message that matches is dropped and one
that does not is sent to a dynamic data flow analysis detec-
tion engine. If the engine determines that the message is
innocuous, it is sent to the program for processing. But if
the engine detects an attempt to exploit a vulnerability, the
message is dropped after being used to generate an SCA.
This SCA can be used to make the specific filter more gen-
eral: the specific filter’s condition can be updated to be the
disjunction of its old value and the filter condition gener-
ated from the SCA using the procedure from the previous
section.

Since detection with dynamic data flow analysis is expen-
sive, the general filter must have a low false positive rate
for the protected program to achieve good performance.
We create the general filter by removing some conditions
from the specific filter using heuristics guided by informa-
tion about the structure of the path that exploits the vul-
nerability.

The first heuristic removes conditions on message bytes
that appear after the offset identified by the verification in-
formation in the SCA. Since the bytes in the message are
usually processed in order, this heuristic is unlikely to in-
troduce false positives. The second heuristic removes condi-
tions added by the execution of a function when that func-
tion returns. The rationale is that these conditions are usu-
ally not important after the function returns and that the
important effects of the function are captured in the data
flow graphs of dirty data. We compute the general filter at
the same time as the specific filter by maintaining a separate
general filter condition to which we apply these heuristics.
Our experimental results suggest that these heuristics work
well in practice: they generalize the filter to capture most
or even all worm variants and they appear to have zero false
positives.

We are working on combining static analysis techniques
(e.g., program chopping [33]) with our dynamic analysis to
generate specific filters that are more general but are guar-
anteed not to have false positives. We are also studying
other heuristics to create general filters that can capture
even more worm variants but still have low false positive
rate. For example, we believe that we can generate token
sequence filters similar to Polygraph [29] from a single worm
variant.

4. EVALUATION
We implemented a prototype of Vigilante for x86 machines

running Windows. This section evaluates the performance
of our prototype and describes implementation details.

4.1 Experimental setup
Experiments ran on Dell Precision Workstations with 3GHz

Intel Pentium 4 processors, 2GB of RAM and Intel PRO/1000
Gigabit network cards. Hosts were connected through a
100Mbps D-Link Ethernet switch.

We evaluated Vigilante with real worms: Slammer, Blaster
and CodeRed. These worms attacked popular services and
had a high impact on the Internet.

Slammer infected approximately 75,000 Microsoft SQL
Servers. It was the fastest computer worm in history [26].
During its outbreak, the number of infected machines dou-
bled every 8.5 seconds. Slammer’s exploit uses a UDP packet
with the first byte set to 0x04 followed by a 375 byte string
with the worm code. While copying the string, SQL over-
writes a return address in the stack.

CodeRed infected approximately 360,000 Microsoft IIS
servers. It spread much slower than Slammer, taking ap-
proximately 37 minutes to double the infected population.
CodeRed’s exploit sends a “GET /default.ida?” request fol-
lowed by 224 ‘X’ characters, the URL encoding of 22 Uni-
code characters (with the form “%uHHHH” where H is an
hexadecimal digit), “HTTP/1.0”, headers and an entity body
with the worm code. While processing the request, IIS over-
writes the address of an exception handler with a value de-
rived from the ASCII encoding of the Unicode characters.
The worm gains control by triggering an exception in a C
runtime function and it immediately transfers control to the
main worm code that is stored in the heap.

Blaster infected the RPC service on Microsoft Windows
machines. We conservatively estimate that it infected 500,000
hosts and that its spread rate was similar to CodeRed’s.
Blaster is a two-message attack: the first message is an
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Figure 8: SCA generation time in milliseconds for
real worms using two detectors.

DCERPC bind request and the second is a DCERPC DCOM
object activation request. The second message has a field
that contains a network path starting with ‘\\’. While copy-
ing this field to a buffer and searching for a terminating ‘\’,
the RPC service overwrites a return address in the stack.

Experiments with CodeRed and Blaster ran on Windows
2000 Server and experiments with Slammer ran on Windows
XP with SQL Server 2000.

