
Simulating Large-Scale P2P Systems with the WiDS Toolkit

Shiding Lin† Aimin Pan† Rui Guo‡ Zheng Zhang†
slin@microsoft.com aiminp@microsoft.com guorui@sei.buaa.edu.cn zzhang@microsoft.com

Microsoft Research Asia† Beijing University of Aeronautics and Astronautics‡

Abstract

Current simulation technologies support at most hun-
dreds of thousands of nodes, and fall short on the emerging
large-scale networking systems that usually involve millions
of nodes. We meet this challenge with our distributed simu-
lation engine that is able to run millions of instances and is
tested with a production P2P protocol, using commodity PC
clusters. This simulation engine is part of the WiDS toolkit,
which takes a holistic approach to the research and devel-
opment of distributed systems. We also propose a critical
optimization, called Slow Message Relaxation (SMR), to
trade simulation accuracy for performance. By taking ad-
vantage of the fact that distributed protocols are resilient to
network fluctuation, SMR executes events in a logical time
window much wider than the conventional lookahead
scheme allows. We analyze and bound the potential effect of
the distortion on application logic and other general met-
rics. Our experiments demonstrate that the simulation en-
gine is able to achieve order of a magnitude speedup with
statistically accurate simulation results.

1. Introduction

Simulation is the key to building and understanding of
distributed systems. It plays a crucial role at different stages
of the development process. For instance, coarse-grained
simulation helps to understand the system at a crude level,
allowing us to verify the assumptions and study various
metrics before the detailed protocol is derived. We can also
run and test the protocol logic against logic simulation, and
crystallize the protocol incrementally. When the protocol is
finally implemented, it is important to make the same code
base run-able in a simulator and deployable in the real net-
work. This is so because the development process is often
iterative, as we find problems and seek optimizations and
then test. Simulation helps to debug and evaluate the proto-
col in a controllable environment.

The P2P network such as Chord [1], Pastry [2] and Tap-
estry [3] typically involve millions of dynamic nodes, and
pose a great challenge for the research community to come
up with a systematic methodology. To this end, we have
built the WiDS toolkit that tackles the difficulties at differ-
ent development stages and unites the whole process in a
holistic solution [4].

The general philosophy of WiDS can be summarized as
“code once and run many ways”. It provides several run-
times to run a protocol in different modes, targeting at dif-

ferent phases of the development process. Its simple, mes-
sage-passing based APIs isolate the protocol from any par-
ticular runtime and make the environment switch transpar-
ent. In simulation mode, the events are stored and dis-
patched in the event queue(s), and a customizable topology
model can be employed to enforce the latency. The simula-
tion runs on a single machine, or on a cluster of machines.
Single machine simulation allows debugging a distributed
protocol within one address space, whereas parallel simula-
tion enables the understanding of the protocol in a large
scale. In the network execution mode, WiDS provides a
socket-based library, yielding a system ready to run in the
networking environment. WiDS users maintain one single
code base throughout the development process, and invoke
different runtimes by simply re-linking against different
libraries. We are also working on a replay facility that logs
the events in the network execution mode and replays them
in the simulation mode, thus enabling postmortem debug-
ging of a distributed system. We have built many protocols
and systems using WiDS, including one very large scale
storage system that uses commodity storage bricks [5].

One critical component of WiDS is its large-scale simu-
lation engine. We have also done extensive testing with a
scale of millions of instances for the Peer Name Resolution
Protocol (PNRP) [6] based on the production code from
Microsoft, using hundreds of clustered PCs. To our knowl-
edge, this is one of the largest simulations that have ever
been attempted.

In this paper, we will present our simulation engine used
in WiDS. Our novel contributions are the followings:
♦ We develop a new protocol for distributed event simula-

tion that utilizes commodity PC cluster. It adopts the
master-slave architecture with a practical and simple
protocol, and is efficiently implemented. With hundreds
of machines, we are able to simulate millions of proto-
col instances.

♦ We propose and implement the slow-message relaxation
(SMR) optimization. It executes the events in a logical
time window much wider than the lookahead allowed by
minimum network delay, taking advantage of the fact
that distributed protocols are designed to be resilient to
network fluctuation. Thus, it reduces the synchroniza-
tion overhead and improves the simulation performance
significantly. Although SMR is designed for a family of
P2P overlays, the idea can be generalized to study other
applicable large-scale distributed systems.

♦ This optimization, however, needs to be carefully ap-
plied, or otherwise simulation accuracy can be severely
compromised. We analyze and bound the slow message
effect on application logics and other general metrics.
The experimental results verify our analysis.

♦ Guided by the bound analysis, our adaptation scheme
dynamically adjusts the relaxation window according to
runtime information. This derives optimal performance
with minimum perturbation on accuracy, as is demon-
strated through our experiments.
The remainder of the paper is organized as follows. Sec-

tion 2 discusses related work. We describe our basic proto-
col and architecture in Section 3. Section 4 details the SMR
optimization and its protocol. Section 5 analyzes its effect.
We present the experimental results in Section 6 and con-
clude in Section 7.

2. Related work

Simulation of large-scale system is notoriously difficult
[7], yet systems such as P2P overlays have to be studied
close to their anticipated scale, otherwise facing die conse-
quences when deployed. In fact, our experience of simulat-
ing the PNRP protocol is such that there are problems only
discoverable at a scale close to millions. This is the di-
lemma that we are facing.

Parallel and distributed simulations [8] have been devel-
oped for many years and there are several simulation pack-
ages, such as pdns [9], SSF [10], USSF [11], GloMoSim
[12] and GTNetS [13]. Their core engines can be divided
into two categories, conservative and optimistic. In the con-
servative approach, all LPs (Logical Process) advance the
logical time in a coordinated manner and the simulation is
carried out round by round; in each round LPs synchronize
with each other and process only the safe events in the win-
dow allowed by minimum network delay commonly re-
ferred to as the lookahead. Thus, the chronicle order of
event execution is guaranteed. However, the main problem
of the conservative approach is its excessive synchroniza-
tion overhead, especially when the scale is large. The opti-
mistic approach, known also as time warping [14], is en-
tirely different in that each LP advances its logical time
independently. When an old event with a timestamp less
than current logical time is received, which means the
chronicle order is violated, the LP rollbacks to the event’s
time by restoring the state and recalling out-sent events. It is
clear that the optimistic approach needs to save a lot of
states and the cost of cascading rollback can be very high.
This is especially problematic when studying large-scale
system. Our simulation engine is based on the conservative
approach, but improves it in a number of significant ways.

