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Abstract 
Consistent phoneme segmentation is essential in building 
high quality Text-to-Speech (TTS) voice fonts. In this 
paper we propose to adapt an existing well-trained 
Context Dependent Boundary Model (CDBM) for 
refining segment boundaries to a new speaker with 
limited, manually segmented data. Three adaptation 
approaches: MLLR, MAP, and a combination of the two, 
are studied. The combined one, MLLR+MAP, delivers 
the best boundary refinement performance. In comparison 
with other boundary segmentation methods, the adapted 
CDBM yields better results, especially with a limited 
amount of adaptation data. Given 400 manually 
segmented boundary tokens in about 20 sentences as a 
development set, the segmentation precision can reach 
90% of human labeled boundaries within a tolerance of 
20 ms.  

1. Introduction 
State-of-the-art text-to-speech (TTS) synthesis systems 
are predominantly database driven, concatenation based. 
It is fairly straightforward to port such systems to a new 
voice in a well-defined, systematic procedure, without 
hand tuning various parameters [1]. However, the 
segmentation precision obtained by an automatic HMM-
based forced-alignment procedure is still not good 
enough to warrant high quality synthesis. A post-
refinement, manual or automatic, is always needed to 
adjust unit segmentations [2][3][4].  

Most studies on segmentation refinement are based 
upon a large single speaker TTS corpus. The speaker 
adaptation aspects of segmentation refinement have not 
been well studied. Furthermore, in these approaches, 
segmentation accuracy is generally improved at the 
expense of creating a significant amount of manually 
labeled segment boundaries for training. To prepare many 
such manually labeled boundaries is time consuming and 
poses a bottleneck when rapid prototyping of a new voice 
font. To facilitate a fast and high quality personalized 
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we need to minimize the manual segmentation 
.  
e have investigated the issue on how to make use of 
a small set of manually segmented and labeled 
aries to improve segmentation accuracy in a 
er-dependent mode. In this paper we extend our 
 of speaker-dependent Context Dependent Boundary 
l (CDBM) [5] to a speaker-adaptive one. In this 
ded approach there is no need of training a new 

 from scratch, so the work of manual segmentation 
hecking is greatly reduced while a high performance 
undary refinement is maintained. 
e rest of the paper is organized as follows: In 
n 2 we review the CDBM model. In Section 3 we 

nt how to adapt a CDBM to perform high-precision 
atic segmentation refinement. In Section 4 we 

nt our experiments and corresponding results. In 
n 5 we give our analysis of results and discussions. 

Context Dependent Boundary Model 
(CDBM)

 earlier paper [5], we proposed to construct CDBMs 
utomatic refinement of segment boundaries. The 
ach was motivated by observing that spectral 
ics across a segmental boundary point is 

tioned upon its left and right phoneme contexts. 
 to build separate boundary models by efficiently 
ring these boundaries into subgroups would be 
icial for segmentation accuracy.  
 context-dependent boundary is denoted as X-B+Y, 
 B denotes the boundary; X, its immediate left 
me; and Y, its immediate right phoneme. In order to 

cterize a specific boundary point, acoustic spectral 
es are collected from frames around the labeled 
entation points and a sequence of GMMs is trained.  
 order to make robust parameter estimates, 
ification and Regression Tree (CART) [7] are used 
ster acoustically similar GMMs into broad classes. 
lustering procedure and the node-splitting question 
aised in building the regression tree are similar to 
ne building in speech recognition [6]. 



Once such CDBMs are trained, the segmentations are 
refined by finding a point, in the vicinity of the tentative 
boundary (obtained by HMM forced alignment), which 
yields the maximum likelihood by measuring a long 
window of speech data against the trained CDBM. The 
performance of CDBM has been evaluated on a Mandarin 
speaker-dependent corpus. The agreement reached more 
than 90.0% to the human labeled boundaries within a 
tolerance of 20 ms, when a large amount of manual 
segmentations of about 250 sentences are provided to 
train CDBMs.  

3. CDBM adaptation 
The CDBM boundary refinement method uses a large 

speech database of a single speaker with some manually 
labeled boundaries. However, whether or not it works 
under a speaker adaptive mode has not been well studied. 
Furthermore, compared to other state-of-the-art 
segmentation methods, CDBM possibly requires more 
training data to obtain a decent performance, though it is 
believed to deliver superior performance as training data 
increases.   