4.2 Alert generation
SCA generation with dynamic dataflow analysis relies on

binary instrumentation at load time using Nirvana [25]. Nir-
vana dynamically modifies code and injects instrumentation
at run time. It operates on normal binaries and does not
require availability of symbol information. Nirvana trans-
lates code sequences dynamically into instrumented versions
that are kept in a code cache in a manner similar to Dy-
namoRIO [5]. This instrumentation ensures that the detec-
tion engine is invoked before every instruction to disassemble
the instruction and examine its operands. The engine up-
dates the data structures that keep track of dirty data and
its origin when data movement instructions are executed.
When a control transfer instruction is about to give control
to the worm, the engine generates an SCA from these data
structures and the message log (as described in Section 2.3).
Vigilante intercepts socket operations to log received data
and to mark the socket buffers dirty.

The first experiment measures the time to generate SCAs
with the detectors in Section 2.3. The time is measured from
the moment the last worm message is received till the detec-
tor generates an SCA. It does not include the time to verify
the SCA before it is distributed and the log contains only the
worm messages. One detector uses dynamic dataflow anal-
ysis and the other uses a software emulation of non-execute
protection on stack and heap pages (NX). The detectors
generate arbitrary execution control alerts for Slammer and
Blaster, and an arbitrary code execution alert for CodeRed.

Figure 8 shows average SCA generation times for Slam-
mer, Blaster, and CodeRed with the dynamic dataflow de-
tector and for Slammer using the NX detector. The results
are the average of five runs. The standard deviation is 0.5 ms
for Slammer, 3.9 ms for Blaster, and 204.7 ms for CodeRed.

Both detectors generate SCAs fast. The NX detector per-
forms best because its instrumentation is less intrusive, but
it is less general. For both Slammer and Blaster, the dy-
namic dataflow detector is able to generate the SCA in un-
der 210 ms and it takes just over 2.6 s for CodeRed. Gen-
eration time is higher for CodeRed because the number of
instructions executed is larger and Nirvana has to dynami-

457

1857

3899

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Slammer Blaster CodeRed

S
C

A
 s

iz
e 

(b
yt

es
)

Figure 9: SCA sizes in bytes for real worms.

cally translate a number of libraries loaded during the worm
attack.

Figure 9 shows the SCA size in bytes for each worm. The
SCAs include a fixed header of 81 bytes that encodes the
SCA type, vulnerable service identification and verification
information. The size of the SCAs is small and it is mostly
determined by the size of the worm probe messages.

4.3 Alert verification
SCAs are verified inside a Virtual PC 2004 virtual ma-

chine (VM) to isolate any side-effects of the verification pro-
cess (see Figure 3). The SCA verifier communicates with the
verification manager through a virtual network connection.
During the initial VM setup phase, a dynamic link library
(DLL) with the Verified function is loaded into network-
facing services and the initialization routine for the library
reports the address of Verified to the verification manager
through a shared memory section. The state of this VM is
saved to disk before verifying any SCA. After each verifica-
tion, the VM is destroyed and a new one is created from the
state on disk to be ready to verify the next SCA.

When an SCA arrives, the verification manager replays
the messages in the SCA (as described in Section 2.2) and
waits on a synchronization object. If the SCA is valid, the
Verified function executes and sets the synchronization ob-
ject. This signals success to the verification manager who
sends a success notification message to the SCA verifier.
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Figure 10: SCA verification time in milliseconds for
real worms.

Figure 10 shows the average time in milliseconds to verify
each SCA. The results are the average of five runs. The
standard deviation is 0.5 ms for Slammer, 1.5 ms for Blaster,
and 6.5 ms for CodeRed.

Verification is fast because we keep a VM running that is
ready to verify SCAs when they arrive. The VM has all the
code needed for verification loaded. The overhead to keep
the VM running is low: a VM with all vulnerable services
used less than 1% of the CPU and consumed approximately
84MB of memory.