The first improvement is related to how synchronization
is done. The full-barrier synchronization described in [15]
has O(N2) cost by letting each LP flood to all the others. The
Critical Channel Traversal (CCT) [16] takes advantage of
the property that only those LPs with safe events need to
run. The safe events can be found by traversing all the input
channels and finding out those critical ones, whose source

LP has advanced its time to the timestamp of the first event
in the channel. By iteratively resolving the critical channel,
the simulation proceeds round by round. However, this as-
sumes that some global state is accessible by each LP, and
in a cluster environment the scheme falls back to O(N2)
flooding. Although broadcasting capability is available in
the LAN environment and can be leveraged as is done in
[17], dedicating one machine as master and employing the
simple master-slave architecture seems more versatile and
achieves the same level of message cost and availability.
Moreover, our protocol handles the transient messages in
the destination side, instead of waiting for them in all peers
[17], and thus performs a little better.

The second is on how to improve performance with
minimum sacrifice on accuracy. Our work is aimed at simu-
lating a completely developed protocol stack, as such some
of proposals (e.g. selective abstraction [18]) are not directly
applicable. Other schemes focus on complementary aspects
in the network layer [19][20]. Instead, we observe that, any
properly design distributed protocols have timeout logics
that tolerate network fluctuation. We proactively take ad-
vantage of this fact and extend the logical time window,
which can often be several magnitudes larger than the loo-
kahead. Upon receiving an old event, we simply replace its
timestamp with current logical time and process it, as if the
event suffers from some additional network delay. By care-
fully bound the relaxation window, we show that statisti-
cally accurate results can be obtained. Furthermore, the
window size can be dynamically adjusted to achieve opti-
mal speedup. The optimization of relaxing the exact time-
stamps is also considered in [21][22]. The difference is that
we leverage the domain knowledge of distributed systems
and protocols, carefully analyze the impact of relaxation to
application logic and derive the bound within which no
rollback is necessary. Although our evaluation is performed
over P2P applications, our technique is generally applicable
to a broad class of distributed systems. Another optimiza-
tion considered by [23] is to schedule the events by the or-
der in which they arrive into the queue, not the chronicle
order of their timestamps. Obviously, this optimization is
not appropriate for networking protocols because the timer
events and remote messages might be treated incorrectly.

Federation is a methodology to coordinate multiple in-
stances of sequential simulators. It is reported in [13] that
million-node scale can be achieved in a super-computer
with thousands of processors. Though the tightly-coupled
architecture contributes a lot to the performance, the
achievement is significant. Our system can also be regarded
as a federated architecture with homogeneous simulation
engines, and the performance and scale we have achieved
will justify the applicability of realistic large-scale simula-
tion on commodity PC clusters.

Emulation [24][25] is another popular mechanism to
study large-scal systems. Protocol instances run unmodified
on a cluster of machines, and each one may host many in-
stances. The latency is either statically specified or dynami-
cally simulated using a routing core. In the later case the
problem becomes, once again, on how to simulate a large-

scale system (i.e. the routing core). At any rate, imposing
the exact latency on the communicating protocols is diffi-
cult: the load on the sending and receiving machines and
the fluctuation occurring in the physical components such
as switches are all hard to be accounted for beforehand. One
possible remedy is to slowdown the physical clocks of the
machines. It will be interesting to see how to adjust the
clock dynamically. Yet, what is clear is that old messages
exist and they need to be handled one way or the other.

The critical difference of these approaches lie in how
time is managed, especially with respect to the way delay
model is enforced. Simulation strictly enforces the model in
logical time, and the optimistic approach indirectly fulfills
the same goal with rollback. Emulation adopts physical
time but may relax by ignoring the uncontrollable delay due
to physical situation. SMR, on the other hand, enforces the
logical time and relaxes with a bound.

3. The basic protocol and architecture

We are aiming at large-scale distributed protocol simula-
tion which may involve millions of protocol instances. It is
impossible for one single machine to afford such demand-
ing computation and memory resources, so we have to turn
to distributed solutions. The commodity PC cluster seems to
be a good fit.

Our design is guided by simplicity, low overhead and
high performance. We will use the term “node” to denote
one simulated instance. On each physical machine, instead
of embodying each node in a run-able thread, we adopt an
event driven architecture. Events of all nodes, usually mes-
sages and timers, are aligned in an event queue in the time-
stamp order. There is one LP associated with all the nodes
on a slave machine. LPi’s local clock, noted as LVTi, is al-
ways equal to the timestamp of the head event in its event
queue. A master coordinates all the slave LPs. This leads to
a two-level architecture shown in Figure 1.

Slave

… worker

nodes

nodes

worker

Master

channels

Slave

… worker

nodes

nodes

worker

Machine

connection

Figure 1. The two-level architecture. Each slave LP as well as

the master is hosted by a physical machine. Channels for each
pair of nodes are multiplexed in the pre-established connec-

tions between machines. To harness the hardware parallelism
such as SMP or hyper-thread, we employ multiple worker

threads, each of which takes charge of a sub-group of nodes.

Right after its generation in LPi, a timestamped event e is
delivered to its destination LPj and merged to its local event
queue. Its timestamp TSe is calculated by TSe = LVTi + de,
where de is the latency of the event, specified by a network
model. We let be the globally minimum value of d, i.e. the
global lookahead.

The protocol is rather intuitive, and the core idea is to
guarantee the chronicle order. Each LP can only process
those safe events, which are defined to be those whose
timestamps fall in [GVT, GVT+), where GVT is the glob-
ally least clock among LPs. The critical LPs are the subset
of the total LPs that have safe events for a given GVT.

