
Partially Materialized Views

Jingren Zhou Per-Åke Larson Jonathan Goldstein
{jrzhou, palarson, jongold}@microsoft.com

June 2005

Technical Report
MSR-TR-2005-77

We propose a new type of materialized view called a partially materialized view. A partially mate-
rialized view only materializes some of the rows, for example, the most frequently accessed rows,
which reduces storage space and view maintenance effort. One or more control tables are associated
with the view and define which rows are currently materialized. As a result, one can easily change
which rows of the view are stored and maintained. We show how to extend view matching and
maintenance algorithms to partially materialized views and outline several potential applications
of the new view type. Experimental results in Microsoft SQL Server show that compared with fully
materialized views, partially materialized views have lower storage requirements, better buffer pool
efficiency, better query performance, and significantly lower maintenance costs.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

Judicious use of materialized views can speed up
the processing of some queries by several orders of
magnitude. The idea of using materialized views
to speed up query processing is more than twenty
years old [19, 23] and all major database systems
(DB2, Oracle, SQL Server) now support materialized
views [2, 24, 5]. The support included in those sys-
tems consists of computing, materializing, and main-
taining all rows of the view result and will be referred
to as fully materialized views.

Since fully materialized views store and maintain
all their rows, storage cost may be high for large views
and maintenance can be costly for frequently updated
views. If only a small subset of the fully materialized
view is used over a period of time, disk storage is
wasted for the unused records and many records that
are never used are unnecessarily kept up to date.

In current systems, it is very expensive to mod-
ify the definition of a materialized view to adapt to
a changing workload. The old view would have to
be dropped and a new view created from scratch.
Incremental view adaption techniques [11] could be
applied in some circumstances but are not currently
supported. However, even if such support were avail-
able, all query plans referencing the old materialized
view would have to be recompiled. To not miss op-
portunities, query plans referencing any of the view’s
input tables would also need to be recompiled.

In this paper we introduce partially materialized
views, that is, views where only some of the rows
are materialized. For example, instead of material-
izing all rows of the view, only the most frequently
requested records might be materialized. Which rows
are currently materialized is specified by one or more
control tables associated with the view. Changing
which rows are materialized can be done dynamically
(at run time) simply by modifying data in a control
table. We illustrate the basic idea of partially mate-
rialized views by an example.

Example 1. Consider the following parameterized
query against the TPC-H/R database that finds in-
formation about all suppliers for a given part.

Q1:

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and p partkey = @pkey

Suppose Q1 is executed frequently but its current
response time is deemed too high for the application’s
needs. To speed up the query, we could define a ma-
terialized view V1 that precomputes the join.

V1:

create view V1 as

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

If the view result is clustered on (p partkey,
s suppkey), a three-table join is replaced by a very
efficient index lookup of a clustered index.

V1 materializes the complete join, so it may be
quite large. If there are 200,000 parts and each part
has on average four suppliers, the view would con-
tain 800,000 rows. Now consider a scenario where
the access pattern is highly skewed and, in addition,
changes over time. Suppose 1,000 parts account for
90% of the queries and this subset of parts changes
seasonally - some parts are popular during summer
but not during winter and vice versa. In this scenario,
we could get 90% of the benefit of the materialized
view by materializing only 0.5% of the rows. This
would both reduce overhead for maintaining the view
during updates and also save storage space. It would
also improve buffer pool utilization and possibly com-
putational costs because the most frequently required
rows are packed densely on a few pages. However,
this is not possible with today’s materialized view
technology because static predicates are inadequate
for describing the seasonally changing contents of the
materialized view.

Partially materialized views are ideally suited for
situations like this. To handle our example query,
we create a control table pklist and a partially ma-
terialized view PV1 whose content is controlled by
pklist.

1

PV1:

create table pklist(partkey int primary key)

create view PV1 as

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and exists (select * from pklist pkl

where p partkey = pkl.partkey)

PV1 is initially empty. To materialize information
about a part, all we need to do is to add its key to
pklist. Interestingly, information about parts with-
out suppliers can also be cached - the part key occurs
in pklist but there are no matching tuples in PV1.
Normal incremental view maintenance will correctly
update PV1 – nothing special is required even though
the view contains a subquery. The exists subquery
can be converted to an inner join because partkey
is the primary key of pklist and consequently the
subquery will return at most one tuple.

Converting the subquery to an inner join produces
the following equivalent version of the view definition.
We now see that PV ′

1 is defined by a select-project-
join (SPJ) expression and as such can be incremen-
tally maintained.

PV ′
1:

create view PV ′
1 as

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier, pklist pkl

where p partkey = sp partkey

and s suppkey = sp suppkey

and p partkey = pkl.partkey

The content of PV1 can be changed dynamically
by updating the control table. Q1 can be answered
from the view if the key of the desired part is found
in pklist. To exploit the view safely, the optimizer
produces a query plan that first checks whether the
desired part key exists in pklist at run-time. If the
part key exists, the plan evaluates the query using a
simple select against PV1. Otherwise, the query is
evaluated using the base tables.