We also explored the possibility of starting VMs on de-
mand to verify SCAs. The VM is compressed by the Virtual
PC into a 28MB checkpoint. It takes four seconds to start
the VM from disk with cold caches, but it takes less than a
second to start the VM from a RAM disk. Since this addi-
tional delay is problematic when dealing with fast spreading
worms, we decided to keep a VM running. We are investi-
gating techniques to fork running services [15] that should
enable creation of VMs on demand with low delay.

4.4 Alert distribution
To evaluate the effectiveness of SCA distribution at large

scale, we ran simulations with parameters derived from our
experiments with the prototype and from published statis-
tics about real worms.

4.4.1 Simulation setup
The simulations ran on a simple packet-level discrete event

simulator with a transit-stub topology generated using the
Georgia Tech topology generator [49]. The topology has
5050 routers arranged hierarchically with 10 transit domains
at the top level and an average of 5 routers in each. Each
transit router has an average of 10 stub domains attached
with an average of 10 routers each. The delay between core
routers is computed by the topology generator and routing
is performed using the routing policy weights of the graph
generator. Vigilante hosts are attached to randomly selected
stub routers by a LAN link with a delay of 1 ms.

In all the simulations, we use a total population of 500,000
hosts. S randomly selected hosts are assumed susceptible to
the worm attack because they run the same piece of vul-
nerable software. A fraction p of the susceptible hosts are
randomly chosen to be detectors, while the rest are referred
to as vulnerable hosts. We evaluate distribution using the
secure overlay with super-peers: 1,000 of the 500,000 hosts
are randomly selected to be superpeers that form a secure
Pastry overlay and each ordinary host connects to two super-
peers. Each super-peer is able to verify the SCA and is
neither vulnerable nor a detector.

We model worm propagation using the epidemic model
described in [19] with minor modifications that take detec-
tors into account. Assuming a population of S susceptible
hosts, a fraction p of them being detectors, and an average
infection rate of β, let It be the total number of infected
hosts at time t and Pt be the number of distinct suscepti-
ble hosts that have been probed by the worm at time t, the
worm infection is modeled by the following equations:

dPt

dt
= β It(1 − Pt

S
) (1)

dIt

dt
= β It(1 − p − It

S
) (2)

Starting with k initially infected hosts, whenever a new
vulnerable host is infected at time t, our simulator calculates
the expected time a new susceptible host receives a worm
probe based on Equations (1) and (2), and randomly picks
an unprobed susceptible host as the target of that probe.
If the target host is vulnerable, it becomes infected. If the
target host is a detector, an SCA will be generated and
distributed.

To account for the effects of network congestion caused by
worm outbreaks, we built a simple model that assumes the
percentage of packets delayed and the percentage of packets

β S Tg (ms) Tv (ms)
Slammer 0.117 75,000 18 10
CodeRed 0.00045 360,000 2667 75
Blaster 0.00045 500,000 206 18

Table 1: Simulation parameters for modeling con-
tainment of real worms.

dropped increase linearly with the number of infected hosts.
We computed the parameters for the model using the data
gathered during the day of the Slammer outbreak by the
RIPE NCC Test Traffic Measurements (TTM) service [17].
At the time, the TTM service had measurement hosts at 54
sites spread across the world and each host sent a probe to
each of the other hosts every 30 seconds.

Since Slammer took approximately 10 minutes to propa-
gate, we computed the peak percentage of packets dropped
and delayed by analyzing the data during the 10-minute
interval starting at 10 minutes after the Slammer outbreak.
We also computed the average increase in packet delay using
as the baseline the delays in the 10-minute interval ending
at 10 minutes before the outbreak. We observed that about
9.6% of the packets sent were delayed with an average de-
lay increase of 4.6 times, while 15.4% of the packets were
dropped. We delay or drop a percentage of packets equal to
the above values multiplied by the fraction of infected hosts.

When probed, a detector takes time Tg to generate an
SCA and then it broadcasts the SCA. SCA verification takes
time Tv. Detectors, vulnerable hosts, and super-peers can
verify SCAs but other hosts cannot. Unless otherwise stated,
we assume 10 initially infected hosts. Each data point pre-
sented is the mean value with an error bar up to the 90th

percentile value of 250 runs, with each run having different
random choices of susceptible hosts, detectors, and initially
infected hosts.