At the very beginning, every LP reports to the mater its
LVT, and the master computes the GVT and the critical LPs.
The master then informs those critical LPs of the GVT con-
tained in an EXEC message. Accordingly, the critical LPs
start to run till GVT+ . The execution of this round has not
only changed the LVTs of the critical LPs themselves, but
also generated events that could change LVTs of other LPs
as well. Thus, after finishing a round of execution, a critical
LP sends the master a SYNC message, which includes its
new LVT and a list recording the timestamps of the events it
has sent to any other LPs. This allows the master to com-
pute both the GVT and the critical LPs for the next round.
However, the reception of EXEC messages from the master
alone is only a necessary but not sufficient condition for
safe event execution. This is because an event from LPi to
LPj may arrive later than the EXEC message from the master,
which is common in the network environment where trian-
gle inequality no longer holds. Therefore, the master has to
act as a gate-keeper to track the number of events for LPs,
and tell LPi in the EXEC message the number of safe events
that LPi must wait before executing the events. The count of
safe events for LPi can be calculated by ∑

∈

=
Nj

iji MC ,
,

where Mj,i is the number of events sent from LPj to LPi with
timestamp in [GVT, GVT+) – this is why the SYNC mes-
sage from LPj needs to contain the timestamps of the mes-
sages it sent to other LPs.

Our partial barrier is efficient in that only the critical LPs
need to be involved in the synchronization, which is sepa-
rated from simulated data transmission. Messages are di-
rectly transmitted to their destinations and are processed as
soon as they are allowed to, guaranteed by the control info
maintained by the master. To some extent, our approach can
be treated as an aggregation of the flooding in the full-
barrier-based synchronous approach described in [15], re-
ducing the number of messages from O(N2) to O(N).

We want to clarify the availability issue regarding cen-
tralized architecture such as master-slave. It is an illusion
that the availability can be improved without a centralized
controlling master. In all the past proposals, the crash of any
one of the LPs will halt the simulation. Thus, master-slave
architecture does no worse. In fact, we have augmented our
protocol to be fault resilient. If a master crashes, we can
bring up a new master and reconstruct its state from the
slaves. If a slave crashes, the master will eliminate it from
the slaves and allows the rest to move on. The later case is
acceptable to P2P overlay simulation because this is as if a
group of nodes have left the system. The detailed analysis
of this issue is available in a separate technical report [26].

4. The Slow Message Relaxation

The barrier model becomes increasingly inefficient when
the number of machines in the cluster increases. Our ap-
proach to improving performance is to reduce the number
of barriers in a simulation run. The optimization is called
Slow Message Relaxation (SMR) that basically extends the
simulation window from [GVT, GVT+) to [GVT, GVT+R),
where R is the relaxation window. Thus, for each barrier, we
will execute more than safe events in a round.

This brings about two issues. First, although we can still
track the scheduled events, which are generated in the pre-
vious rounds, there will be some other events that are gen-
erated on the fly. Some of these on-the-fly events will be-
come scheduled events in the future rounds, and others will
have timestamps in [GVT+ , GVT+R) and must be proc-
essed in the current round. Such events are called unsched-
uled events. We need a mechanism to guarantee that all un-
scheduled events – the total number of which is unknown a
priori – are processed in this round. The technique we de-
veloped is called the quantum barrier, and will be discussed
in greater detail in Section 4.2.

round boundary

E1: scheduled event

E2: unscheduled event

NodeBNodeA

Logical tim
e

NodeB NodeA

round boundary

D
istortion

(A) The scheduled, unscheduled events. (B) A slow message.

Figure 2. During the simulation, many on-the-fly events will be
generated. Those with timestamp in the current round are
called unscheduled events, while those across round are

scheduled events. If an unscheduled event falls behind the
current clock of the destination upon its arrival, it is turned into

a slow message and its latency is changed.

The second issue is more subtle. Scheduled events can
be guaranteed to be executed in chronicle order and at their
timestamps. But there is no such guarantee for an unsched-
uled event. It is possible that an LP receives an unscheduled
event whose timestamp is behind its clock. Such a message
is called a slow message. The conventional way is to avoid
the handling of such messages by rolling back. We argue
that this is not necessary. The reason is that if we replace
the slow message’s timestamp with the current clock, then
from the simulated protocol point of view it is as if the mes-
sage had suffered from some extra delay in the network. A
properly designed distributed protocol should have already
handled any network-jitter generated abnormality. It is for
this reason that we call this optimization the Slow Message
Relaxation. As we will show later (Section 5), by taking
advantage of the fact that a distributed protocol must be
able to tolerate network uncertainty, the relaxation window
can be significantly wider than what the conventional loo-
kahead window can allow (often at the range of hundreds).
On the other hand, in such a window there is noticeable

percentage of slow messages, and the use of roll-back will
result in practically unacceptable performance.

Of course, if the time relaxation is used too aggressively,
the simulation results can be severely distorted. Thus, the
relaxation window should be carefully selected, and ideally
should be adaptive to the simulation run. We show this ana-
lysis in Section 5. The concepts of scheduled, unscheduled
events and the slow message are depicted in .

4.1. The SMR Protocol

The pseudo code for SMR protocol evolves from the ba-
sic protocol, and is written in the asynchronous message
handling fashion as shown in Table 3 and Table 4.

Like the basic protocol, the LP is scheduled to run by the
EXEC message from the master, which contains GVT,
GVTUB and Ci. GVT is the minimum value of LVTs and
GVTUB represents GVT+R. Ci is the number of scheduled
events of LPi, and is calculated by ∑

∈

=
Nj

iji MC ,
, where Mj,i

is the number of events sent from LPj to LPi with timestamp
in [GVT, GVTUB). If all the scheduled events are received,
the LP can start executing the events till GVTUB. When an
unscheduled event arrives, whose timestamp is less than
GVTUB (line 16), it is processed immediately. When all the
events in the execution window are processed, the LVTi and
Mi are sent back to the master in the individual SYNC mes-
sage, upon which the master is able to calculate a new GVT
and Ci. When the master notices that all the unscheduled
events have been received and processed, it proceeds to the
next round.

Table 3. The pseudo code for the slave LP.

Table 4. The pseudo code for the master.