A possible dynamic query plan is illustrated in Fig-
ure 1. The ChoosePlan operator first evaluates the

ChoosePlan

SELECT
p_partkey = @pkey

PV1

JOIN

JOIN Supplier

SELECT
p_partkey = @pkey

PartSupp

Part

exists (

 select 1 from partkeylist

 where partkey = @pkey)
true false

Using View

Fallback plan

Guard predicate

Figure 1: Dynamic execution plan for Q1

guard predicate shown on the right. (The operator
tree for evaluating the guard predicate is not shown.)
If it evaluates to true, the partial view contains the
required rows and the left branch using the view is
executed. Otherwise, the right branch computing the
result from base tables is executed.

The rest of this paper is organized as follows. After
a brief review of related work in Section 2, we intro-
duce the general form of a partially materialized view,
and show how to extend view matching and mainte-
nance algorithms to partially materialized views in
Section 3. We describe several types of control tables
and show how to create views with more complex
control designs in Section 4.

We also outline four potential applications of par-
tially materialized views in Section 5. Each applica-
tion area will require its own policies for determining
what rows to materialize and when but the design of
such policies is outside the scope of this paper. This
paper is focused on mechanisms for partially mate-
rialized views, not policies needed for using them ef-
fectively in different scenarios.

Experimental results in Section 6 show that par-
tially materialized views have many benefits, such
as better buffer pool efficiency, better query perfor-
mance with fewer rows processed, lower maintenance
costs and lower storage requirements. We conclude
in Section 7.

2

2 Related Work

The problem of materialized view matching and
maintenance has received considerable attention in
the research community for the last two decades.
However, virtually all researchers have only consid-
ered fully materialized views.

In his paper on executing nested queries [6], Graefe
discusses the idea of caching the result of the inner
operand in a nested-loop join. He describes the idea
of caching the results of multiple invocations with dif-
ferent correlation values (parameter bindings). An
additional control index remembers for which corre-
lation values results are currently cached. Tradition-
ally such caches have been temporary and discarded
at the end of the execution of the current query. How-
ever, Graefe suggests that such caches could be made
persistent so that they can be used (and populated)
by multiple queries. Each cache would be exposed
as a materialized view with a control table that de-
scribes its current content. This is precisely the sim-
plest form of a partially materialized view discussed
in this paper, namely, a partially materialized view
with one equality control table. We also consider
other types of control tables, views with multiple con-
trol table, and views that directly or indirectly share
control tables.

Answering queries using views has been studied
in [19, 23, 4, 21]. Larson and Yang [19, 23] were the
first to describe view matching algorithms for SPJ
queries and views. Srivastava et al. [21] proposed a
view-matching algorithm for queries and views with
aggregation. Chaudhuri et al. [4] considered using
materialized views in a System-R style query op-
timizer. A thorough survey of work on answering
queries using views can be found in [13].

Incremental view maintenance has been studied
in [3, 12, 9, 20]. They all use the update delta
paradigm - compute a set of changed tuples (inserted
or deleted) that are then used to refresh the materi-
alized view.

Materialized views have now been adopted in all
major commercial database systems. Oracle was the
first commercial database system to support materi-
alized views [2]. Zaharioudakis et al. [24] described
a bottom-up view matching algorithm implemented

in IBM DB2. Goldstein and Larson [5] presented al-
gorithms to matching SPJG views in Microsoft SQL
Server.

Dynamic plans were proposed by Graefe and Ward
in [8]. They have been used in the context of mid-
tier caching in [1, 18, 10] and probably also in other
contexts. At least one commercial system, Red Brick
Warehouse [16], implements dynamic plans.

The term “partially materialized views” was also
used in [14, 15] but there it referred to views where
not all columns of the view’s input tables are re-
tained in the view. This meaning of the term is
unrelated to our use of the term. Valluri proposed
something called “partially materialized partitioned
views” in [22] where a view is first statically parti-
tioned into three parts and only two of the partitions
are materialized. Although the name is similar, the
approach is very different from our partially materi-
alized views.

3 General Form of Partially
Materialized Views

In this section, we define partially materialized views
and describe how to modify existing view matching
and view maintenance algorithms to work with par-
tially materialized views. For simplicity of presenta-
tion, we use a partially materialized view with a sin-
gle control table as an example. The techniques pre-
sented here are also applicable to other more complex
partially materialized views in the following sections.

3.1 View Definitions

Let Vb denote the query expression defining a stan-
dard SPJG view and Pv its select-join predicate. Vb

is assumed to satisfy all the restrictions imposed by
the system on materialized views. We wish to cre-
ate a partially materialized view with Vb as the base
and have materialization controlled by a predicate
Pc(p1, p2, . . . , pn), called a control predicate, where
p1, p2, . . . , pn are parameters.