We model a DoS attack where each infected host contin-
uously sends fake SCAs to all its neighbors to slow down
distribution. We conservatively remove rate control. We as-
sume that the concurrent execution of n instances of SCA
verification increases verification time to nTv seconds.

4.4.2 Containment of real worms and beyond
First, we evaluate the effectiveness of Vigilante with Slam-

mer, CodeRed, and Blaster. Table 1 lists the parameter
settings used for each worm. The infection rates (β) and
susceptible population (S) for Slammer and CodeRed are
based on observed behavior reported by Moore et al. [26].
Blaster was believed to be slower than CodeRed, but with a
larger susceptible population. We conservatively set its in-
fection rate to be the same as CodeRed and have the entire
population being susceptible. Tg and Tv are set according
to the measurements in Sections 4.2 and 4.3.

Figure 11 shows the infected percentage (i.e., the per-
centage of vulnerable hosts that are eventually infected by
the worm) for the real worms with different fractions (p) of
detectors both with and without DoS attacks. The graph
shows that a small fraction of detectors (p = 0.001) is enough
to contain the worm infection to less than 5% of the vulnera-
ble population, even under DoS attacks. The Vigilante over-
lay is extremely effective in disseminating SCAs: once a de-
tector is probed, it takes approximately 2.5 seconds (about
5 overlay hops) to reach almost all the vulnerable hosts.
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Figure 11: Containment of Slammer, CodeRed, and Blaster using parameter settings in Table 1, both with
and without DoS attacks. Each data point is the mean value with an error bar up to the 90th percentile value.

SCA verification time (Tv) determines SCA distribution
delay, whereas the number of initially infected hosts (k) and
infection rate (β) characterize worm propagation. Figure 12
shows the impact of Tv, β, and k on the effectiveness of Vig-
ilante, both with and without DoS attacks. Slammer is the
fastest propagating real worm. We therefore use Slammer’s
β = 0.117 as the base value in subfigure (b), for example,
with a worm infection rate of 8β, the number of infected
machines doubles approximately every second. Because the
initially infected hosts are counted in the infected percent-
ages reported, the baseline in subfigure (c) shows the con-
tribution of the initially infected hosts to the final infected
percentage. Unless otherwise specified, the experiments use
the default values with p of 0.001, k of 10, Tg of 1 second,
Tv of 100 ms, β of 0.117, and S of 75,000.

These results show that Vigilante remains effective even
with significant increases in SCA verification time, infec-
tion rate, or number of initially infected hosts. The effec-
tiveness of Vigilante becomes reduced (and exhibiting varia-
tions) with SCA verification time of 1000 ms, with infection
rate of 8β, or with 10000 initially infected nodes. Do note
that those settings are an order of magnitude worse than
the worst of real worms.

Not surprisingly, DoS attacks appear more damaging in
configurations where Vigilante is less effective because the
significance of DoS attacks hinges directly on the number of
infected hosts. Also as expected, Vigilante is increasingly
vulnerable to DoS attacks as the verification time increases.

4.5 Filters
The next set of experiments evaluates the overheads as-

sociated with filters and their effectiveness.

4.5.1 Filter generation
The first experiment measures the time to generate a fil-

ter from an SCA that has already been verified. Figure 13
shows the time in milliseconds to generate both the specific
and general filters for the three worms. The results are the
average of five runs. The standard deviation was 0.7 ms for
Slammer, 5.1 ms for Blaster, and 205.3 ms for CodeRed.
In all cases, filter generation is fast. Filter generation for
CodeRed is more expensive because the number of instruc-
tions analyzed is larger and the binary re-writing tool needs
to dynamically translate code for a number of libraries that
are loaded on demand.
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Figure 13: Filter generation time for real worms.

xor eax,eax //clear EAX register
mov al,byte ptr [esi + 0x0] //move first byte into AL
push eax //push the first byte into the stack
push 0x02
pop ebx
pop eax
sub eax,ebx //subtract 2 from first byte
push eax
pop eax
mov ebx,0x02
cmp eax,ebx //compare with 2
jne do_not_drop //exit the filter without

//a match if not equal

Figure 14: x86 code for Slammer filter’s first condi-
tion.