19. OnSyncMsg(M
i
): // SYNC message from LP

i

20. merge M
i
 into M

21. if all the events in [GVT, GVT
UB

) have been received and processed then

22. calculate the new GVT, C and R, according to the M

23. send EXEC message to all LPs

24. end.

1. Run:

2. while Queue.head.ts < GVT
UB

 do

3. get the head event and remove it from Queue

4. LVT
i
:= max(LVT

i
, Queue.head.ts); // ensure that time never goes back

5. process the head event, for each event it generates

6. deliver the event to its destination LP
j
 and update M

i,j

7. send SYNC message to the master, with M
i
 attached

8. end.

9. OnExecMsg(GVT, GVT
UB

, C
i
): // the EXEC message from manager

10. LVT
i
 := GVT; // update logical time

11. if all (Ci) sched. evts have been received and Queue.head.ts < GVT
UB

 then

12. Run; // execute those events that have arrived

13. end.

14. OnReceiveExternalEvent(event):

15. Queue.insert(event);

16. if all (C
i
) scheduled events have been received and event.ts < GVT

UB
 then

17. Run;

18. end.

Next, we will present the algorithm that guarantees all
the unscheduled events will be processed, and then discuss
how to automatically derive the appropriate R for each
round.

4.2. Quantum barrier

The difficulty of the SMR protocol is to guarantee all the
unscheduled events, which are generated on the fly, be re-
ceived and processed within the current round, i.e., to guar-
antee the completeness of events in the barrier window
[GVT, GVT+R). We call such barrier the Quantum Barrier.

If we treat each event as a node and the derivation rela-
tionship between events as a link, we will get a run-time
spanning tree of events for a round, with leaves representing
the events that do not generate any unscheduled events. If
we define the execution of an event as the access to the
node, our problem can be abstracted to be a distributed tra-
versal algorithm of a spanning tree that is generated at run-
time. Due to the lack of a global state, the tree traversal
problem seems not as easy as that in the centralized envi-
ronment.

A naïve solution will work as follows. For a tree, we
know that the sum of the fan-out degree of all nodes is the
number of tree nodes plus 1. Thus, when we access a node,
we can report its fan-out degree, i.e. the number of its chil-
dren, to a central repository. Similarly, we can also report to
the repository the number of processed events. Thus, the
barrier is reached when these two numbers are equal. This
is obviously not optimal.

The tree traversal terminates when all the leaf nodes are
accessed. The problem is that we do not know how many
leaf nodes exist in such a highly dynamic tree. We solve this
with a simple trick using tokens. The central repository
gives the root of a tree a token with a value, say 1. Itera-
tively, whenever a non-leaf event generates child events, it
passes a split token to each child and the value is the current
token’s value divided by the number of children. All leaf
events report their tokens back to the repository, and if the
sum of these tokens equals to 1, it knows that the spanning
tree traversal – and therefore the execution of all the events
– is complete.

This simple division has two practical problems. First,
the fan-out of an event can not be got a priori. In order to
count the sum, the descendent events have to be buffered
before being delivered to their destinations. This is not very
efficient. Second, the token has its inherent limitation in
precision; we need a more scalable representation.

Our solution to both problems is shown graphically in
Figure 5. Essentially, the parent’s token is split by half each
time a new event is generated. Each token is represented by
an integer i, representing its value of 1/2i, and thus avoids
underflow.

Mapping back to our protocol, it is natural to employ the
master as the repository to collect the tokens. Each critical
LP is assigned a token with value 1 to start with. The master
sums up all the tokens reported back from the slaves that
have executed any events in the round, and if the sum equal

to the number of critical LPs, the current round terminates.
Since an LP will process multiple events, it is not necessary
for every leaf event to report to the master, and instead the
reports are aggregated and attached in the SYNC messages.

 0: (20=1)

1 1
R

N1 N2

N3 N4
2 3 3

4 4

N9
2

Nx Ny …

…

2
N5

N6 N7

N8

…

2

Token: i represents 2-i

Leaf node

Intermediate node

Report back
 to the master.

Figure 5. Token is employed in the distributed traversal algo-

rithm for the run-time spanning tree. When the master collects
enough tokens, it knows that all leaves have been accessed.

4.3. Runtime Adaptation

In the next section, we will discuss what the proper SMR
bound of the window width should be so that we can attain
statistically accurate performance result. It would seem
natural to set R as large as possible for optimal performance
gain. However, this turns out not to be true. Through nu-
merous experiments we have found that the performance
does not improve monotonously as R increases. One of the
reasons is that network congestion causes packet drop and
thus TCP retransmission. Therefore, the adaptation of R
must take cue from run time measurement.

Table 6. The algorithm to calculate R for the next round.

The adaptation is run at the master as shown in Table 6.
It is a straightforward hill-climbing algorithm which is car-
ried out before a new round starts (line 22 in Table 4). The
call to the function CalculateNewR() defines the Rnext to
be used next, which is broadcast to all slaves in the EXEC
messages. In the adaptation algorithm, Rcurr is the R value for
the current round, and Tmin is a bound imposed by the appli-
cation and is collected from all slaves. As we will show in
Section 5.2, Tmin/2 is the bound that R should not exceed.
Line 2-4 checks if Tmin has changed and sets Rnext right away
within the bound if Rcurr exceeds it. Line 5-6 computes scurr

and sprev, which are simulation speed in current and previous

1. CalculateNewR():

2. If (R
curr

 > T
min

/2) // just in case T
min

 has changed

3. R
next

 := T
min

/2

4. return R
next

5. s
curr

 := R
curr

/ t
curr

 // calculate the speed of current

6. s
prev

 := R
prev

/ t
prev

 // and previous rounds

7. r
s
 := (s

curr
 - s

prev
)/(s

curr
 + s

prev
) // compute rate coefficient

8. If (R
curr

 > R
prev

) D := 1 // compute the directional coefficient

9. If (R
curr

 < R
prev

) D := -1

10. If (R
curr

 = R
prev

) D := 0

11. R
next

 := R
curr

 + T
step

*r
s
*D +τ // compute new R for the next round

12. If (R
next

 > T
min

/2) // check against T
min

 again

13. R
next

 := T
min

/2

14. return R
next

15. end.

round, respectively. The rate coefficient rs in line 7 is a
signed value in rang (-1, 1), and its absolute value reflects
the rate of speed change in the recent rounds, relative to the
raw simulation speed. The intuition is that the adjustment is
made slower when we approach the optimal value of R. The
direction coefficient D in lines 8-10 is important because
the improvement of speed (i.e. scurr> sprev) could have been
brought by either positive or negative adjustment of R, and
we want to continue the trend if that is the case, or reverse it
otherwise. Line 11 computes Rnext, and here Tstep is a constant,
and τ is a random disturbing factor in the range of [-Tstep/3,
Tstep/3] to avoid local minimum. It also serves the purpose of
making the adaptation process active especially in the initial
stage.