Fig.1. Scheme for the CDBM adaptation 

To reduce manual labeling effort in prototyping a new 
voice font, we investigate to extend the speaker-
dependent CDBM (SD-CDBM) to a speaker-adaptive 
(SA-CDBM) one. The procedures for CDBM adaptation 
in a two-step segmentation refinement framework are 
illustrated in Fig.1.  In the 1st step of coarse segmentation, 
HMM models are trained with the entire speech data. 
Then, according to the given phonetic transcriptions, 
HMM sequences are aligned with the corresponding 
speech to generate the tentative segmentation boundaries. 
In the 2nd step of boundary refinement, a segment 
boundary is refined by finding a point, in the vicinity of 
the tentative boundary, which yields the maximum 
likelihood by matching a long window of speech data 
against the trained CDBM.  

The refinement process is similar to the originally 
proposed CDBM construction, except that it involves two 
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onal adaptation phases to bridge the acoustic 
ences between the original model and the new 
er. The first one is to update HMM parameters for 
d alignment; the second, to modify CDBM 
eters for phoneme boundary post-refinement. With 

ct to the former issue, we follow the speaker 
ation used in speech recognition. The entire speech 
s from the target speaker is used for HMM 
ation, thus, the adapted models are believed to be 
le. In this paper, how to make CDBM adaptation 
e focused.  
s proposed in [5], a boundary was modeled by 
ting (2N+1) frames of features from a time span 

red at the labeled boundary points, see Fig. 2.  Each 
 is modeled by a GMM. Overall, (2N+1) GMMs are 
ructed to make one CDBM. The sequence of GMMs 
e viewed as a (2N+1)-state HMM, where each state 
sponds to one frame and the transition coefficients 
en adjacent neighboring states are set to 1, i.e., 
r looping nor skipping is allowed. With such a 
l structure, CDBM adaptation can be easily 
ded from the standard speaker adaptation algorithms. 

m-dim        …                                                            ...                                 

A pre-labeled boundary

left phoneme X                   right phoneme Y

   …                                                   ...

  t-N                         t-1 t0 t1 tN

frame size frame shift

Feature
extraction

observation window

S2N+2
…                                                            ...S2 SN+1   SN+2 SN+3

S2N+3

.2. Feature extraction and modeling for CDBM 

ree speaker adaptation approaches are investigated. 
are Maximum a Posteriori (MAP), Maximum 

ihood Linear Regression (MLLR), and a 
ination of the two, denoted as MLLR+MAP.  
r MAP adaptation, the re-estimation formula for the 

sian mean is a weighted sum of the prior mean with 
L mean estimate [7]:  
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where ikτ is the weighting parameter for the kth Gaussian 
component in the corresponding frame i, or state i. 

( )kit ,ζ is the occupation likelihood of the observed 
adaptation data t .

For MLLR estimation, the kth mean vector ikµ  for 
each frame i can be transformed using the following 
equation [7]:  

cikcik bA += µµ~     (2) 

where cA is a regression matrix and cb  is an additive 
bias vector associated with the broad class c .

When MLLR method is combined with MAP, we can 
benefit from both the compact MLLR transformations for 
rapid adaptation when only limited data is available and 
the asymptotically efficient properties of MAP adaptation 
as training data increases. There are a number of different 
ways to combine MLLR and MAP to improve 
performance. We found that using MLLR to transform 
frame means first and using MAP to locally modify the 
parameters that are observed in the adaptation data yields 
the best result.  

4. Experiments and results 

4.1. Speech corpora 

Two Mandarin Chinese TTS speech corpora, CH-DB1 
and CH-DB2, are used in our experiments. Both corpora 
are read by professional female speakers and contain 
roughly 12,000 sentences, or a total of 180,000 syllables. 
The syllable segmentation boundaries have been checked 
manually by experienced annotators with consistent 
guidelines. 20,000 syllable boundaries from CH-DB1 
serve as the starting point for speaker adaptation. 20,000 
syllable boundaries from CH-DB2 are used as the 
development set for adaptation. Additional 10,000 
boundaries are used for testing.  

