{2 Meets Paxos:
Leader Election and Stability without Eventual
Timely Links

Dahlia Malkhi!, Florin Oprea*?, and Lidong Zhou?

1 Microsoft Research Silicon Valley and the Hebrew University of Jerusalem
2 Department of Electrical and Computer Engineering, Carnegie Mellon University
3 Microsoft Research Silicon Valley

Abstract. This paper provides a realization of distributed leader elec-
tion without having any eventual timely links. Progress is guaranteed
in the following weak setting: Eventually one process can send messages
such that every message obtains f timely responses, where f is a re-
silience bound. A crucial facet of this property is that the f responders
need not be fixed, and may change from one message to another. In
particular, this means that no specific link needs to remain timely. In
the (common) case where f = 1, this implies that the FLP impossibil-
ity result on consensus is circumvented if one process can at any time
communicate in a timely manner with one other process in the system.
The protocol also bears significant practical importance to well-known
coordination schemes such as Paxos, because our setting more precisely
captures the conditions on the elected leader for reaching timely consen-
sus. Additionally, an extension of our protocol provides leader stability,
which guarantees against arbitrary demotion of a qualified leader and
avoids performance penalties associated with leader changes in schemes
such as Paxos.

1 Introduction

A fundamental design guideline pioneered in the Paxos protocol [I] and later
employed in numerous coordination protocols is to separate safety properties
from liveness properties. Safety must be preserved at all times, and hence, its
implementation must not rely on synchrony assumptions. Liveness, on the other
hand, may be hampered during periods of instability, but eventually, when the
system resumes normal behavior, progress should be guaranteed. In various co-
ordination protocols such as Paxos, liveness hinges on a separate leader election
algorithm, with the problem of finding a good leader election algorithm left open.

It is well known in the theory of distributed computing that liveness of con-
sensus cannot be guaranteed in a purely asynchronous system with no timing
assumptions [2]. {2 is known to be the weakest failure detector [3J4] that is
sufficient for consensus, hence provides the liveness properties of consensus. {2

* Work done during a summer internship at Microsoft Research Silicon Valley.

essentially implements an eventual leader election, where all non-faulty processes
eventually trust the same non-faulty process as the leader.

While (2 captures the abstract properties needed to provide liveness, it does
not say under which pragmatic system conditions is progress guaranteed. It
leaves open the interesting questions of what synchrony conditions should be
assumed when implementing {2 and what additional properties would yield an
ideal leader election algorithm for practical coordination schemes such as Paxos.

A revisit of Pazos. In this paper, rather than cooking up arbitrary synchrony
assumptions and additional properties, we derive the desired features of our
protocols from Paxos, a cornerstone coordination scheme employed in various
reliable storage systems such as Petal [5], Frangipani [6], Chain Replication [7],
and Boxwood [§].

At a high level, Paxos is a protocol for a set of processes to reach consensus
on a series of proposals. With a leader election algorithm, a process p that is
elected leader first carries out the prepare phase of the protocol. In this phase,
p sends a prepare message to all processes to declare the ballot number it uses
for its proposals, learns about all the existing proposals, and requests promises
that no smaller ballot numbers be accepted afterwards. The prepare phase is
completed once p receives acknowledgments from n — f processes. Once the
prepare phase is completed, to have a proposal committed, leader p initiates the
accept phase by sending an accept message to all processes with the proposal and
the ballot number it declares in the prepare phase. The proposal is committed
when p receives acknowledgments from f + 1 processes. Whenever a higher
ballot number is encountered in the prepare phase or the accept phase, the
leader has to initiate a new prepare phase with an even higher ballot number.
This could happen if there are other processes acting as leaders, unavoidable in
an asynchronous system.

To implement a replicated state machine, Paxos streamlines a series of con-
sensus decisions. A new leader p carries out the prepare phase once for all its
proposals. After the completion of the prepare phase, p carries out only the
accept phase for each proposal until a new leader emerges by initiating a new
prepare phase.

Our goal is to distill the conditions under which Paxos can have new proposals
committed in a timely fashion and to provide a leader election protocol exactly
under those conditions. Therefore, we make the following observations:

— After an initial prepare phase, in order for a leader p to make timely
progress, it suffices for p to obtain timely responses for its accept message
from any set of f + 1 processes (or f processes besides itself). The set could
change for different accept messages.