Control predicate Pc can only reference non-
aggregated output columns of Vb. This restriction is

3

important for view matching and for view mainte-
nance as we shall see in Section 3.2.2 and Section 3.3.

We define a control table Tc with n columns, one
for each parameter p1, p2, . . . , pn. The declarations of
the control table and a partially materialized view Vp

are shown below. The notation typeof (pi) is short-
hand for ”of a type matching the type of parameter
pi”.

create table Tc(col1 typeof (p1), col2 typeof (p2),

. . ., coln typeof (pn))

create view Vp as

select Vb.* from Vb

where exists (select 1 from Tc

where Pc(Tc.col1, Tc.col2, . . ., Tc.coln))

The exists clause in the definition restricts the
rows actually materialized in Vp to those satisfying
the control predicate Pc for some parameter combi-
nation currently stored in Tc. Hence, by adding and
deleting rows from Tc, we control the contents of Vp.

The partially materialized view PV1 defined earlier
has the following components.

Vb:

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

Pv: (p partkey = sp partkey) ∧
(sp suppkey = s suppkey)

Pc(p1): (p partkey = p1)

Tc: pklist(partkey int)

3.2 View Matching

How can we determine whether a query expression
can be computed from a partially materialized view?
A view matching algorithm for fully materialized
views is described in [5]; we show how to extend the
algorithm to work with partially materialized views.
Only one step in the algorithm needs to be modified,
namely, the step showing that all rows required by
the query exist in the view.

For regular views, this condition can be tested at
optimization time. But for partially materialized
views, some of the testing has to be postponed to
execution time. We call the test evaluated at ex-
ecution time a guard condition. In this paper, we
assume that guard conditions are limited to check-
ing whether one or a few covering parameter values
exist in the control table. If the desired parameter
values are found in the control table, then all tuples
associated with those parameter values are currently
materialized. At optimization time, we construct the
guard condition so that the query is guaranteed to be
covered by the view if the guard condition evaluates
to true. The actual evaluation of the guard condition
is delayed until execution time. The query plan must
also contain an alternative subplan, called a fallback
plan, that computes the query expression from other
input sources in case the guard condition evaluates
to false.

This may sound rather complicated, but in prac-
tice it is quite straightforward. Take query Q1 and
view PV1 as an example. The actual value of @pkey
is known at execution time. If the value of @pkey
is found in pklist, we know that the supplier in-
formation for the desired part exists in PV1, which
is precisely what the query requires. So the guard
condition is simply exists(select * from pklist
where partkey = @pkey).

We first deal with select-project-join (SPJ) views
and queries in Section 3.2.1. Partially materialized
views with aggregation are covered in Section 3.2.2.

3.2.1 SPJ Views and Queries

Let Vp be a partially materialized SPJ view with base
view Vb and control predicate Pc. Denote the join-
select predicate of Vb with Pv. Consider a SPJ query
Q over the same tables as Vb and denote its combined
select-join predicate by Pq.

If Vp were a regular view, containment would be
tested simply by the condition Pq ⇒ (Pv ∧Pc). How-
ever, for a partially materialized view this condition
would never be satisfied because the query doesn’t
reference the control table. To remedy this, we break
up the test into three parts; the first two are evalu-
ated at optimization time and the third one — the

4

guard condition – is evaluated at execution time.
The first part is Pq ⇒ Pv, which tests whether the

query is contained in the view if it is fully materi-
alized. Clearly, the query cannot be contained in a
partially materialized view if it is not contained in
the corresponding fully materialized view.

For the second part, we add a guard predicate Pr to
the antecedent, obtaining the condition (Pr ∧ Pq) ⇒
(Pv ∧ Pc). This condition asks the question: “If the
additional condition Pr is satisfied, is the query then
contained in the view?” If the first condition, Pq ⇒
Pv, is satisfied, this second condition can be simplified
to (Pr ∧ Pq) ⇒ Pc.

The third part of the test consists of verifying,
at execution time, that a tuple satisfying the guard
predicate exists in the control table. In other words,
testing the condition ∃t ∈ Tc : Pr(t).

Theorem 1. Consider an SPJ query Q with a con-
junctive predicate Pq and a partially materialized SPJ
view Vp with base view predicate Pv and control pred-
icate Pc referencing a control table Tc. Then query
Q is covered by view Vp if there exists a predicate Pr

such that the following three conditions are satisfied.

Pq ⇒ Pv (1)

(Pr ∧ Pq) ⇒ Pc (2)

∃t ∈ Tc : Pr(t) (3)

Proof. We prove the theorem by contradiction. As-
sume that the three conditions are satisfied but, for
some database instance, including an instance of con-
trol table Tc, there exists a row r such that r ∈ Q but
r 6∈ Vp. There are two cases to consider.

