
End-to-end tracing considered essential

Dushyanth Narayanan (dnarayan@microsoft.com), Microsoft Research Cambridge

Abstract

Concurrency and complexity are major obstacles to understanding application performance
in high-performance systems. We advocate end-to-end event tracing as the correct way to expose
performance information for both human and automated analysis. We describe its advantages
over traditional performance counter data, and illustrate its uses in performance visualization,
prediction for capacity planning, and anomaly detection. We conclude with a look at opportu-
nities and challenges presented by a widespread deployment of end-to-end tracing.

1 Motivation

System administrators are constantly challenged by the need to understand performance. When
performance is unsatisfactory, is it a transient or a persistent problem? Is the solution a recon-
figuration of existing hardware, or the purchase of new hardware? For a given budget, which
new hardware would provide the most performance improvement? These questions are not easy
to answer even for a skilled administrator, and they become ever more difficult as systems grow
more complex and highly concurrent. Complexity increases the number of different components
and subsystems that might impact performance; concurrency causes highly interleaved execution
of transactions, making it difficult to analyze the performance of a single one in isolation.

Current systems provide little help to human administrators in understanding their perfor-
mance, and none at all for automated resource and performance management. The state of the art
consists in exposing a large number of performance counters: aggregated views of the utilization of
physical or virtual resources [3, 5, 8]. Administrators identify problems by comparing these coun-
ters with some threshold values (“the disk queues are too long”). Such counters provide a narrow
view of the system and do not identify the global bottlenecks (“if disk queues are long, should I
buy more memory, faster disks, or reconfigure the database?”). Further, with 400+ performance
counters, it is extremely difficult to know exactly which ones are relevant and what the correct
thresholds are. Finally, aggregate counters do not offer any insights into response time, since they
do not distinguish between background and foreground (critical-path) resource usage.

We argue that the correct approach to exposing performance data is end-to-end tracing of
resource usage, rather than mere counting of aggregate resource usage or performance statistics.

1



End-to-end tracing is characterized by

1. Cheap, fine-grained trace events with high-precision timestamps.

2. Tracing on fast/common paths, not just anomalous ones.

3. Precise resource accounting: one event for each resource usage (disk I/O, buffer allocation,
etc.), or in the case of execution resources suc as the CPU, for each context switch.

4. Separating demand from service: Highly concurrent systems multiplex a large number of
requests onto a smaller number of execution contexts such as threads and processors. Also, a
single request can move across threads, processes, and machines. By recording the execution
context of each resource usage event, we separate the demand process — the resource usage
of each transaction — from the service process — the scheduling of transactions on the
underlying threads and processors.

5. Tracing synchronization and control transfer: One way to track request execution
through the system is to maintain a global context or “request ID”. This requires propaga-
tion of the request ID across software components and machines, requiring extensive changes
to existing APIs and protocols. Instead, we augment events with local context such as thread
ID, and also track synchronization or context switch events indicating transfer of control from
one context to another (e.g. messages, work queues, RPCs, scheduler context switches). This
avoids propagation of a global ID, and also lets us flexibly define “request” at different gran-
ularities: for example, an http request might generate several SQL “sub-requests”. Tracing
synchronization events is also useful for diagnosis of synchronization bottlenecks.

6. Extracting in-request concurrency: In addition to concurrency across independent re-
quests, we might also have concurrency within a request due to overlap of processing, asyn-
chronous I/O, and asynchronous RPCs. Tracking context switches and synchronization events
allows us to extract this concurrency as a partial ordering.

End-to-end tracing provides several advantages over performance counters:
• Disaggregated view: performance and resource usage of individual transactions.
• Control flow information: ordering/concurrency/dependencies within a transaction.
• Precise accounting: each resource usage event is assigned to exactly one transaction.
• Flexibility: in addition to the original performance counters, new ones can easily be added

by computing a different aggregate on the trace data (e.g. “how many transactions of type
‘search catalogue’ issued more then 10 disk read requests?”)

• Response time analysis: whereas performance counters only identify throughput bottlenecks,
end-to-end tracing tracks per-transaction resource usage as well as ordering dependencies,
which allows measurement and prediction of execution latency.

2



T
h

read
/C

S
w

itch
In

S
tartR

eq
u

est

T
h

read
/C

S
w

itch
In

E
n

terS
to

red
P

ro
c

B
u

fferG
et

B
u

fferG
et

B
u

fferG
et

B
u

fferE
vict

B
u

fferE
vict

B
u

fferE
vict

B
u

fferE
vict

B
u

fferE
vict

T
h

read
/C

S
w

itch
O

u
t

T
h

read
/C

S
w

itch
In

B
u

fferG
et

B
u

fferG
et

B
u

fferG
et

B
u

fferG
et

CpuId=0

DiskId=0

TId=0x0000176C

DiskIO=400402

DiskIO=400403

DiskIO=400405

DiskIO=400406

DiskIO=400407

OLTP transaction 

starts

stored procedure call buffer pool "hits"buffer pool "misses"

disk busy with writes/reads

I/O is queued I/O is processed

Figure 1: Timeline view of a single OLTP transaction

2 Status

As part of the Magpie project at MSR Cambridge, we have successfully applied end-to-end tracing
to several scenarios, including that of a two-tier web service [1, 2, 4, 7]. We have instrumented
Microsoft IIS Server and SQL Server to trace resource usage and control flow, and used the resulting
traces as input to a variety of applications. This section briefly describes our tracing infrastructure
and and three of these applications.