— Any leader change incurs the cost of an extra round of communication for
the prepare phase.

Contribution. Complying with the conditions under which we wish to enable
progress in Paxos, our leader algorithm features the following two desired prop-
erties®:

First, the algorithm guarantees to elect a leader without having any eventual
timely links. Progress is guaranteed in the following surprisingly weak setting:
Eventually one process can send messages such that every message obtains f
timely responses, where f is a resilience bound. We name such a process < f-
accessible. A crucial facet of this property is that the f responders need not be
fixed, and may change from one message to another. We emphasize that this
condition stems from the workings of Paxos, whose safety does not necessitate
that the f processes with which a leader interacts be fixed.

Our solution bears the following ramification on the foundations of distrib-
uted computing. It implies that the FLP [2] impossibility result on consensus
with one failure (f = 1) is circumvented if one process can at any time interact
in a timely manner with one other process in the system.

No previous leader election protocol provides any guarantee in these settings.
In fact, the approach taken in most previous protocols is fundamentally incom-
patible with this condition. The reason is that previous protocols gossip about
suspicions until the system converges. This does not allow for a leader to com-
municate at different times with different subsets of the system, as the leader
will constantly be under suspicion of some part of the system. Thus, no easy “en-
gineering” of previous protocols can provide progress under the < f-accessibility
condition.

The second contribution provided by our algorithm is leader stability. This
is based on the observation that a leader change necessitates an execution of
a prepare phase by the new leader, an often costly operation. We therefore
embrace the notion of stability to capture the requirement that a qualified leader
not be demoted, where a leader is considered qualified if it remains capable of
having proposals committed in a timely fashion. For Paxos, when n = 2f + 1
holds, a leader is qualified if it is non-faulty and maintains timely communication
with a set of f other processes at all times, with the set possibly changing over
time.

2 Related Work

Our review of previous work concentrates on the two properties of interest to
us: synchrony conditions and leader stability.

On synchrony conditions. A simple solution for the leader election problem is as
follows [119]. Periodically send alive messages from all to all, and let each process
collect data on all the processes it heard from within the last broadcast period.
Each process elects as leader the process with the lowest process id from its
view. This implementation requires that eventually all n? communication links
become timely with a known communication bound.

4 Formal definitions of these properties are provided in the body of the paper.

A number of papers [I0J11] relax this by assuming an wunknown commu-
nication bound. The reduction to the known bound model involves gradually
increasing timeout periods until no false alarms incur on the current leader.
This “trick” may be used in almost all leader-election protocols, as is done, e.g.,
in [TOJTTIT2/13/14)T5]. Nevertheless, all communication links are required to be
eventually synchronous.

Aguilera et al. further relaxes the model to one that has a process maintaining
eventually timely links with the rest of system [12] and to one that has a process
whose outgoing links to the rest of the system are eventually timely [13]. In [13], a
single correct process called $-source is assumed to have outgoing non-lossy and
timely links eventually . Their protocol works by processes sending accusation
messages to one another when they timeout. Intuitively, every process converges
on the suspicions of the &-source process, since its accusations are guaranteed
to arrive timely at their destinations.

More recently, and most relevant to our work, there are several pieces of work
that require surprisingly weak synchrony conditions for implementing {2 and con-
sensus. This line of work limits the scope of timely links from the correct pivot
process to only a subset of the system. There are two main flavors, one deals with
failure-detection abstractions without explicit mentioning of synchrony condi-
tions, and the second builds directly over partial synchrony conditions. We start
with the first approach, which historically precedes the second.

The work of [16/17] introduces the notion of limited scope failure detectors,
where the scope of the accuracy property of an unreliable failure detector is
defined with respect to a parameter (z) as the minimum number of processes
that must not erroneously suspect a correct process to have crashed. This yields
failure detector classes S, (respectively, ¢S,), whose accuracy properties are
required to hold only on a subset of the processes whose size is x. The usual
failure detectors S (respectively, ©S) implicitly consider a scope equal to the
total number of processes. A limited-scope detector in the classes Sy or Sy is
straight-forward to implement using periodic alive messages and timeouts, given
a system in which one correct process (eventually) has x outgoing timely links.
Therefore, under these conditions, a possible construction of {2 is to as follows:
first implement <S,; then transform S, to ¢S [14]; finally transform S to
2 [18].