Case 1: Row r is not in Vp because Pv(r) is
false, that is, the row does not satisfy the base view
predicate. But this contradicts the assumption that
Pq ⇒ Pv holds for all tuples.

Case 2: Row r is not in Vp because it has not
been materialized. There are two reasons why this
might happen. i) There is no tuple t ∈ Tc such that
Pr(r, t) is true. But this contradicts the assumption
that the condition ∃t ∈ Tc : Pr(t) is satisfied. Or
ii) r does not satisfy the control predicate, that is,
Pc(r) is false. But this contradicts the assumption
that (Pr ∧ Pq) ⇒ Pc holds for all tuples.

We have shown that all cases lead to contradictions
and the proof is complete.

Example 2. For our example view V1 and query Q1

we have the following predicates.

Pv: (p partkey=sp partkey) ∧ (sp suppkey=s suppkey)

Pc: (p partkey=partkey)

Pq: (p partkey=sp partkey) ∧
(sp suppkey=s suppkey) ∧ (p partkey=@pkey)

Hence, the first test Pq ⇒ Pv equals

(p partkey = sp partkey) ∧ (sp suppkey = s suppkey)

∧ (p partkey = @pkey)

⇒
(p partkey = sp partkey) ∧ (sp suppkey = s suppkey)

which clearly evaluates to true. Choosing the
guard predicate as (partkey = @pkey), the second
test (Pr ∧ Pq) ⇒ Pc becomes

(partkey = @pkey) ∧ (p partkey = sp partkey) ∧
(sp suppkey = s suppkey) ∧ (p partkey = @pkey)

⇒
(p partkey = partkey)

After simplification to

(partkey = @pkey) ∧ (p partkey = @pkey)

⇒
(p partkey = partkey)

it is easy to see that this condition is also true. The
last test, to be evaluated at execution time, equals

∃ t ∈ pklist: (t.partkey = @pkey)

Whether the partially materialized view is guaran-
teed to contain all required rows depends on whether
Pr, with known parameters, evaluates to true at exe-
cution time. Using Pr and a ChoosePlan operator, we
construct a dynamic execution plan as shown in Fig-
ure 1. If Pr evaluates to true at run time, we execute
the branch of the plan that uses the view, otherwise
the branch with the fallback plan is executed instead.

Theorem 2. Consider an SPJ query Q with a non-
conjunctive predicate Pq, which can be converted to
disjunctive normal form as Pq = P 1

q ∨ · · · ∨ Pn
q and

a partially materialized SPJ view Vp with base view
predicate Pv and control predicate Pc referencing a
control table Tc. Then query Q is covered by view

5

Vp if, for each disjunct i = 1, 2, · · ·, n, there exists a
predicate P i

r such that the following three conditions
are satisfied.

P i
q ⇒ Pv (4)

(P i
r ∧ P i

q) ⇒ Pc (5)

∃ti ∈ Tc : P i
r(ti) (6)

Proof. For each disjunction P i
q , the conditions are

identical to those in Theorem 1. If the three con-
ditions are satisfied, Theorem 1 guarantees that all
rows of the query that qualify under P i

q are covered
by the view. If this holds for all disjuncts, every row
that satisfies the query predicate Pq = P 1

q ∨ · · · ∨ Pn
q

is covered by the view.

Example 3. The following query is similar to Q1

but the equality predicate has been changed to an
IN predicate. An IN predicate can be rewritten as
a disjunction of equality predicates, which after con-
version to disjunctive normal form, produces the two
disjuncts shown below.

Q2:

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and p partkey in (12, 25)

P 1
q : (p partkey = sp partkey) ∧

(s suppkey = sp suppkey) ∧ (p partkey = 12)

P 2
q : (p partkey = sp partkey) ∧

(s suppkey = sp suppkey) ∧ (p partkey = 15)

The view matching tests for this example will be
the same as in Example 2, except @pkey is replaced by
12 or by 15. The optimization-time tests still evaluate
to true. For the query to be covered, both execution-
time tests must be satisfied, which produces the fol-
lowing guard condition

∃ t1 ∈ pklist: (t1.partkey = 12) ∧
∃ t2 ∈ pklist: (t2.partkey = 15),

which can be expressed in SQL most efficiently as

2 = (select count(*) from pklist

where partkey in (12,15))

3.2.2 Aggregation Views and Queries

We treat an aggregation query or view as an SPJ
query followed by a group by operation. Aggregation
adds one step to view matching that tests whether
the grouping in the view is compatible with that in
the query.

For a partially materialized view aggregation view,
only the containment test of the view matching algo-
rithm has to be modified as described in the previous
section. The grouping-compatibility test is not af-
fected because of our requirement that the control
predicate Pc of a partially materialized view involves
only non-aggregated output columns of the base view
Vb. Hence, either all the rows in a group or none of
them will satisfy the control predicate.