So far, we have described the algorithm in terms of adap-
tation purely against performance goal. Users can define
other adaptation metrics such as percentage of slow mes-
sages and upper bound of extra delays. Our adaptation can
adjust accordingly as well.

5. Analysis

The core idea of SMR is to increase the parallelism by
reducing the amount of barrier operations. The net effect of
SMR is that some random messages will be subject to some
random extra delays. By themselves, any properly designed
distributed protocols should have already handled any net-
work-jitter generated abnormality. However, if there are too
many slow messages and, more importantly, if application
logics are significantly altered, then the simulation results
will be severely distorted. Thus, it is important to under-
stand the effect of SMR.

The context of this study is to speedup the simulation of
very large-scale P2P networks. We will give a brief back-
ground of these systems first, and then analyze the bound of
SMR that we can afford. The introduction of SMR also
changes the distribution of network latency. Since the prob-
ability of having a slow message is small with moderate
window, we have found that the distortion of latency distri-
bution is not significant. For completeness, the theoretical
analysis is provided in our technical report [26].

As we will demonstrate in the evaluation section that fol-
lows, setting a correct bound ensures us to gain statistically
correct results with large speedups. Whether SMR can be
applied to other application logics is one of our future
works.

5.1. Structured P2P networks

We are interested in simulating the so-called structured
P2P such as Chord [1], Pastry [2] and Tapestry [3]. They are
often called DHT (for distributed hash table) because a
collection of widely distributed nodes across the entire
Internet self-organize into a very large logical space (e.g.
160bit). These protocols represent a family of distributed
systems that are very complex in nature. Because of their
unprecedented scale (e.g. millions), there is an urgent need
to understand their behavior at a large scale. Today, such

system is often simulated using one machine, only reaching
a tiny fraction (e.g. 5K nodes) of its anticipated scale.

Each node in DHTs has a random logical ID. Typically,
there are several layers of application logics in each node.
The bottommost layer essentially sorts these nodes into a
linear array in a very large logical space. This layer uses the
leafset routing table, which records a few closest logical
neighbors (e.g. 2 nodes on each side). The leafset logic
sends heartbeats to the leafset entries to ensure the continu-
ity of the logical ring. On top of this layer, the finger proto-
col selects O(logN) nodes into a finger table, each of the
fingers is exponentially further away. Here, N is the total
number of nodes in the system. The fingers allows lookup –
the upper layer application operation that requests the
owner of a key in the space – to zoom in onto the destina-
tion in O(logN) steps, whereas the leafset ensures lookup
termination.

Although implementations may differ, the protocols
critically depend on the correct execution of timer logics.
Some timers are static, and others are dynamic. The finger
maintenance protocol is static: periodically (e.g. every 5
minutes) a node will refresh its fingers by firing probing
messages to the current fingers. Stale entries are replaced
by new ones which are found by issuing lookups of appro-
priate logical points in the space and recording the new
owners. The refresh of leafset follows a similar fashion but
can be implemented using dynamic timer instead. Every
time a node hears from one of its neighbors, it starts a timer.
If the timer expires before the next heartbeat arrives, the
leafset logic enters into a waiting state with yet another
timer. If the node misses several heartbeats in a row, it will
suspect that the neighbor is dead and then take appropriate
actions. Such protocol is a typical implementation of failure
detection, which is fundamental to membership protocols.
Notice that the correct interleaving of arrival order of heart-
beats from different nodes is not critical, because they will
settle at different entries of the routing table (for both finger
and leafset). If the routing tables are maintained correctly,
then statistically speaking upper layer applications such as
user initiated lookups or node churns should not be im-
pacted.

5.2. The effect on application logics

Let Ttimeout be the timer interval. The firing and timeout of
a timer are two distinct events. It is clear that these two
events can not be in the same simulation round; otherwise
they may be simulated back-to-back without waiting for the
action associated with the firing to have its effect. Thus, we
must have R < Ttimeout. To give an idea on how much relaxa-
tion this brought, note that Ttimeout can be in the order of sec-
onds (even minutes), whereas a lookahead defined by a
network model is often in the range of tens of milliseconds.
With the typical configuration, this means the affordable
window can be several hundreds times of a lookahead.

The problem of a slow message, in terms of the timer
logic, is that it can generate false time-out. To understand
this, we must first analyze the delay bound of slow mes-

sages. Refer to (B), if at t0 an event generates a message
whose delay is d, then the message will have a timestamp of
t0+d. If to+d is greater than the ending time of the current
simulation round, the message becomes a scheduled event
in some future round and there is no extra delay. Thus, the
maximum extra delay happens when t0 equals the beginning
of the round, and upon arrival at the target node where the
clock is one tick shorter than R and the extra delay will
therefore be R–d. As a result, we can draw a conclusion:
Bound 1: The upper bound of extra delay of unscheduled

events is R–d, where d is the minimum network
delay.

Consider a two-step message sequence, for example,
node A sends a message to node B, and B sends a second
message back to A as a response. If both messages are slow
messages, then they must be within the same round, there-
fore the extra delay will not exceed R–2d. If one of these
two messages is slow message, then the extra delay will not
exceed R–d. If both are not slow message, then no extra
delay occurs. As a result, we can determine another upper
bound of extra delay of slow messages:
Bound 2: The upper bound of extra delay of a two-message

sequence is R–d.
Now let’s look at how to choose R to avoid false time-

out. Assume that A sends a request to B and starts a timer
with the interval Ttimeout, and then enters a waiting state. The
round trip between A and B is Tround = 2d. If R ≤ d, there will
be no distortion. So we only need to discuss the case when
R > d. First, as a reasonable setting, Ttimeout should be larger
than Tround in order to keep the timeout logic working with
normal network delay. Based on the Bound 2 (the case of
two-step sequence A->B->A), if Ttimeou>Tround + (R–d), then
distortion does not lead to a false timeout. However, if Tround
< Ttimeou ≤ Tround + (R–d), a false timeout might happen.