Aguilera et al. [15] adopts a more direct approach. Define a process p to be
a < f-source if eventually it has f outgoing links that are timely. Any of the f
recipient endpoints of these links may be faulty. Assuming a bound f on the
number of crashed processes, Aguilera et al. [15] presents an {2 construction
with the existence of one correct < f-source. The protocol counts suspicions of
processes about all other processes and exchanges vectors of suspicion-counters.
Each process elects as leader the process with the lowest suspicion counter, break-
ing ties by process ids. Intuitively, the suspicion counters of crashed processes
grow indefinitely, whereas the < f-source has a guaranteed bounded suspicion-
counter. This guarantees that eventually a correct process is elected as leader

(among all the ones whose counters are bounded), and furthermore, it remains
so permanently because all counters are non-decreasing.

Both the S; condition and the < f-source condition are neither weaker nor
stronger than ours: Let p denote, respectively, the pivot correct process that
upholds any of these models. The <© f-source assumption and the ¢Sy accuracy
assumption require timeliness only on f outgoing links from p, and no correctness
of the f recipients. Our < f-accessible assumption requires f bi-directional timely
links from p, as well as correctness from the f recipients, which are stronger
assumptions. However, in < f-source, the set of f links is fixzed throughout the
execution, as is the limited-scope subset of &Sy, whereas < f-accessible allows
the f links to vary in time, which is a weaker assumption.

Although formally these models are incomparable, we note that our assump-
tions are strongly motivated by practical needs, particularly those of the Paxos
protocol. In Paxos, if there is a single leader, the leader can carry out the accept
phase and make progress so long as it is able to communicate with f processes.
This is exactly the condition under which our {2 implementation is guaranteed
to operate. In particular, the leader may in realistic settings have a “moving
set” of f timely links. But so long as at any moment, some set of f links are
timely, our protocol can guarantee progress. Under these conditions, the < f-
source assumption does not hold, nor does <S¢, and the protocols of [14]15]
may fail.

Leader stability. The only previous work we are aware of that considers some
form of leader stability is the protocol of Aguilera et al. [I12]. Their notion of
stability relates to a leader that is recognized by all non-faulty processes as
leader. For practical consensus protocols such as Paxos, this condition might
have limited value, because no process inside the system can know when a leader
is known to all others. In Paxos, a process must know whether it is a leader in
order to decide whether to initiate the prepare phase. Therefore, our stability
condition uses the leader’s own perspective as the determining time to when its
leadership stabilizes. This is what Paxos needs to avoid having leaders being
arbitrarily de-crowned due to unnecessary prepare messages.

3 Informal Model

The system consists of a set P of n processes, each pair of which can directly
communicate by sending and receiving messages over a bi-directional link. Each
process is equipped with a drift-free local clock. Clocks of different processes need
not be synchronized. When we reason about the system, we often use a global
wall-clock ¢, which is not known or used by the processes within the system.

Each process executes a sequence of steps triggered either by message recep-
tion or timer expiration. In a step, a process may perform any number of local
computations, send messages, and set timers. For simplicity, we denote the time
it takes to perform a step as zero.

Process and Communication Faults. Processes may fail by crashing permanently,
and otherwise are non-faulty. A failure pattern Fj, is a function from wall clock
time to sets of processes that have crashed by that time. We say that p is
non-faulty at time ¢ if p & F,(t). We say that p is non-faulty if it is always non-

faulty. There is a known resilience bound f < |27*] on the number of crashed

processes.”
Communication links are reliable, in the sense that no message from a non-
faulty process can be dropped, duplicated, or changed, and no messages are

generated by the links.

Communication Synchrony. The conditions regarding timeliness of links are at
the heart of our investigation. There is a known upper bound 4 on the round-trip
delay of messages, but it does not hold on all pairs of processes at all times. What
is known is that eventually there is one process that is able to exchange messages
within the § delay with f other processes. We will now make this notion precise.

Definition 1. Let (p,q) denote the communication link between p and q. We say
that (p,q) is timely at time t if any message sent by p to q at time t receives a
response within § time. Note that if ¢ becomes faulty before handling p’s message,
or q is slow to respond, then by definition the link is not timely.

Definition 2. A process p € P is said to be f-accessible at time t if there exist
f other processes q such that the links (p,q) are timely at t.

Our synchrony requirement is the following.