3.2.3 Types of Control Tables

This section describes different types of control pred-
icates, their associated control tables, and how to
choose the appropriate guard predicate Pr. We cover
the most important types but do not cover all possi-
ble types.

Equality Control Tables: An equality control
table is one where the control predicate specifies an
equijoin between one or more columns in the base
view and in the control table. This type of control ta-
ble can only support queries with equality constraints
on all join columns or queries that can be converted
to this form.

Example 4. The control table pklist and the par-
tially materialized view PV1 in Section 1 are of
this type. The control predicate is (p partkey =
pklist.partkey). Query Q1 contains a constraint
equating p partkey to a run-time constant, namely,
p partkey = @pkey. This run-time constant is then
substituted for p partkey in the control predicate to
produce the guard predicate shown below.

Pr: (pklist.partkey = @pkey)

The guard condition, expressed in SQL, then be-
comes

exists(select * from pklist where partkey = @pkey)

6

Range Control Tables: A range control table is
one that supports range control predicates. A par-
tially materialized view with a range control table
can support range queries or point queries.

Example 5. Consider the following parameterized
range query that finds information about all suppliers
for a given range of parts.

Q3:

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and p partkey > @pkey1

and p partkey < @pkey2

To support the query we create a partially materi-
alized view with a range control table.

PV2:

create table pkrange(lowerkey int, upperkey int)

create view PV2 as

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and exists (select * from pkrange

where p partkey > lowerkey

and p partkey < upperkey)

Ensuring that pkrange contains only non-
overlapping ranges can be done by adding a suitable
check constraint or trigger to the table. The control
predicate is

Pc:(p partkey > lowerkey)∧(p partkey < upperkey)

A query must contain a range restriction on
p partkey for the view to be useful, which Q3 does.

(p partkey > @pkey1) ∧ (p partkey < @pkey2)

To guarantee that the view contains all required
rows, the control table must contain a range that
covers the query’s range. Hence, the guard predicate
becomes

Pr: (lowerkey ≤ @pkey1) ∧ (upperkey ≥ @pkey2)

and the guard condition, expressed in SQL, be-
comes

exists(select * from pkrange

where lowerkey <= @pkey1 and upperkey >= @pkey2)

Control tables specifying just an upper or a lower
bound are feasible as well, and would support queries
that specify a single bound, a range constraint, or an
equality constraint. The control table would have
only one row containing the current lower (or upper)
bound.

Control Predicates on Expressions: The con-
trol predicate Pc is not limited to comparisons with
“plain” columns from the base view. The comparison
may instead be applied to the result of an expression
or function over columns from the base view. Even
a user-defined function can be used as long as it is
deterministic.

Example 6. Suppose we have a user-defined func-
tion ZipCode that takes as input an address string
and returns the zip code of the address. Consider
the following query that finds information about all
suppliers within a specified zip code.

Q4:

select p partkey, p name, p retailprice, s name,

s suppkey, s address, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and ZipCode(s address) = @zip

To support this query we define a control table
zipcodelist and a partial view PV3 as shown below.

PV3:

create table zipcodelist(zipcode int primary key)

create view PV3 as

select p partkey, p name, p retailprice, s name,

s suppkey, s address, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and exists (select * from zipcodelist zcl

where ZipCode(s address) = zcl.zipcode)

7

The guard predicate is the same as for an equality
control predicate referencing a “plain” column.

Pr: zipcodelist.zipcode = @zip

3.3 View Maintenance

Incremental maintenance of materialized views is a
well-studied problem, and efficient maintenance algo-
rithms are known for SPJG views. Compared with a
fully materialized view, a partially materialized view
can be maintained more efficiently, because only a
small number of rows are actually materialized. How-
ever, current view maintenance algorithms are de-
signed for SPJG views and do not support views con-
taining exist subqueries. In this section, we outline
how to incrementally maintain a partially material-
ized view. The general observation is that if the base
view Vb is maintainable, the corresponding partial
view Vp is also maintainable.

If the query expression in the exists clause returns
at most one row for each possible value of the control
columns, the subquery can be converted to a join. A
partially materialized view Vp that satisfies this re-
quirement can, for maintenance purposes, be treated
as the regular view V ′

p shown below.

create view V ′
p as

select Vb.*

from Vb, Tc

where Pc(Tc.col1, Tc.col2, . . ., Tc.coln)

The view V ′
p is a regular SPJG view and can be in-

crementally maintained. For example, the view PV1

is of this type because partkey is a primary key of the
control table pklist.

If the query expression in the exists clause may re-
turn more than one row, converting the subquery into
a join may produce duplicate rows. We consider two
situations based on whether Vb contains aggregation
or not.