The generated filters are also effective. In all cases, the
specific filters block the attack, have no false positives, and
also block many polymorphic variations of the attack. We
describe the general filters in more detail because they de-
termine the false negative rate.

The general filter for Slammer checks that the first byte
is 0x4 and that the following bytes are non-zero (up to the
byte offset of the value that would overwrite the return ad-
dress in the stack). This filter is optimal: it captures all
polymorphic variations of the attack with no false positives.
The filter’s code sequence is not optimized: it corresponds
to a stack-based evaluation of the filter condition. For ex-
ample in Slammer, the condition that the first byte is equal
to 0x04 is computed by the code in Figure 14. There are
a number of obvious optimizations, but the performance of
the filter is good even without them.

The general filter for Blaster checks that there are two con-
secutive backslash (‘\’) Unicode characters at the required
positions, followed by Unicode characters different from ‘\’
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Figure 12: The effect of SCA verification time, infection rate, and number of initially infected hosts, both
with and without DoS attacks. Each data point is the mean value with an error bar up to the 90th percentile
value.

up to the position of the value that will overwrite the return
address in the stack. This filter catches all polymorphic vari-
ations in the worm code and some variations in other parts
of the message.

The general filter for CodeRed checks that the first 4 bytes
form the string “GET ”, and that bytes from offset 0x11 to
offset 0xF0 are ASCII characters and that they are different
from ‘+’ and ‘%’. The filter also checks that “%u” strings
are used in the same positions where the attack used them
and that the characters following those strings are ASCII
representations of hex digits. This filter catches polymor-
phic variations on the worm code and insertion of HTTP
headers in the attack message.

These results show that dynamic control and data flow
analysis is a promising approach to filter generation. While
the general Slammer filter is perfect, the general Blaster and
CodeRed filters have some limitations. For Blaster, it is
possible that other successful attacks could be mounted by
using the string starting with ‘\’‘\’ at a different position
in the attack message. The CodeRed filter also does not
tolerate shifting or insertion of ‘+’ or ‘%’ where the worm
used ‘X’ characters. We plan to improve the general filters in
the future. In our current implementation, filters may also
be evaded with packet fragmentation. We plan to address
this limitation by implementing well known countermeasures
for this evasion technique [32].

4.5.2 Overhead of deployed filters
We also measured the performance overhead introduced

by deployed filters. Filters were deployed by binary re-
writing the vulnerable services. We used Detours [20] to
intercept calls to the socket interface and install the filters
immediately above functions that receive data.

We ran three experiments for each vulnerable service and
measured the overhead with a sampling profiler. The first
experiment (intercepted) ran the service with just the socket
interface being intercepted. The second experiment (inter-
cepted + filter) ran the service with the socket interface be-
ing intercepted and invoking the appropriate general and
specific filters. The third experiment (intercepted + filter
+ attack) stressed the filter code by sending worm probes
to the service at a rate of 10 per second (which is three
orders of magnitude larger than the rate induced by Slam-
mer). For every experiment, we increased the service load
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Figure 15: CPU overhead of network traffic inter-
ception and filter deployment.

until it reached 100% CPU usage, as described below. Fig-
ure 15 shows the overhead for each of the experiments for
the three vulnerable services. The results are the average of
five runs. The overhead is very low in all cases.

SQL For Slammer the vulnerable service is SQL Server. We
generated load using the TPC-C benchmark [44] with 170
simulated clients running on two separate hosts. Clients
were configured with zero think time. To measure the worst
case scenario for the filter overhead, the number of requests
serviced per unit time was maximized by using empty im-
plementations for the TPC-C stored procedures. Figure 15
shows that the CPU consumed by the interception is just
0.16%. When then Slammer filters are installed, the over-
head remains the same because Slammer exploits a vulnera-
bility in a management interface running on UDP port 1434.
This is not the same communication endpoint that SQL uses
to listen for client transactions. Therefore, the requests is-
sued by the TPC-C clients follow a different code path and
the impact of running the filter is negligible. With worm
probes, the overhead rises to only 0.2%.