Definition 3. (O f-accessibility) There is a time t and a process p such that for
allt’ > t, p is f-accessible at t'.

Note that the definition of f-accessibility allows a process p to be considered
f-accessible even if the sets of f processes accessed by p at different times change.
This property is fundamentally more practical than fixing a subset with which p
must interact forever. This definition is derived from the way consensus protocols
like Paxos [1] and revolving-coordinator consensus [3] operate.

We also note that there are several known ways to weaken our model with
variations that bear practical importance. First, it is easy to extend the model to
account for a non-zero bound on local processing time and clock drifts, but this
would just be a syntactic burden. Second, it is possible to relax the assumption
that the communication round-trip bound ¢ is a priori known. The trick for
overcoming this uncertainty is to start with an aggressively-low guess of § and

5 It is easy to generalize the discussion to use quorum systems instead of counting
processes. A read/write quorum system for P, denoted R(P), W(P) C 2% is a pair of
sets of subsets of P, such that every pair Q1 € W(P), Q2 € W(P)UR(P) has a non-
empty intersection, Q1 NQ2 # 0. Each subset is called a quorum. Quorums generalize
thresholds as follows. Operations on (f + 1)-subsets are replaced with operations on
read quorums; operations on (n — f)-subsets are replaced with operations on write
quorums.

gradually increase it when premature expirations are encountered. Most of the
claims in this paper can be adapted to reflect this technique of learning ¢. For
simplicity, we omit this from the discussion. Finally, our non-timely reliable links
may be easily replaced with fair lossy-links as in [15], which are links that deliver
infinitely many times any message-type that has been sent infinitely often. This
requires repeatedly sending messages until acknowledged, and once again, is
omitted from the discussion.

Problem statement. Our goal is to construct in our model a weak leader (2,
defined as follows [3]: §2 provides every process ¢ at any time ¢ with a local hint
£2,4(t), such that the following holds:

Definition 4 (£2). There exist a time t and a non-faulty process p, such that
for any t' > t, every process q that is not faulty at time t' has £24(t') = p.

4 (2 with & f-accessibility

Our first protocol implements {2 under the < f-accessibility condition. The pro-
tocol for process p appears in [Figure 1. It works as follows.

Each process maintains for itself a non-decreasing epoch number, as well as an
epoch freshness counter. Epochs are implemented using the following data types
and variables. An epoch number is a pair that consists of an integer field named
serialNum and another field named processld, which stores either a process id
or null. We assume a total ordering on process ids with null smaller than any
process id. Epoch numbers are ordered lexicographically, first by serialNum and
then by processld.

We define a state to be a pair consisting of an epoch-number field named
epochNum and an integer field named freshness. States are ordered lexicograph-
ically, first by epochNum and then by freshness.

A process refreshes its epoch number in fixed periodicity of length A, by
incrementing the epoch freshness counter and writing it to its registry, which is
replicated on all processes in the system. If the refresh fails to complete updating
the registry at f+ 1 processes within the known ¢ round-trip bound, the process
increases its own epoch number. The vector registry[] records locally at each
process the latest state it received from others: registry[q| is updated upon receipt
of a refresh message from g¢.

Process p records the states it reads of all other processes in a vector named
views|]. A process updates its view by periodically reading the entire registry
vector from n — f processes. Each entry views[g] has two fields. One is a state
field, and the other is a bit called expired indicating whether ¢’s state has been
continuously refreshed or not. Initially, all serialNum and freshness fields are
zeroed, and expired field set to true.

The idea is to select as a leader the process with the lowest non-expired epoch
number (breaking ties using process ids). To assess whether an epoch number
has expired or not, every process reads the registry of all processes from n — f

processes periodically. The exact period between the completion of a previous
read and the start of the next must be at least A + § to guarantee that every
process has had a chance to refresh its registry at least once between reads. If a
process p detects no change in another process ¢’s counter, p expires ¢’s epoch
number and no longer considers ¢ a contender for leadership until a new epoch
is detected for q.

The intuition behind the success of the protocol is as follows. First, unless
a process always manages to write its registry to f other processes within ¢
time units after some point, its epoch number will increase indefinitely or will
be considered expired (e.g., when it fails).