In addition to the above two, four small corpora, db1, 
db2, db3, and db4, recorded by four non-professional 
speakers are also used for examining whether the 
algorithm is applicable to ordinary speakers. Each of the 
4 databases contains of 200 utterances, about 4,500 
syllables in total. All syllable boundaries in the four 
corpora have been manually checked with the same 
criteria as above. 2,500 boundaries from each are used for 
development and the other 2,000 boundaries for testing.  

Refined boundary points are compared with hand-
labeled boundaries. If the difference is within a pre-
defined threshold, the auto-generated boundary is 
counted as correct. The correct percentage is used for 
measuring segmentation accuracy. Here, we use a 
tolerance of  20ms. 
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original CDBM models trained from 20,000 
aries in CH-DB1 are used as the initial models for 

ation. They are adapted to CH-DB2 with the 
sponding developing set. Three adaptation schemes, 
R, MAP and MLLR+MAP, are investigated and the 
sponding adaptation performances are shown in Fig. 
hen adapted with ~200 boundary tokens, all three 
er-adaptive models without adaptation outperform 
iginal baseline system.  
s shown in the same figure, MLLR adapts faster 
MAP when the developing set is small, whereas 
 becomes asymptotically more accurate than MLLR 
 the size of developing set increases. The crossover 
 is around 600 adaptation tokens. When MLLR is 
ined with MAP, not only faster adaptation is 
ed, but also better performance over either MLLR 
AP is achieved. We use MLLR+MAP in the 
ing experiments. Also, it is interesting to note that 

ends of all three adaptations are very similar to what 
been observed in the speech recognition [7]. 
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ig.3. Performance comparison of MLLR, MAP 
and MLLR+MAP 

 compare the performance of speaker-adaptive and 
er-dependent CDBMs, we have tested both models 
-DB2. The speaker adaptive models are adapted as 

ibed above, and the speaker-dependent ones are 
d with the development set in CH-DB2. The 
rmances of both models on refining CH-DB2 are 
n in Fig. 4. Also included as references are results 
HMM forced-alignment, and the un-adapted system 
d on CH-DB1.  
e figure indicates that when the size of training set 
ited, say below 2,000 tokens, speaker-adaptive 
 performs better than speaker-dependent one. The 

iment is repeated on CH-DB1 and similar results are 
ed. 



To examine the generalization capability of the 
algorithm, we repeat the above experiments on the four 
small corpora db1, db2, db3, and db4. The original 
CDBM is trained on CH-DB1. Four speaker-adaptive 
CDBMs are obtained by adapting the original CDBM to 
the four small corpora individually. The segmentation 
accuracies of four corpora are averaged and presented in 
Fig. 5. As shown in the figure, similar results are 
observed, with accuracy only slightly inferior to that of 
the two professional corpora. With 400 manually labeled 
boundary tokens, or ~20 utterances, the speaker-adaptive 
CDBMs achieve 90% of segmentation accuracy in 
average, on the other hand, the speaker-dependent system 
needs about 10 times of training data to achieve a similar 
level of segmentation accuracy.  
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CDBM and SA-CDBM on CH-DB1 
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Fig.5. Average refinement performance 
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5. Analysis and Discussion 
s paper we propose to adapt a well-trained context 
dent boundary model to segment the TTS speech 
ase of a new speaker, by using only a very small set 
nd-labeled segment tokens. The speaker adaptive 

 trained with only 1/10 of manual data needed in a 
er-dependent system can achieve 90% segmentation 
acy.  
etailed analysis of the refined boundaries has shown 
oundaries with sonorant phonemes on either side 

ve a noticeable segmentation improvement after 
ation. This may be due to the fact that sonorant 
s are more speaker-dependent and can be adapted 
effectively to a new speaker. Also, boundaries with 

 or fricatives can achieve high refinement accuracy 
without adaptation. The proposed adaptation 

ach requires boundaries to be labeled consistently 
s different corpora, since it only takes into account 
atch between speaker characteristics, but not the 
ation criteria. Future work will be focused on 
ting gross segmentation or labeling errors in the 
unit inventory with a reliable statistical confidence 
re. 
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