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Abstract
Accurate phonetic transcription is critical to high quality 
concatenation based text-to-speech synthesis. In this paper, 
we propose to use generalized syllable posterior probability 
(GSPP) as a statistical confidence measure to verify errors in 
phonetic transcriptions, such as reading errors, inadequate 
alternatives of pronunciations in the lexicon, letter-to-sound 
errors in transcribing out-of-vocabulary words, idiosyncratic 
pronunciations, etc. in a TTS speech database. GSPP is 
computed based upon a syllable graph generated by a 
recognition decoder. Testing on two data sets, the proposed 
GSPP is shown to be effective in locating phonetic 
transcription errors. Equal error rates (EERs) of 8.2% and 
8.4%, are obtained on two testing sets, respectively. It is also 
found that the GSPP verification performance is fairly stable 
over a wide range around the optimal value of acoustic model 
exponential weight used in computing GSPP. 

1. Introduction
Large speech corpora have become standard tools for speech 
research and product/service development. However, before 
the corpora can be used for their designated purposes, they 
often need to be manually checked, annotated or segmented. 
Phonetically transcribed databases have long been used in 
linguistic research, both for explorative and hypothesis testing 
purposes. More recently, they have been shown to be useful 
for developing automatic speech recognition and synthesis 
systems.  

Take the concatenation-based Text-to-speech (TTS) 
synthesis as an example [1]. When a sequence of phonemes is 
to be synthesized, proper acoustic units (typically phones, 
diphones or units of non-uniform length) are selected from a 
pre-recorded corpus. The synthesis tokens are selected from 
the corpus, according to their phonetic labels and contexts, etc. 
Therefore, accurate phonetic transcription is critical to the 
final quality of synthesized speech.  

As it has been well known, the production of manual 
labeling and transcriptions is time-consuming, costly and 
error-prone. Recourse to automatic or semiautomatic 
annotation of speech data is therefore desirable. 

To obtain phonetic labeling of speech automatically is to 
do forced recognition (or forced alignment) [5][6]. Rather 
than recognizing speech as a string of unknown words in 
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atic speech recognition (ASR), the word strings (or the 
raphic transcription of the utterance) are given 
hand. Given the orthographic transcriptions, forced 

nition can check word for word to see which may be 
onounced. In order to do so, we may need to provide as 
 possible pronunciations for each word. 
he automatic forced recognition method cannot 
ntee the error-free phonetic transcription because of the 
ing reasons: 

Reading errors, or orthographic pronunciation errors; 

Incomplete list of all possible pronunciations in the 
lexicon, including letter-to-sound errors for out-of-
vocabulary words; 

Idiosyncratic pronunciations of a speaker. 

 this paper, we propose a confidence measure for 
ing phonetic transcriptions with generalized syllable 
ior probability (GSPP). Laborious human checking 

 can be alleviated or even eliminated and good-quality 
tic transcriptions of large amounts of speech material 
 obtained. 

2. Generalized posterior probability 
alized posterior probability (GPP) is a probabilistic 
ence measure for verifying the recognized 
thesized) entities at different levels, e.g., subword, word 
utterance level [2][3][4]. It was first applied to 
ation at the word level under various testing conditions. 

P assesses the reliability of a focused word by 
ting” its reappearances in the word graph and 
ghting the corresponding path likelihood exponentially 
coustically and language model wise and normalized by 
oustic probability. GWPP is defined as 
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 [w; s, t] is the focused word w with its starting time s
nding time t, x1

T is the whole sequence of acoustic 
ations, M is the number of words of a string in the 

,  and  are the exponential weights for the acoustic 
language models, respectively. 1( )TP x , the acoustic 



probability of all observations, can be computed by summing 
the likelihood of all paths in a given search space, e.g., word 
graph.

GWPP has been demonstrated to deliver robust 
performance on word verification at different search beam 
widths [2], signal-to-noise ratios, etc.  

3. Generalized syllable posterior probability 
The computation of GWPP, including the acoustic 
observation probability and P(x1

T), is carried out in a reduced 
search space (e.g., word graph or N-best list). These graphs 
are typically constructed by using pronunciations in the 
lexicon with a word-level language model constraint such as 
word n-grams. This framework has been shown to be 
effective in computing GWPP by combining multiple 
knowledge sources in an integrated search space [2]. 
However, in our specific TTS application the use of the word 
as the main unit of representation experiences some 
difficulties.

One main problem is that it is rather difficult to detect 
partial and minor pronunciation variations of a word, 
especially long, in continuous speech. In ASR word 
pronunciation variations only causes a second order effect in 
decoding, in TTS applications such variations need to be 
resolved with higher resolution. Left-to-right word fitting 
algorithms reveal that sometimes the hypothesized word still 
dominates the word graph, even if certain canonical phoneme 
in a word pronunciation has not been correctly articulated. 
Meanwhile, constrained by the word lexicon and N-gram 
language model, partial hypothesis candidate with exactly 
matched phoneme sequence might be discarded before 
completion. A similar phenomenon is the errors existed in the 
pronunciation lexicon, especially for the out-of-vocabulary 
words, the pronunciations of which are generated by 
statistical letter-to-sound conversion algorithm [7]. 