Second, consider a process p that after a certain time ¢ always manages to
write its registry to f other processes within §. It follows that eventually p stops
increasing its epoch number. Note that this is true for any < f-accessible process.
Let p be the process whose epoch number stops increasing at the lowest value
in the system. Denote that lowest epoch number as ej,. The timely refreshing of
e, makes it eventually known as p’s epoch by all non-faulty processes. Observe
that e, never expires at any other process, because p succeeds in refreshing e,’s
freshness counter every A time period. Furthermore, eventually all higher epoch
numbers either become known to all non-faulty processes, or belong to processes
whose (lower) epoch numbers expire. Hence, eventually all other processes will
consider p leader.

The protocol also makes use of monotonically increasing counters, such as
refreshNum and readNum, to associate responses with requests. These counters
are initialized to 0. Variables epochStartTime and lastCompletedReadStart Time
are introduced for later use, when the protocol is extended for stability in Sec-
tion 5.

Process p also has a variable leader : P Unull, that captures p’s view of
the current leader. leader is initially set to null. (2,(¢) is thus defined to be the
value of leader, on process p at time ¢. The correctness proof showing that the
protocol in Figure 1l implements {2 appears in the full version of this paper [19].

Reducing Message Complexity

As suggested in [11], a crucial measure of communication complexity is the num-
ber of links that are utilized infinitely often in the protocol. The above protocol
uses all-to-all communication infinitely often to keep leader information up to
date, hence employs O(n?) infinite-utilization links.

The communication complexity in a steady state can be reduced to O(n),
where in a steady state there exists a unique f-accessible leader that is never
suspected by any non-faulty process. We briefly sketch the required changes
here. The full paper [19] contains a precise protocol description and its correct-
ness proof.

The first change is related to the refreshing of epoch numbers. A process
p that is not currently the leader need not refresh its own epoch number; it
can simply let it become inactive, since it is not contending for the leadership.
Therefore, we disable the periodic refresh at p when it is not a leader. A process

Start refreshTimer with A time units; Start readTimer with A 4 § time units;

REFRESH:
Upon refreshTimer timeout: /* time to refresh the registry */
start refreshTimer with A time units;
ackMsgCount := 0; refreshNum ++;
send (refresh, p, registry[p], refreshNum) to every q € P;
start roundTripTimer with § time units;

Upon receiving (refresh, g, rg, n):
if (registry[q] < rg) registry[q] := rg; send to ¢ (ack,p,q, rn); end if

Upon receiving (ack, g, p, rn = refreshNum):
if (++ackMsgCount > f + 1)
stop roundTripTimer; registry[p|.freshness ++;
end if

ADVANCE EPOCH:
Upon roundTripTimer timeout: /* no timely links to a quorum */
views|p].expired := true; registry[p|.epochNum.serial Num ++;
epochStartTime := currentTime;

COLLECT:
Upon readTimer timeout: /* time to read the registries */
lastReadStartTime := currentTime; readNum +-;
statusMsgCount := 0; oldViews := views; /* store for comparison */
send (collect, p, readNum) to every q € P;

Upon receiving (collect, g, rn): send to q (status, p, q, rn, registry);

Upon receiving (status, q, p, rn = readNum, qReg):
for each r € P views[r].state := max(qReg[r], views[r].state); end for
if (++statusMsgCount > n — f) /* responses from a quorum collected */
lastCompletedReadStart Time := lastReadStart Time;
for every r € P /* check if r has refreshed its epoch number */
if (views[r].state < oldViews[r].state) views|r].expired := true; end if
if (views|r].state.epochNum > oldViews[r].state.epochNum)
views[r].expired := false;
end if
end for
leaderEpoch := min({views|q].state.epochNum | views|q|.expired = false}
U{(0, nu11)});
leader := leaderEpoch.processld; start readTimer with A 4 § time units;
end if

Fig. 1. 2 with < f-accessibility.

increments its epoch number only when it experiences a roundTripTimer time-
out, as in the original protocol, and may “revive” an inactive epoch number
when becoming a leader.

The second change is related to the monitoring of epoch numbers in the
system. In a steady state, there is no reason for a process p to monitor the states
of all other processes. Therefore, we disable periodic collect altogether.

A process p that does not obtain any refresh message carrying the current
presumed leader’s epoch number for some timeout period suspects that the cur-
rent leader has failed. Likewise, a process p that hears a refresh message carrying
a lower epoch number than the current presumed leader’s epoch number assumes
that it does not have up-to-date information about the current leader .