Low-overhead, non-blocking event tracing is provided by Event Tracing for Windows (ETW) [6].
Events are posted by calling a Win32 API function with an event type and data fields specific to
that event type. ETW timestamps each event with the processor cycle counter and asynchronously
flushes events in timestamp order to disk or to a consuming process. All critical-path operations
use CPU-local data structures to enable multiprocessor scaling, and we are optimistic that the
overheads will scale well with system size. Our measurements of SQL Server running a TPC-C
workload on a single processor show an average of 500 events/transaction, 1000 cycles/event, and
68 bytes/event of trace data. Extrapolating this to the fastest TPC-C system as of date (3,210,540
tpmC with 64 processors at 1.9 GHz) [9], we get a CPU overhead of 5% and a trace data rate of
8 MB/s. This could be reduced further through careful optimization. More importantly, overhead
can be reduced arbitrarily through sampling, i.e. selective enabling of events at runtime.

Our first application was to visualize end-to-end performance in a way that traditional perfor-
mance counters do not allow. As we can extract the control flow and resource usage of individual
transactions, we are able to generate “timeline” views such as Figure 1. Such views allow us to

3



0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200
Buffer pool size (MB)

T
ra

n
sa

ct
io

n
s/

se
co

n
d

ACTUAL
PREDICTED

(a) Throughput

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200
Buffer pool size (MB)

L
at

en
cy

 (
se

co
n

d
s)

ACTUAL
PREDICTED

(b) “new order” response time

Figure 2: Predicting TPC-C performance when memory size is doubled

examine in detail the execution of a single transaction, although in reality it was heavily interleaved
with many others. Traditional performance counters (e.g. “CPU load”) can also be easily com-
puted from the trace data, with the benefit that we can dynamically add new performance counters
without any reconfiguration of the live system.

A second application is automated performance prediction for capacity planning. By measur-
ing the resource demand of real applications on live systems, end-to-end tracing lets us accurately
answer “what-if” questions about hypothetical new hardware with quantitative predictions of the
expected change in performance [7]. Answering such “what-if” questions automatically is of great
benefit to system administrators in making informed and cost-efficient upgrade decisions, but to-
day’s systems lack such a self-predictive capability. Figure 2 shows graphically the answer to one
such “what-if” question: “what will happen to throughput and response time of my current work-
load if I double memory size”. These predictions were generated by applying parametrized models of
SQL Server’s CPU, disk, and buffer management to the per-transaction resource demands obtained
by tracing a live system.

A third promising use of end-to-end tracing is anomaly detection. Given detailed per-transaction
information, we could construct models of “normal” transaction resource usage, and automatically
identify abnormally behaving transactions without requiring any knowledge of the application code
or semantics. Our results show that simple clustering-based models can differentiate between
transaction behaviours based solely on their resource usage traces [1], and we are hopeful that this
can be developed into a full-fledged outlier detection mechanism.

4



3 Agenda

The main barrier to widespread use of end-to-end tracing is not the overhead or the lack of ap-
plications but the absence of appropriate instrumentation in today’s commercial DBMS. Tracing
is used for ad-hoc debugging of rare or erroneous code paths, but there is no systematic effort
to trace the common or fast path for a complete picture of end-to-end performance. We recom-
mend strongly that designers and developers of DBMS components include end-to-end tracing as a
high-level goal from the start. Specifically, they should aggressively instrument all code paths with
events (which can be selectively disabled at runtime), especially all physical and virtual resource
usage, synchronization, control transfer, and context switching.

Our current research agenda is to improve the applications of end-to-end tracing that we de-
scribed here: to develop new ways to query and visualize trace data; better models for performance
prediction and capacity planning; and models of transaction resource demand for outlier/anomaly
detection. No doubt, widespread use of end-to-end tracing will create new applications, with asso-
ciated challenges in distribution collection and analysis, storage, and management of trace data.

References

[1] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for request extraction and workload
modelling. In Proceedings of the 6th Symposium on Operating Systems Design and Implementation, San
Francisco, CA, Dec. 2004.

[2] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: online modelling and performance-aware
systems. In Proceedings of the 9th Workshop on Hot Topics in Operating Systems, Lihue, HI, May 2003.

[3] IBM. DB2 performance expert. http://www-306.ibm.com/software/data/db2imstools/db2tools/

db2pe/, Mar. 2005.

[4] R. Isaacs, P. Barham, J. Bulpin, R. Mortier, and D. Narayanan. Request extraction in Magpie: events,
schemas and temporal joins. In Proceedings of the 11th ACM SIGOPS European Workshop, Leuven,
Belgium, Sept. 2004.

[5] Microsoft. Improving SQL Server performance. http://msdn.microsoft.com/library/en-us/dnpag/
html/scalenetchapt14.asp, May 2004.

[6] Microsoft. Event Tracing for Windows (ETW). http://msdn.microsoft.com/library/en-us/

perfmon/base/event_tracing.asp, Feb. 2005.

[7] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous resource monitoring for self-predicting DBMS.
http://www.research.microsoft.com/~dnarayan/dbperf.pdf, Mar. 2005. Submitted for publication.

[8] Oracle. Oracle database manageability. http://www.oracle.com/technology/products/

manageability/, Jan. 2005.

[9] Transaction Processing Performance Council. Top ten TPC-C by performance. http://www.tpc.org/

tpcc/results/tpcc_perf_results.asp, Mar. 2005.

5