First consider the case when Vb is a SPJ view. If
the output columns of Vb contain a unique key 1, we
can convert the view Vp into the following aggregation

1In Microsoft SQL Server, a materialized view always has
a unique key, so the output columns of Vb must form a unique
key.

view V ′
p to make it incrementally maintainable. View

matching still treats the view as Vp.

create view V ′
p as

select Vb.*, count(*) as cnt

from Vb, Tc

where Pc(Tc.col1, Tc.col2, . . ., Tc.coln)

group by Vb.*

All the output columns of Vb have to be included
as group-by columns so that they can be output. The
group-by operation in V ′

p simply removes the dupli-
cated rows and the count is added for view mainte-
nance. The view V ′

p contains exactly the same rows
as the view Vp; the only difference is that each row
has an additional column cnt.

If the output columns of Vb do not contain a unique
key, an extra join is required during maintenance so
as not to introduce duplicates. We will show the
rewrite assuming a single control column and denote
this column by Cc. The generalization to multiple
view columns is straightforward. In this case, we
rewrite Vp using a self-join for maintenance purposes.

create view V ′
p as

select Vb.*

from Vb v1 join

(select Cc from Vb, Tc

where Pc(Tc.col1, Tc.col2, . . ., Tc.coln)

group by Cc) v2

on (v1.Cc = v2.Cc)

The inner query removes duplicate rows. Even
though V ′

p is no longer a SPJG view, it can be main-
tained incrementally. During updates, the delta table
of the inner query is computed first, including elim-
ination of duplicates, and then used to update the
outer view.

Now consider the case when Vb is an aggregation
view. Let V spj

b denote the SPJ part of the view and
G denote the group-by columns of the view. If the
output columns of V spj

b contain a unique key, we can
rewrite Vp as follows for maintenance purposes. The
inner query removes duplicate rows before applying
the aggregation in the outer query.

create view V ′
p as

select Vb.*

8

from (select V spj
b .*

from V spj
b , Tc

where Pc(Tc.col1, Tc.col2, . . ., Tc.coln)

group by V spj
b .*)

group by G

Similarly, if the output columns of V spj
b do not con-

tain a unique key, the inner query can by replaced by
a self-join; the view can also be incrementally main-
tained.

3.4 Control Table Updates

Control table updates are treated no differently than
normal base table updates. As detailed above, a par-
tially materialized view can be properly maintained
without distinguishing whether the update applies to
a control table or a base table. One can design dif-
ferent strategies to decide which rows to materialize
and when. The choice of materialization strategy,
that is, which rows to materialize and when, depends
entirely on the application. One example would be
to use a caching policy like LRU or LRU-k that at-
tempts to materialize the most frequently accessed
rows. However, the problem of designing a materi-
alization strategy for an application of partially ma-
terialized views is a separate issue and outside the
scope of this paper.

4 More Complex Control De-
signs

In this section, we consider more complex uses of con-
trol predicates and control tables to design partially
materialized views.

4.1 Multiple Control Tables

A partially materialized view can have multiple con-
trol tables, and the control predicates for each table
can be combined in different ways. We will illustrate
this scenario by creating a partially materialized view
similar to PV1 but using two control tables. In ad-
dition to the table pklist containing part keys, we

have another control table sklist containing sup-
plier keys.

We first create a partially materialized view PV4

where the two control predicates (exists clauses) are
ANDed together.

PV4:

create table pklist (partkey int primary key)

create table sklist (suppkey int primary key)

create view PV4 as

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and exists (select * from pklist pkl

where p partkey = pkl.partkey)

and exists (select * from sklist skl

where p partkey = skl.suppkey)

Q1 cannot be answered from the view PV4 because
the view may not contain all the desired rows for
a given part. For the view to be useful, the query
must specify a set of part keys and a set of supplier
keys, which must be found in pklist and sklist,
respectively. Consider the following parameterized
query that finds supplier information for a given part
and a given supplier.

Q5:

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and p partkey = @pkey

and s suppkey = @skey

The guard predicate and the run-time guard con-
dition equal

Pr: (partkey = @pkey) ∧ (suppkey = @skey)

exists(select 1 from pklist

where partkey = @pkey)

and exists(select 1 from sklist

where suppkey = @skey)

9

We can also create a partially materialized view
PV5 where the control predicates are ORed together.

PV5:

create view PV5 as

select p partkey, p name, p retailprice, s name,

s suppkey, s acctbal, sp availqty, sp supplycost

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and (exists (select * from pklist pkl

where p partkey = pkl.partkey)

or exists (select * from sklist skl

where p partkey = skl.suppkey))

PV5 can be treated as a union of two partially
materialized views with control tables pklist and
sklist, respectively. This immediately implies that
queries that specify part keys and queries that spec-
ify supplier keys may be computable from the view.
This holds also for queries that specify both part keys
and supplier keys.