In these two cases (only), a process activates the collect procedure twice,
where the second one is activated at least A 4+ ¢ time units after the first one
completes, as in the original protocol. Process p then determines the lowest
active epoch number and checks whether its current epoch number is lower. If
p’s current epoch number is lower than the lowest active epoch number, p enters
a leader state and p activates refresh periodically as in the original protocol.
Otherwise, p will consider the process owning the lowest epoch number as the
leader and expect to receive refresh messages periodically.

The intuition behind the success of the modified protocol is somewhat similar
to our initial protocol, but with crucial differences. As before, consider a process
p that, after a certain time ¢, always manages to write its registry to f other
processes within §. It follows that eventually p stops increasing its epoch number.
Note that this is true for any < f-accessible process.

Now, consider a non-crashed process ¢ with the lowest current epoch number
in the system. If ¢ is not the leader yet, then ¢ believes that there exists a lower
active epoch number that its own. Because such an epoch number no longer
exists, eventually ¢ times out on that epoch number and perform two collects.
Because its epoch number is the lowest among the non-crashed processes, it will
learn that its epoch number is lower than the lowest active epoch number in
the system and become a leader. If ¢ is not < f-accessible, eventually it will fail
updating its own freshness counter and will increase its epoch number.

Together, we have that, on the one hand, the < f-accessible processes stop in-
creasing their epoch numbers. On the other hand, any non < f-accessible process
either crashes or increases its own epoch number to be higher than the lowest
epoch number in the system. As before, the process p whose epoch stops increas-
ing at the lowest value in the system becomes a permanent leader.

In terms of message complexity, once an f-accessible leader is elected and
all processes receive its refresh messages without suspecting the leader, eventu-
ally all other processes stop refreshing their epochs and stop reading, hence the
communication complexity drops to O(n).

5 Stability

Driven by our need to employ {2 within repeated consensus instances of the
Paxos protocol, we now introduce a crucial addition to {2.

The definition of {2 mandates that eventually a single leader stabilizes and
is never replaced. However, it allows many leaders to be replaced many times
until that time arrives. This is undesirable in many respects. In Paxos, replacing
a leader is a costly operation. The new leader needs to perform an extra round
of communication in order to collect information about the latest actions of the
previous leader. In many other settings, electing a new leader involves heavy
re-configuration procedures, which should be avoided if possible.

We therefore would like to require that a qualified leader (e.g., a < f-accessible
leader) never be demoted. To this end, we first need to define precisely what it
means for a process to be a leader. Our definition is simple and is grounded in
practice: A process p is a leader at time ¢ if it considers itself a leader at time ¢.
More precisely, we have the following simple definition:

Definition 5. Process p is a leader at time t iff £2,(t) = p.

Intuitively, this definition is desirable because, once p considers itself a leader,
it takes actions as leader and may incur any cost mentioned earlier associated
with leadership. Leader stability is then defined simply as follows:

Definition 6 (Leader Stability:). Let p be a leader at time t, and assume
that p is f-accessible during the period [t — §,t + 7]. We say that a protocol
implementing (2 satisfies leader stability at time t+ 7 if p is still a leader at time
t+ 7, and no other process q # p is a leader at time t + 7.

{2 with Stability

In this section, we introduce changes to the above protocol in order to provide
for leader stability. In order for these changes to work, however, we require
n=2f+1.0

In the protocol of Figure!l, p considers itself a leader immediately when p sets
leader, to p; that is, when p’s current epoch number is the lowest non-expired
epoch number in p’s view. This is insufficient; the scenario that disrupts stability
is as follows. Suppose a process p becomes a leader at time t because its current
epoch number e, is the lowest non-expired epoch number in its view at ¢. In the
meantime, another process ¢ times out on an epoch number e, < e, — 1 and
advances to a new epoch number e, +1 < e,. If ¢ now becomes f-accessible,
eq + 1 will eventually become the lowest epoch number, demoting leader p even
if p has been f-accessible; leader stability is thus violated.

To achieve stability, for a process p to become a leader, we not only require
that p’s epoch number be the lowest non-expired epoch number in p’s view, but

6 Alternatively, we could require that an accessible process have timely links to n — f
processes, rather than f + 1 processes.