From Ttimeou > Tround + (R–d) and Tround = 2d, we can have
R < Ttimeout –d

Since Ttimeout > Tround = 2d, or equivalently, d < Ttimeout/2, it fol-
lows that R < Ttimeout/2 is a sufficient condition. As a result, if
we set R to satisfy

R < Ttimeout/2 (1)

Then distortion will not break the timer logic for request-
response protocols. Other timer logics can be similarly dealt
with. Detailed treatment is given in the technical report [26].

What we have discussed are the DHT logics. A DHT ap-
plication will issue lookups, which may take O(logN) steps.
How do we make sure that there is no false lookup timeout?
In fact, we can extend the 2-step message bound to a k-step
message sequence. When k>3, we can decompose a k-step
message sequence as k/2 two-step message sequences,
where the last combination may have only one message.
The application programmer typically estimates a reason-
able one-step network latency, adds some leeway, and times
a conservative value of total hops (e.g. 2logN for a reason-
able N), and finally arrives at a lookup time-out setting. To
be consistent, the two-step, request-response timeout value
Ttimeout should also be used as a base to set the lookup timeout.
Thus, R < Ttimeout/2 will prevent false lookup timeout as well.

As we can see from the above analysis, though the DHT
protocol is very complex, the bound R < Ttimeout/2 is enough
to keep the application logic as close as an undistorted
simulation would achieve.

6. Evaluation

Our system’s performance, scale and accuracy are func-
tions of the number of nodes, the number of slaves and R. In
our experiments, we chose a typical P2P DHT, XRing [27],
to evaluate our results. We have also simulated the PNRP
protocol [5] up to 1.5 million of nodes over more than 250
PCs. At such a large scale, we notice that the master starts
to become performance bottleneck.

6.1. Experiment setup

XRing [27] is a typical structured P2P DHT, with a hy-
brid protocol of Chord [1] and Pastry [2]. The leafset proto-
col records a few logical neighbors, using a variant of the
Pastry leafset protocol. Leafset members send heartbeats
among each other. Fingers are maintained in a Chord style,
with periodical refreshing.

In order to calculate the arrival timestamps for each mes-
sage, WiDS slaves should be aware of the underlying net-
work model so that the proper delay of each message can be
imposed. In our experiments, the delay follows a uniform
distribution between [1ms, 200ms]. In XRing, the leafset
heartbeat cycle is 5s and a stale entry is removed when 3
heartbeat intervals have passed. The finger refreshing cycle
is 15s, and a stale finger is discarded after 3 refresh cycles.
Application lookup timeout is set to 30s. These values are
typical settings of a wide-area P2P network. We take the
minimum heartbeat timeout value (5s) and derive the bound
of R to be 2.5s. As can be seen, this is a much larger relaxa-
tion window than the lookahead would allow. In fact, the
uniform distribution means that the minimum lookahead is
1ms.

We have a 33-machine cluster in our lab, the CPUs are
Pentium IV 3.0GHz, and each machine is equipped with
512M RAM. We configure one of the machines as the mas-
ter and up to 32 slaves. All machines are connected by two
100Mb Ethernet switches. The underlying OS is Windows
XP. Due to the limitation of physical memory, each machine
can host at most 10,000 nodes; otherwise the frequent page-
swapping will lead to dramatically performance degradation.
In following experiments, the number of nodes on each
slave will vary from 512, 1024, 2048, 4096, to 8192. On the
other hand, we change Rs to verify the effect of SMR on
simulation performance and distortion.

We ran the XRing protocol for 10-minute simulated time,
divided into three phases. All nodes joined the XRing
within the first 2 minutes, and the system settles in the next
3 minutes. The system should converge to a ring during the
2nd phase at some point. At the beginning of the 6th minute,
each slave starts sending one lookup request to a randomly
picked node every second. In this phase, i.e. the period from
6th to 10th simulated time, at every second each slave chose
one node randomly and crashed it. The slave then generated

a new node to join XRing. We designed such a simulation
scenario because it is important to look at the system per-
formance under node churns. This experiment setting is also
typical in studying the dynamic behavior of P2P systems.

We present the results based on three sets of experiments.
First, we ran a large-scale simulation with various Rs and
looked into the performance and the application logic met-
rics with respect to Rs. Second, we ran two sets of simula-
tions with fixed total numbers of nodes and fixed numbers
of nodes on each slave to investigate the scalability of
WiDS. Finally, we ran XRing with R being adapted at run-
time.

6.2. Performance and application logics

First of all, we ran a large-scale simulation with 32
slaves, and each slave hosts 2048 or 8192 nodes. When R
varies, the real execution time is shown in Figure 7.

Figure 7. The execution time when varying R.

In the above figure, the dashed curves are the user time,
i.e. the event handling time in slave machines. The solid
curves are the total execution time, which includes user
time, message exchanging time and event schedule over-
head. Obviously, the total execution time decreases quickly
as R increases. The user time is stable in either case, as is
expected. But when R is beyond a few hundred milliseconds,
there is essentially no gain. The speedups of the 2048 and
8192 nodes are 2 and 5.4, respectively. One reason of dif-
ferent speedups is that, when there are more nodes, there is
more parallelism within a slave machine already, so larger R
does not improve parallelism observably. Another reason is
that with the same networking capacity, less nodes means
less networking traffic for both synchronization and mes-
sage exchanging, so more traffic can be aggregated, and
then SMR with the larger R will be more effective.