Another problem is the out-of-vocabulary (OOV) words. 
No matter how large the vocabulary is, OOV words are 
almost unavoidable since the vocabulary of an active 
language is changing continuously.  

To solve the above problems, we propose to use subwords 
as the basic units.  Or the complete set of basic units of a 
given language like phonemes and syllables. The phonemes 
form the most efficient set but not as reliable as syllables for 
tangible decoding due to their shorter durations and no 
guarantee of vowel nuclei. We can define a complete set of 
syllables in a language and generate a network of all the 
possible syllable sequences. This network is complete 
because it represents all possible syllable sequences that can 
be spoken. Furthermore, it introduces more constraints in the 
search space than a pure network of phonemes. It is also 
possible to detect hesitations, corrections, and other 
spontaneous speech phenomena and to detect alternate 
pronunciation by the speaker. 

Therefore we generalize the posterior probability from 
word to syllable. The equation of generalized syllable 
posterior probability (GSPP) is defined as 
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here [syl; s, t] is the focused syllable with its starting 
s and ending time t, x1

T is the sequence of acoustic 
ations, M is the number of syllables of a path in the 

le graph,  is the exponential weights for the acoustic 
ls. Since GSPP concentrates more on acoustic details 
anguage model (e.g., word content), only the statistical 
tic confidence is considered for the hypothesized 
le. 
milar to GPP [2], three issues, the reduced search space, 
elaxation registration, and re-weighted acoustic model 
ood are employed in computing GSPP.  

 syllable graph, rather than a word graph, is served as 
duced search space for GSPP. A syllable unigram is 
s language model to generate the syllable graphs of rich 

tic candidate hypotheses.  
e assign zero language model weight to all hypotheses 

e search space, and the values of language model 
ood are ignored. The acoustic likelihoods reweighting 
prevent the syllable posterior probability from being 
ated by just a few top strings with high likelihoods, and 
ommodate the modeling discrepancies in the practical 
mentations, including: 
Unbounded dynamic range: In an acoustic model of 
Gaussian mixture, acoustic likelihoods obtained from 
pdf have an unbounded dynamic range. 

Likelihood computation frequency: Acoustic 
likelihoods are computed every frame. 

Independence assumption: Neighboring acoustic 
observations are assumed to be statistically independent. 

Reduced search space: The full search space is pruned 
to a syllable graph. 

4. Experiment setup 

ata preparation 

peech corpus for our experiments is English Corpus we 
or constructing Microsoft TTS system. It is a large 
ulary, continuous, read speech corpus recorded by a 
sional female speaker, containing 6,500 utterances in 

and covering various phonetic contexts. The phonetic 
ription of this corpus is manually annotated and verified 
veral transcribers. In particular, two testing sets of 500 
ces each, denoted as set1 and set2, are used to evaluate 
. 

yllable based recognition 

hole corpus is used to train the speaker dependent 
tic HMMs. 39 acoustic features (12 MFCC + 12 MFCC

MFCC + logE + logE + logE) are used. 4 Gaussian 
onents per mixture are used for modeling the output 



probability density function of each tri-phone tied state. A 
lexicon of 7,800 syllables and a syllable unigram language 
model are used to generate the wide beam syllable graphs. 

4.3. Evaluation

To evaluate the proposed GSPP, two test sets are created. The 
first is the positive set where the expected syllable is spoken, 
and the instances are all expected to be accepted. This is 
known as the ‘accept set.’ It is relative tricky to come up with 
a negative set, where all the instances should be rejected. We 
decide to create an artificial set. In the ‘reject set’ an 
erroneous transcription S' is created for each testing token S (a
correct given syllable). What we are more interested in is the 
cases where people misread the correct transcription by 
uttering similar (therefore confusable) words. We deliberately 
choose an S' confusable to syllable S. The substitution by S' is 
allowed if the following requirements are met. 
S and S' are equal in length (number of phonemes) but 

different by one phoneme. 

The absolute difference between their logarithmic language 
model scores in syllable unigram is below a preset 
threshold (0.3 in this experiment). 

Table 1: An example of a phone replacement 

transcription reply to his tailor 
syllable 

spoken (S) r ih p l ay t uw h ih z t ey l ax r

accept set 
(S') r ih p l ay t uw h ih z t ey l ax r

s ih p l ax t iy jh ih z v ey dh ax rreject set 
(S') d ih k l ax y uw h ae z k ey ch ax r

 r iy p l oy t ax w ih z b ey p ax r
  p l ae t ih h ih m t ay n ax r
  p l ey ch ih z p ey m ax r
  p r ay  b ih z s ey jh ax r
  p l iy z ih z dh ey f ax r
     … … 