Start refreshTimer with A time units; Start readTimer with A + ¢ time units;
REFRESH: same as in Figure [1

ADVANCE EPOCH:
Upon initialization or roundTripTimer timeout:
/* no timely links to a quorum, retrieving existing epoch numbers */
stop refreshTimer;
refreshNum ++; isLeader := false; views[p|.expired := true;
epochCount := 0;
globalMazEn := registry[p].epochNum;
seqNum ++;
send (getEpochNum, p, segNum) to each process g € P;
start getEpochTimer with ¢ time units;

Upon getEpochTimer timeout: /* no timely links to a quorum, retry */
seqNum ++;
epochCount := 0;
globalMazEn := registry[p].epochNum;
send (getEpochNum, p, segNum) to each process q € P;
start getEpochTimer with ¢ time units;

Upon receiving (getEpochNum, ¢, sn):
localMazEn :=max{registry[r].epochNum | r € P};
send to ¢ (retEpochNum, p, ¢, sn, localMazEn);

Upon receiving (retEpochNum, g, p, sn = seqgNum, en):
if (en > globalMazEn) globalMazEn := en; end if
if (++epochCount > n — f) /* epoch numbers from a quorum collected */
registry[p).serialNum := globalMazEn.serialNum + 1;
epochStartTime := currentTime;
start refreshTimer with A time units;
end if

COLLECT: same as in Figure 1

BECOME LEADER:
Upon change to lastCompletedReadStart Time
if (leaderEpoch = registry[p].epochNum A
lastCompletedReadStart Time — epochStartTime > 2A + 30)
isLeader := true;
end if

Fig. 2. Stable Leader Election Protocol with < f-accessibility.

further require that p declare itself a leader only after making sure that no non-
expired lower epoch number will cause other processes to claim leadership. This
can be achieved by the following two extensions to the first protocol:

1. Whenever a process initiates a new epoch number, rather than incrementing
the epoch number by 1, it learns the highest existing epoch number through
a timely communication (with bound) with n — f processes and then picks
an epoch number that is higher than any existing epoch number.

2. Process p not only checks whether its current epoch number is the lowest in

its current view, but also waits for sufficiently long to ensure that all non-
expiring epoch numbers that can be lower than e, must have been reflected
in p’s view.
To be precise, let ¢ be the time when the current epoch number e, is chosen,
a process p has to wait until the completion of a collect/status round that
starts at least 2A + 3§ time units after time ¢. This is because a non-faulty
and f-accessible p will start its first refresh for e, at ¢t + A and receive f +1
responses before t + A + §. In order for another process ¢ to pick an epoch
number e, lower than e,, ¢ must have started the (timely) communication
to learn existing epoch numbers before t + A 4§ and then started epoch e,
at t + A+ 20; otherwise, due to n— f+ f +1 > n, one of the n — f processes
reporting existing epoch numbers will be among the ¢ 4 1 that know e, and
will report an epoch number that is e, or higher. If ¢ never expires e,, then
it will complete its refresh for e, at ¢ + 2A + 36. Any collect/status round
after ¢ + 2A + 39 will reflect e4; therefore, e, is not the lowest non-expired
epoch and p will not become a leader.

To capture the condition under which a process considers itself a leader, we
introduce, in addition to variable leader,, a boolean local variable isLeader,, for
each process p and define (2, as follows:

P isLeader, = true
2, := { leader, leader, # p A leader, # null
null otherwise

The full protocol is given in Figure 2. The correctness proofs appear in the full
version of this paper [19].

6 Discussion

The condition we introduced to uphold stability in this paper, namely n =
2f + 1, is stronger than what is required in practice. The precise conditions
under which Paxos can make progress, and likewise, our stable leader election
protocol is guaranteed to operate, are left unspecified. It is worth noting that
for both it suffices for a leader p to interact in a timely fashion once with

n — f processes. Subsequently, p can maintain its leadership and proceed with
consensus decisions, provided that it can interact at any time with f+1 processes.

Stability also appears to be in conflict with the ability to reduce the steady-
state message complexity to O(n). Intuitively, the reduced message complexity
forces a process to decide whether to become a leader based on less accurate
information, thereby creating opportunities for unnecessary demotion. For ex-
ample, in our protocol, to ensure stability, a process becomes a leader only when
it is certain that no process can have a lower active epoch number. This is hard
because epoch numbers can remain inactive (and unknown to other processes)
before they are revived. It is left as an open question whether a stable leader pro-
tocol exists under < f-accessibility with steady-state message complexity O(n).