In addition to the execution time, we also observed the
application logics when varying R. Since XRing is a DHT-
based membership protocol, we measured its convergence
time, which should appear somewhere during the period
from 2nd to 5th simulated time. Another two metrics of appli-
cation logics are the success rate of lookups and the average
number of hops for the successful lookups. The results of
the experiments with each slave hosting 8192 nodes are
shown in Table 8, where R is chosen as 1, 50, 200, 1000,
16000, and adapted. According to XRing logics, if R does
not exceed leafset timeout interval (15s), the leafset logic
will not be broken; otherwise false-timeout will probably
occur due to slow messages. As shown in Table 8, when R
is set to 16000ms, the convergence time in the settlement
period is delayed to 288019, which shows that the leafset

logic is observably affected by slow messages. At the same
time, we notice that the metrics of the success rate and the
average number of hops are also affected when R = 16000.
Because the lookup timeout is set to 30s and according to
XRing protocol the average number of hops is (log2N)/2 + 1
= 10, where N is 262,144, some of the lookups will be false
timeout if there are some hops along the path suffering from
an extra delay (the maximum possible extra delay is R-
d≈16s), thus the success rate decreases. In this situation, the
lookup with small hops to the destination node will survive
with higher probability, therefore, the average number of
hops decreases as well.

R 1 50 200 1000 16000 Adaptive
The time of
convergence 228001 228001 228001 228001 288019 228001

Success rate of
lookups 0.93 0.9297 0.9307 0.9297 0.5043 0.9301

Average hops 10.18 10.19 10.20 10.19 3.80 10.19
Table 8. Application logics when varying R.

Here our focus is not so much on offering an explanation
what statistics are affected when the relaxation is overly
aggressive, but on the fact that, indeed, when the relaxation
is appropriately applied, statistically correct results can be
obtained. From Table 8, we can see that when R < 2500ms,
the application metrics are not affected by slow messages.
This means that we can let WiDS choose R automatically
using adaptation algorithm described in Section 4.3. The
last column in Table 8 displays the corresponding metrics
when R is adaptive.

Figure 9 shows the average extra delay and percentage of
slow messages when varying R. Obviously, when R grows,
the percentage of slow messages increases, and the extra
delay increases linearly. Here the percentage of slow mes-
sages is relevant to the probability of a message being
overly delayed (see the analysis in [26] for more informa-
tion). We can see that when R = 200, the percentage of slow
messages is about 7%; and when R = 50, it is less than 5%.
This rate, while small, implies that there can be significant
amount of rollbacks if an optimistic approach is used in-
stead.

(A) The percentages of slow
messages when varying R.

 (B) The average extra message
delay when varying R.

Figure 9. The distortion metrics.

6.3. Experiments on scalability

Next, we examine the scalability of WiDS through two
sets of experiments. We let R=1, 10ms or adapted by the
algorithm described in Section 4.3. In the first set of ex-

periments, we test how the performance would scale if more
resources are available. We do this by fixing the total num-
ber of nodes while varying the number of slaves. The result
is shown in Figure 10(A). The total number of nodes is
2*8192, or 4*4096, or 8*2048, or 16*1024, or 24*683, or
32*512.

(A) The total number of nodes

is fixed.
 (B) The number of nodes on

each slave is fixed.

Figure 10. The performance when the number of
total nodes is fixed.

Generally speaking, when the number of slaves increases,
the user load on each slave will decrease because the num-
ber of nodes on each slave decreases. However, the com-
munication overhead between slaves and the master will
increase. Therefore, given the total workload, when the
number of slaves reaches a certain amount, these two ef-
fects may cancel each other out. Beyond a sweet-spot, add-
ing more slaves gives diminishing return or can be counter-
productive. Furthermore, since SMR optimizes the syn-
chronization overhead, the sweet-spot is a function of R.
For instance, the optimal number of slave is 8 and 16, for
R=1 and R=10, respectively. On the other hand, adaptive R
is robust as it always gives the best performance for a given
cluster size.

Another variable for optimal performance is application
workload. Generally speaking, if we set R=1ms, the number
of slaves is chosen to make each slave host as many nodes
as possible without incurring excessive memory swapping.
This is not entirely trivial, since other states in the simula-
tion engine such as event queue(s) also consumes a certain
amount of memory. A rule of thumb is to let the nodes take
half of physical memory.

In the second set of experiments, we investigate the scal-
ing of problem size. We do this by varying the number of
slaves, while keeping the number of nodes on each slave
fixed as 8192. In the most ideal case, the curves of execu-
tion time should be flat. This is not true for several reasons.
First, the workload of application logic increases (e.g. the
lookup path increase logarithmically with total number of
nodes in the system). Second, communication overhead
increases, too, with more slaves. This is especially true for
configuration where communication overhead is less opti-
mized (i.e. small R). Again, adaptive R is robust in the sense
that its curve rises slowly (Figure 10 (B)).

In summary, SMR with adaptive window is robust and
scalable. It achieves good speedup for a fixed problem size
with larger cluster size. We use the sum of the user time on
the two slaves in the 2*8192 configuration to estimate the
minimum simulation time on a single machine. It shows
that with 32 slaves, the speedup is about 12. We also per-

form well when scaling the problem size, a 16-fold increase
only causes a 2.4 times slowdown.

6.4. Experiments on adaptation algorithm

Intuitively, when the duration of a round (i.e. R) in-
creases, the performance will get better if the effect of slow
messages are not concerned. But in practice, we find that in
some workloads such as PNRP, increasing R will lead to
performance degradation, as is described in Section 4.3. In
fact, for any specific workload pattern there is a relatively
optimal R value, i.e. the point where the application work-
load on each node matches the amount of networking traffic.
If R is beyond this point far away, the performance will de-
grade instead.

(A) The performance when R is

adaptive.
 (B) The distribution of R

during a run.

Figure 11. The experiment results of the adaptation algorithm.

The adaptation algorithm described in Section 4.3 can be
used to adjust R parameter automatically at run time to
make it close to the optimal value under the current work-
load pattern. Figure 11(A) shows the result of the adaptation
algorithm in the case of 32 slaves and each slave hosting
8192 nodes, where the dashed line represents the total exe-
cution time when R is adaptive. We can see that when R is
adaptive, the overall performance is very close to the opti-
mal. Figure 11(B) shows the changes of R during the simu-
lation run.