Table 2: Summary of the two testing sets 

 set1 set2 

# utterances 500 500 
# words 3,848 4375 

# syllables in accept set 5,394 7,257 
# syllables in reject set 42,564 59,494 

Table 1 shows examples from these two sets. Actually in 
the ‘reject set’, a syllable substitution is implemented as one 
phoneme substitution by looking through the syllable lexicon 
for all possible substitutes. For each time, only one correct 
syllable is tagged as incorrect in a sentence. For the two 
testing set, namely set1 and set2, both a ‘accept set’ and a 
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t set’ are derived, as shown in Table 2. The boundaries 
e hypothesized syllable are derived from phoneme 
ary obtained by forced alignment [7]. GSPP for each 
hesized syllable in the ‘accept set’ and the ‘reject set’ is 
omputed. 
he performance of GSPP is represented by its Receiver 
ting Characteristic (ROC). The ROC curve is the plot of 
 rejection rate (calculated on the ‘accept set’ by Eqn.3) 

respect to a false acceptance rate (calculated on the 
 set by Eqn.4) at each threshold value. These curves are 
sed to determine the optimal acoustic model weights 
jection threshold. 
nother criterion is the equal-error-rate (EER). The EER 
ained by adjusting the threshold value so that the false 
tance and the false rejection error rate are equal.  

#of false rejectionseject rate 100% 
total #of hypothesized syllables

= × (3)

#of false acceptancesccept rate 100% 
total #of hypothesized syllables

= × (4)

5. Experimental results 
er to find the optimal acoustic model weight and the 
ponding rejection threshold, a full grid search is applied 
1. The ROC curves at different exponential weights of 
tic model (varied from 0.0 to 10.0, the curve color is 
ed from blue to red) are plotted in fig. 1. The results 
that when the acoustic model weight  is below 0.03, 
SPP performance degrades as  decreases. When 
ses from 0.03 to 10.0, the ROC curves are almost on top 
h other.  From another point of view, fig. 2 shows the 
of GSPP saturates when  exceeds 0.03. The above 
s show that the verification efficiency of GSPP is robust 
 change of . Within a rather broad range of , say from 
o 10, the EER of GSPP stays at 8.2%.  
 the GSPP framework, the introduction of the acoustic 
l weights offers further control on the relative 
tance of the ranked hypotheses. For larger weights, 
emphasis put on the higher ranked hypotheses. Smaller 
ts, on the other hand, take more hypotheses into 
eration in computing GSPP. In the extreme case, when 
eights are set to infinity, only the best hypothesis is 
ered. In our experiments, high ranked hypotheses 
e dominant components in GSPP calculation when the 

tic model weights  reaches 0.03. When  is increased 
r, the higher ranked hypotheses is enhanced and thus 
rformance gets steady. This result is in some sense in 
eement with that in ASR using GWPP:  smaller 
tic model weights always yield better verification 
mance. The reason may lie on that the TTS corpus used 
r experiments is a single speaker, read style corpus, 
 is more homogenous in speaking rate, pronunciation, 
than the speaker-independent, sometimes noisy ASR. 
 the speaker-trained model is sharp, the higher ranked 
heses in the syllable graph are more reliable. Fig. 2 also 
 the EER saturates at 8.4% on another testing set ‘set2’. 



The results on the two testing sets show the consistency and 
efficacy of the verification performance of GSPP.  

6. Analysis and discussion 

6.1. Inadequate HMM discrimination 

In our experiments, 384 types of phoneme substitutions 
appear in the ‘reject set’ derived from the two testing sets. 
The verification performance of GSPP is not uniform across 
all phoneme substitutions. The EER for detecting certain 
substitutions exceeds 50%, such as /er/--/ax/, /ah/--/aa/, /uh/--
/ih/, /iy/--/ih/, /t/--/d/, /z/--/s/, etc., although the average EER 
is 8.2%. It shows that the confusion between the phonemes in 
the same place of articulation [7], like /t/--/d/, or with the 
similar features: +/- high, +/- low, +/- front, +/- back, and +/- 
round, like /iy/--/ih/, are the most difficult for GSPP to verify. 
The reason is that GSPP is computed based on a syllable 
graph, a byproduct of LVCSR decoding. But due to the 
inadequate discrimination of acoustic HMM, the models can 
not differentiate certain phonemes, similarly for GSPP. 

6.2. GSPP overestimation 

For two phonetically identical or similar syllables adjacent to 
each other in the transcription, their corresponding GSPPs 
might be overestimated, due to the relaxed time registration in 
computing GSPP. Thus, verifications of both syllables might 
be unreliable. It can happen between two adjacent words, like 
in ‘his history’ /h ih s h ih s t r iy/, or within a word like 
‘sissy’ /s ih s ih/. Although such instances occur not so 
frequently, proper verification still deserves some special 
attention.

7. Conclusion
GSPP is proposed as a reliable confidence measure to verify 
phonetic transcriptions of a speech corpus.  A syllable graph 
serves as the reduced search space in computing GSPP. It is 
shown that GSPP yields an EER of 8.2% and 8.4% on the two 
testing sets, respectively. It is also found that the phonetic 
verification performance of GSPP is fairly stable over a wide 
range around the optimal exponential acoustic weight for 
computing GSPP. 
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