7 Conclusion

It is our firm belief that leader election algorithms that implement {2 should be
studied in the context of practical coordination schemes that realize consensus.
This paper makes two contributions toward this goal.

First, it contributes to the study of weak synchrony conditions that enable
leader election. < f-accessibility, the synchrony condition we require, is new and
surprisingly weak, in that it requires no eventual timely links. It is incompa-
rable to (but also not stronger than) previously known conditions for leader
election. The condition is derived by our observations on Paxos, leading to an
implementation of {2 under f-accessibility.

Second, it provides practical and stable leader election protocol that elimi-
nates unnecessary and potentially expensive leader changes. The paper therefore
provides Paxos with a “good” leader election protocol; this was left as an open
problem in Lamport’s original Paxos paper.

8 Acknowledgement

We would like to thank Marcos K. Aguilera, Gregory Chockler, Leslie Lamport
and Doug Terry for discussions on this topic. We are also grateful to the anony-
mous reviewers for their insightful comments that helped improve the paper.

References

1. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems
16 (1998) 133-169

2. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32 (1985) 374-382

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225-267

4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43 (1996) 685-722

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Lee, E.K., Thekkath, C.: Petal: Distributed virtual disks. In: Proceedings of the 7th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 1996). (1996) 84-92

Thekkath, C., Mann, T., Lee, E.K.: Frangipani: A scalable distributed file system.
In: proceedings of the 16th ACM Symposium on Operating Systems Principles
(SOSP 1997). (1997) 224-237

van Renesse, R., Schneider, F.B.: Chain replication for supporting high through-
put and availability. In: Proceedings of the 6th Usenix Symposium on Operating
System Design and Implementation (OSDI 2004). (2004) 91-104

MacCormick, J., Murphy, N.; Najork, M., Thekkath, C.A., Zhou, L.: Boxwood:
Abstractions as the foundation for storage infrastructure. In: Proceedings of the
6th Usenix Symposium on Operating System Design and Implementation (OSDI
2004). (2004) 105-120

Prisco, R.D., Lampson, B., Lynch, N.: Revisiting the Paxos algorithm. In: Pro-
ceedings of the 11th Workshop on Distributed Algorithms(WDAG). (1997) 11-125
Larrea, M., Arvalo, S., Fernndez, A.: Efficient algorithms to implement unreliable
failure detectors in partially synchronous systems. In: Proceedings of the 13th
International Symposium on Distributed Computing (DISC 1999). (1999) 34-48
Larrea, M., Fernndez, A., Arvalo, S.: Optimal implementation of the weakest failure
detector for solving consensus. In: Proceedings of the 19th IEEE Symposium on
Reliable Distributed Systems (SRDS 2000). (2000) 52-59

Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader election.
In: Proceedings of the 15th International Symposium on Distributed Computing
(DISC 2001). (2001)

Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
Omega with weak reliability and synchrony assumptions. In: Proceedings of the
Twenty-Second Annual ACM Symposium on Principles of Distributed Computing
(PODC 2003), ACM Press (2003) 306-314

Anceaume, E., Fernndez, A., Mostefaoui, A., Neiger, G., Raynal, M.: A necessary
and sufficient condition for transforming limited accuracy failure detectors. J.
Comput. Syst. Sci. 68 (2004) 123-133

Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Proceedings
of the 23rd Annual ACM Symposium on Principles of Distributed Computing
(PODC 2004), ACM Press (2004) 328-337

Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus algorithms
for failure detectors. In: Proceedings of the 17th Annual ACM Symposium on
Principles of Distributed Computing (PODC 1998). (1998) 297-308

Mostefaoui, A., Raynal, M.: Unreliable failure detectors with limited scope accu-
racy and an application to consensus. In: Proceedings of the 19th International
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FST&TCS99), Springer-Verlag LNCS #1738 (1999) 329-340

Chu, F.: Reducing 2 to OW. Information Processing Letters 67 (1998) 298-293
Malkhi, D., Oprea, F., Zhou, L.: Omega meets paxos: Leader election and stabil-
ity without eventual timely links. Technical Report MSR-TR-2005-93, Microsoft
Research, Redmond, WA (2005)