RPC For Blaster the vulnerable service is Microsoft Win-
dows RPC service. We generated a custom workload us-
ing requests to lookup and register an RPC interface. We
loaded the RPC service using 3 client hosts that lookup the
RPC interface and 1 local client that registers the inter-
face. Figure 15 shows the CPU consumed by interception
is only 0.51%, and it rises to 0.7% when the filters are in-
voked. When running with 10 Blaster probes per second the
overhead was 0.76%. Unlike Slammer, the filters are on the



normal execution path and are used by requests to lookup
the interface.

IIS For CodeRed the vulnerable service is Microsoft IIS
Server. We generated a workload using the requests from the
SpecWeb99 [40] benchmark with clients running on two sep-
arate hosts. To measure a worst case scenario for filter over-
head, we installed an IIS extension that returns 512 bytes
from main memory in response to every request. Figure 15
shows that the CPU consumed by the interception is 1.4%.
The majority of this CPU overhead is attributable to match-
ing I/O operation handles to discover where data is writ-
ten when asynchronous I/O operations complete. When the
CodeRed filters are invoked the overhead increases to 1.92%.
These filters are on the normal execution path and are in-
voked for every packet. Finally, adding the 10 CodeRed
probes per second, the overhead rises to 2.07%.

4.6 End-to-End experiments
The final set of experiments measures Vigilante’s worm

containment process end-to-end in a five-host Vigilante net-
work. The hosts were configured in a chain representing a
path from a detector to a vulnerable host in the SCA distri-
bution overlay with three super-peers. They were connected
by a LAN. The first host was a detector running a dynamic
dataflow analysis engine. Once the detector generated an
SCA it was propagated through three super-peers to a host
running the vulnerable service. This provides approximately
the same number of hops as the simulations in Section 4.4.

We measured the time in milliseconds from the moment
the worm probe reached the detector till the moment when
the vulnerable host verified the SCA. This time is critical for
protection. After successful verification, the vulnerable host
can suspend execution of the vulnerable service during filter
generation. We ran the experiment for the three worms:
using SQL Server with Slammer, the Windows RPC Service
with Blaster, and IIS with CodeRed. The time was 79 ms for
Slammer, 305 ms for Blaster, and 3044 ms for CodeRed. The
results are the average of five runs. The standard deviation
is 12.2 ms for Slammer, 9.0 ms for Blaster and 202.0 ms
for CodeRed. These values are close to those obtained by
adding the SCA generation time to five SCA verifications,
as expected.

The vulnerable host deployed the filter after it was gen-
erated, which does not require re-starting the vulnerable
service. To achieve hot installation of the filters, the func-
tions that intercept the socket API check for availability of
filters on a shared memory section. After filter generation,
the filter code is copied to the vulnerable process through
the shared memory section. Filter deployment is fast: in all
cases filters were deployed in less than 400 microseconds.

5. RELATED WORK
There has been much work on worm containment systems.

Much of it has been based on generating content signatures
or detecting abnormal communication patterns.

Worm signatures have traditionally been generated by hu-
mans but there are several recent proposals to generate sig-
natures automatically [24, 22, 38]. These systems can gen-
erate a signature for an unknown worm by identifying a
common byte string in suspicious network flows. Newsome
et al. [29] study the ability of these systems to contain poly-
morphic worms. They conclude that a single byte string is

not enough but signatures with a set of strings can contain
some polymorphic worms. However, the absence of infor-
mation about software vulnerabilities at the network level
makes it hard to provide guarantees on the rate of false pos-
itives.