7. Conclusion and future work

We present a new conservative protocol for parallel dis-
tributed event simulation. It is based on the practical mas-
ter-slave architecture and can scale to millions of nodes
with a moderate size PC cluster. We have implemented a
slow-message relaxation optimization, which executes the
events in a much wider logical time window than the con-
ventional lookahead scheme allows. It takes advantage of
the fact that most distributed protocols have already had
leeway in timeout setting to handle network fluctuation. An
adaptation scheme is proposed to dynamically adjust the
width of the relaxation window according to runtime infor-
mation so that optimal performance can be achieved with
minimum perturbation on accuracy. Our experimental re-
sults show that the SMR optimization is effective and the
distortion is negligible.

We are exploiting more optimization opportunities for
our protocol. One of the possibilities is to adopt smart node
placement scheme which partitions the simulated network
topology such that frequently communicated nodes lie in

one LP so as to reduce the message exchange cost. We are
also trying to accommodate more instances of simulated
protocols in one physical machine. The basic idea is to store
protocol states and events in the disk, and swap them into
memory when needed.

Acknowledgement

We would like to thank Noah Horton, Geogy Samuel,
Brian Lieuallen and Sandeep Singhal for the support of
running large-scale simulation of the PNRP protocols. We
also thank the anonymous reviewers and Perry Zheng for
their insightful inputs.

References
[1] I. Stoica, R. Morris, D. Karger, et al, “Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications”, SIG-
COMM, 2001.

[2] A. Rowstron, P. Druschel, “Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems”, in IFIP/ACM Middleware, 2001.

[3] B.Y. Zhao, J. Kubiatowicz, A.D. Josep, “Tapestry: An Infra-
structure for Fault-tolerant Wide-area Location and Routing”,
UCB Technical Report No. UCB/CSD-01-1141.

[4] Shiding Lin, Aimin Pan, Zheng Zhang, et al, “WiDS: an In-
tegrated Toolkit for Distributed System Development”, in
HotOS X, 2005.

[5] Zheng Zhang, Qiao Lian, Shiding Lin, et al., “BitVault: a
Highly Reliable Distributed Data Retention Platform”, under
submission.

[6] Microsoft TechNet, “Introduction to Windows Peer-to-Peer
Networking”, http://www.microsoft.com/technet/
prodtechnol/winxppro/deploy/p2pintro.mspx

[7] G. Riley and M. Ammar, “Simulating large networks: How
big is big enough?”, in Conference on Grand Challenges for
Modeling and Simulation (ICGCMS), 2002.

[8] A. Ferscha, and S.K. Tripathi, “Parallel and distributed simu-
lation of discrete event systems”. Technical report, University
of Maryland, August 1994.

[9] G. Riley, R. M. Fujimoto, and M. A. Ammar, “A generic
framework for parallelization of network simulations”, in
MASCOTS, 1999.

[10] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski, “Towards
realistic million-node internet simulations”, in International
Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA), 1999.

[11] D. M. Rao and P. A. Wilsey, “Simulation of ultra-large
communication networks”, in MASCOTS, 1999.

[12] X. Zeng, R. L. Bagrodia, and M. Gerla, “GloMoSim: a li-
brary for parallel simulation of large-scale wireless networks”,

in Workshop on Parallel and Distributed Simulation (PADS),
1998.

[13] Richard M. Fujimoto, Kalyan S. Perumalla, et al., “Large-
Scale Network Simulation: How Big? How Fast?” in MAS-
COTS, 2003.

[14] David Jefferson, Brian Beckman, et al., “Distributed Simula-
tion and the Time Warp Operating System”, in SOSP, 1987.

[15] D.M. Nicol and R. Fujimoto, “Parallel simulation today”,
Annals of Operations Research, pages 249-285, 1994.

[16] Z. Xiao, B. Unger, R. Simmonds, and J. Cleary, “Scheduling
critical channels in conservative parallel discrete event simu-
lation”, in Workshop on Parallel and Distributed Simulation
(PADS), 1999.

[17] George F. Riley, Richard Fujimoto, Mostafa H. Ammar,
“Network aware time management and event distribution”,
in Workshop on Parallel and Distributed Simulation (PADS),
2000.

[18] P. Huang, D. Estrin, and J. Heideman, “Enabling large-scale
simulations: selective abstraction approach to the study of
multicast protocols”, in MASCOTS, 1998.

[19] Benyuan Liu, Daniel R. Figueiredo, Yang Guo, et al, “A
Study of Networks Simulation Efficiency: Fluid Simulation
vs. Packet-level Simulation”, in IEEE INFOCOM, 2001

[20] Syam Gadde, Jeff Chase, Amin Vahdat, “Coarse-Grained
Network Simulation for Wide-Area Distributed Systems”, in
Communication Networks and Distributed Systems Modeling
and Simulation (CNDS), 2002.

[21] Martini P., M. Rumekasten, and J. Tolle, “Tolerant synchro-
nization for distributed simulations of interconnected com-
puter networks”, in Workshop on Parallel and Distributed
Simulation (PADS), 1997.

[22] Loper M. and Fujimoto R., “A Case Study in Exploiting
Temporal Uncertainty in Parallel Simulations”, in the Inter-
national Conference On Parallel Processing (ICPP-04), 2004.

[23] Dhananjai Madhava Rao, Narayanan V. Thondugulam, et al.,
“Unsynchronized Parallel Discrete Event Simulation”, in the
Winter Simulation Conference, 1998.

[24] Amin Vahdat, Ken Yocum, Kevin Walsh, et al, “Scalability
and Accuracy in a Large-Scale Network Emulator”, in OSDI,
2002

[25] Emulab project. “The Utah network testbed” (Web site).
http://www.emulab.net/.

[26] Shiding Lin, Aimin Pan, Rui Guo, Zheng Zhang, “Simulating
Large-Scale P2P Systems with the WiDS Toolkit”, Technical
Report, MSR-TR-2005-95, Microsoft Research, 2005.

[27] Zheng Zhang, Qiao Lian, Yu Chen, “XRing: Achieving
High-Performance Routing Adaptively in Structured P2P”,
Technical Report, MSR-TR-2004-93, Microsoft Research,
2004.