4.2 Views With A Common Control
Table

Different partially materialized views may share a
common control table. For instance, the table pklist
controls the contents of the partially materialized
view PV1. The same table can be used to control
other partially materialized views as well.

Example 7. Consider the following parameterized
query that finds information about all lineitems for a
given part.

Q6:

select p partkey, p name, sum(l quantity)

from part, lineitem

where p partkey = l partkey

and p partkey = @pkey

group by p partkey, p name

Suppose that the access pattern is roughly the
same as that for Q1. To handle this query efficiently,
we can create a partially materialized view PV6, us-
ing the same control table pklist as Q1.

PV6:

create view PV6 as

select p partkey, p name, sum(l quantity) qty

from part, lineitem

where p partkey = l partkey

and exists (select * from pklist

where p partkey = partkey)

group by p partkey, p name

The table pklist controls the contents of both the
view PV1 and the view PV6. For both views, only
rows with partkeys stored in the table pklist are
materialized.

4.3 Using Another View As A Control
Table

Another materialized view can be used as a control
table. As we shall see in Section 5, this can be par-
ticularly useful for mid-tier caching.

Example 8. Suppose we wish to cache data about
customers in the most frequently accessed market
segments and also their orders. To do so, we would
create a control table containing market segment ids
and two views.

PV7:

create table segments

(segm varchar[25] primary key)

create view PV7 as

select c custkey, c name, c address

from customer

where exits (select * from segments

c mktsegment = segm)

PV8:

create view PV8 as

select o custkey, o orderkey, o orderstatus,

o totalprice, o orderdate

from orders

where exists (select * from PV7

o custkey = c custkey)

The two views can of course be used independently,
that is, PV7 for queries against the customer table
where the market segment is specified and PV8 for
queries against the orders table where the customer

10

key is specified. In addition they can be used for
queries joining customer and orders that specify a
market segment, e.g. the following query.

Q7:

select c custkey, c name, c address,

o orderkey, o orderstatus, o totalprice

from customer, orders

where c custkey = o custkey

and c mktsegment = ’Household’

4.4 View Groups

We say that two partially materialized views are (di-
rectly) related if they reference the same control ta-
ble or one uses the other as a control table. A partial
view group is a set of, directly or indirectly, related
partially materialized views and control tables. We
represent a partial view group as a directed graph,
where nodes denote either control tables or partial
views and edges denote control constraints (defined
by control predicates). The direction of an edge for a
control constraint is from a partial view to its control
table(s).

A

B

C

A

B C

A B

C

A

B C

D

(1) (2) (3) (4)

Figure 2: Partial View Graphs

Figure 2 shows some examples of partial view
graphs. Figure 2(1) represents the partial view group
of PV8, PV7 and the control table segments in Sec-
tion 4.3. Figure 2(2) represents the case of PV1, PV6

and the control table pklist in Section 4.2. Fig-
ure 2(3) represents the case of PV4 and its control
tables pklist and sklist. Figure 2(4) shows a com-
bination of different partially materialized views.

Within a partial view group, one or more control
tables control the contents of a group of partially ma-
terialized views. Any update on the control tables has
a cascading effect on all the views.

There are no cycles in a partial view group’s con-
nectivity graph. Views cannot reference themselves
directly or indirectly because it could cause view ex-
pansion and view maintenance to fail. Partially ma-
terialized views also inherit this property.

5 Applications for Partially
Materialized Views

Fully materialized views are defined statically and
changing the contents of the view is cumbersome and
slow. Partially materialized views are more flexible
— changing the view contents is easy and fast. In
practice, materializing only part of a view can be
useful in many scenarios, five of which are briefly dis-
cussed in this section.

Mid-Tier Cache Containers

Partially materialized views can be extremely use-
ful for a mid-tier database cache, such as Microsoft’s
MTCache [18, 10, 17] and IBM’s DBCache [1]. A
mid-tier cache replicates part of the data from a back-
end server and attempts to handle as many queries
as possible from the replicated data. The goal is
improved scale-out by offloading some of the query
workload to such cache servers.

MTCache models local data as materialized
views [18] that are updated asynchronously. These
cached views are treated as regular materialized views
and picked up by the optimizer transparently. Some-
times it would be preferable to materialize only some
of the rows, for example, the most frequently accessed
rows and be able to easily and quickly change which
rows are materialized. Partially materialized views
are ideal for this purpose.

Cache table is a new table type supported by DB-
Cache to dynamically determine subsets of rows to
be stored at a front-end server [1]. Cache tables
and partially materialized views are similar in the
sense that they can both be used as cache contain-
ers but there are many differences. Partially ma-
terialized views provide a general mechanism with
many potential applications while cache tables are a
special-purpose mechanism designed only for mid-tier

11

caching. As cache containers, partially materialized
views are much more flexible than cache tables. A
cache table are limited to storing a subset of the rows
from a backend table. Partially materialized views
do not have this restriction; they can cache horizon-
tal and vertical subsets, joins, and aggregations of
tables or views on the backend server. Cache tables
do not use explicit control tables and therefore do not
offer the same flexibility in designing materialization
strategies. A partially materialized view may have
multiple control tables and can thus answer queries
with different selection predicates.