Another approach to contain worms automatically is based
on blocking or rate limiting traffic from hosts that exhibit
abnormal communication patterns. Williamson [48] pro-
posed limiting the rate of connections to new destinations.
Snort [35] and Network Security Monitor [18] detect worm
traffic by monitoring the rate at which unique destination
addresses are contacted and they block the sender. Bro [31]
uses a configurable threshold on the number of failed con-
nections and Weaver [46] uses a threshold on the ratio of
failed to successful connections. Traffic from hosts that ex-
ceed these thresholds is blocked. These systems cannot con-
tain worms that have normal traffic patterns, for example,
topological worms that exploit information about hosts in
infected machines to propagate, or slow-spreading worms
that do not generate connections at abnormal rates. They
can have false positives, for example, an attacker can per-
form scanning with a fake source address to block traffic
from that address.

The work in [36] has proposed a host-based architecture to
contain worms automatically. Their architecture is missing
the key concept of SCAs. Each organization runs a central
service that generates patches automatically using a set of
heuristics to modify vulnerable source code, for example,
modifying the code to move vulnerable buffers to the heap.
We believe that Vigilante’s architecture is more resilient to
attack, because hosts can protect themselves automatically
by generating filters that are more general than the heuris-
tics proposed in [36] and are less likely to affect the correct
running of the vulnerable services.

Several systems have proposed mechanisms that, like Vig-
ilante filters, allow vulnerable services to continue execution
while being attacked. Rinard et al. [34] propose using a C
compiler that inserts runtime checks for illegal memory ac-
cesses. Their system discards invalid memory writes and
manufactures values for invalid reads. Sidiroglou et al. [37]
propose using an emulator to execute code in regions where
faults have been observed. When faults occur, their system
rolls back memory writes and returns an error from the cur-
rent function. DIRA [39] is a GCC extension that checks for
overwrites of control data structures and allows rolling back
vulnerable services to the entry point of a function. Vigi-
lante filters are more efficient than these techniques and they
are less likely to affect the correct execution of the protected
services.

Several systems provide interesting alternatives to deploy
Vigilante filters. IntroVirt [7] uses vulnerability-specific pred-
icates to analyze the execution state of applications and
operating systems running inside virtual machines. Like
Vigilante filters, IntroVirt predicates can compute generic
conditions, but they are generated manually for known vul-
nerabilities. By using virtual machine rollback and replay,
IntroVirt is able to detect if vulnerabilities were exploited
in the past. We could deploy Vigilante filters as IntroVirt
predicates. Shield [45] uses host-based filters to block vul-
nerabilities but these filters are generated manually. We
could use Shield’s infrastructure to deploy our filters.

Several authors have proposed models for predicting worm
propagation speeds and for analyzing defense mechanisms [42,



27, 50, 8, 41]. Flash worms are the fastest theoretically pre-
dicted worms. As these worms become better understood,
we plan to study their containment.

There is a large amount of work on host-based detection
of vulnerabilities including [47, 10, 23, 21, 16, 2, 4]. We
could use these as detectors to generate SCAs in Vigilante.

6. CONCLUSIONS
Worm containment must be automatic but automatic sys-

tems will not be widely deployed unless they are accurate.
They cannot cause network outages by blocking innocuous
traffic and they should be hard to evade.

Vigilante adopts an end-to-end approach to automate worm
containment. End hosts can contain worms accurately be-
cause they can perform a detailed analysis of attempts to
infect the software they run. Vigilante introduces the fun-
damental concept of a self-certifying alert that enables a
large-scale cooperative architecture to detect worms and to
propagate alerts. Self-certifying alerts remove the need to
trust detectors and provide a common language to describe
vulnerabilities and a common mechanism to verify alerts.

Vigilante also introduces a new mechanism to generate
host-based filters automatically by performing dynamic data
and control flow analysis of attempts to infect programs.
These filters can block worms with no false positives and
they are effective at containing worms that exploit a large
class of vulnerabilities.

Our experimental results show that Vigilante can contain
real worms like Slammer, Blaster, CodeRed, and polymor-
phic variants of these worms. They also show that Vigilante
can contain worms that propagate faster than Slammer even
when only a small fraction of hosts can detect the worm.
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