Clustering Hot Items

Suppose we have a large table or materialized view
with a very skewed access pattern. That is, a small
fraction of rows account for the great majority of ac-
cesses. More often than not, these hot rows are scat-
tered in what appears to be random order among
the pages of the table or view. The buffer pool hit
rate may be high but in reality significant memory
space is wasted because each page contains only one
or two hot rows. A partially materialized view can
be used purely to cluster together the hot rows on
fewer pages, thereby reducing memory requirements
and improving buffer pool efficiency. The memory
space freed up this way can then be used to bring
into memory additional rows from the same or other
tables, which will improve overall query performance.

Incremental View Materialization

A partially materialized view can be used to incre-
mentally materialize an expensive view. This can be
done using a range control table and slowly increas-
ing the range covered. Having the control predicates
range over the view’s clustering key would material-
ize the view page by page and minimize overhead.
Before the view gets fully materialized, we treat it
as a partially materialized view and the contents of
the control table represent the current materializa-
tion progress. The view can be exploited even be-
fore it is fully materialized! When materialization
completes, all we need to do mark the view as being
a fully materialized view and abandon the fallback

plans.
Graefe [7] introduced partitioned B-trees and out-

lined several potential applications of this novel B-
tree variant. As described in the paper, partitioned
B-trees can be used to significantly speed up incre-
mental index and view materialization.

Views with Non-Distributive Aggregates

Partially materialized views can also be used to ex-
pand the class of views supported by a DBMS to
include view types that are not incrementally up-
datable. For instance, views that containing non-
distributive aggregates like min and max that are not
incrementally updatable, could be allowed. If the
min or max for a particular group changes, the group
could be removed from the view description and re-
computed asynchronously later. In fact, it might be
better to use the control table as an exception table,
that is, an entry in the control table indicates that the
corresponding group needs to be recomputed before
it can be used.

View Support for Parameterized Queries

A parameterized query can typically be supported by
a view with the same definition, except that the pa-
rameterized columns have to be added to the output
columns of the view, allowing selection and possible
re-aggregation to be applied. However, if the domain
of a parameter is large, the resulting view may be
very large because, in essence, we have materialized
the view for all possible parameter values. If only a
small number of the values are actually used, much
effort is wasted to store and and maintain the view
for parameter values never used in queries.

Example 9. This query computes the total value
and number of orders by status for orders with a value
range and a date.

Q8:

select o orderstatus, sum(o totalprice), count(*)

from orders

where round(o totalprice/1000,0) = @p1

and o orderdate = @p2

group by o orderstatus

12

A fully materialized view would provide very lit-
tle benefit for this query. Following the stan-
dard approach, the view would be grouped on
columns (round(o totalprice / 1000,0), o orderdate,
o orderstatus). The number of possible combinations
of parameter values is so large that the materialized
view would be as large as the order table.

Most likely, only a few combinations of actual pa-
rameter values would ever be used. To exploit this
fact, we create an equality control table containing
combinations of prices and dates of interest and a par-
tially materialized view. The most commonly used
combinations are added to the control table.

PV9:

create table plist(price int, orderdate date)

create view PV9 as

select round(o totalprice/1000,0) op, o orderdate,

o orderstatus, sum(o totalprice) sp, count(*) cnt

from orders

where exists (select * from plist pl

round(o totalprice/1000,0) = pl.price

and o orderdate = pl.orderdate)

group by round(o totalprice/1000,0),

o orderdate, o orderstaus

The query can be answered immediately by an in-
dex lookup of the view; no further aggregation is
needed.

Partially materialized views can also be helpful for
view support for queries with parameters in complex
subqueries but the details are outside the scope of
this paper.

6 Experimental Results

We have prototyped support for partially material-
ized views in Microsoft SQL Server 2005 Beta. We
ran a series of experiments to compare the perfor-
mance of a partially materialized view with that of a
fully materialized view.

The main benefit of a partially materialized view
is to avoid wasted maintenance efforts. However, be-
fore analyzing maintenance costs, we first verify (Sec-
tion 6.2 and 6.1) that query performance when using

a partially materialized view is no worse than when
using a fully materialized view. In fact, it can even be
better. In Section 6.3, we then compare update costs
for two types of updates: large updates modifying all
rows of a base table and small updates modifying a
single row of a base table.

All experiments were performed on a workstation
with a 3.2 GHz Pentium 4 processor, 1GB of memory
and one 80GB disk, running Windows Server 2003.
All queries were against a 10GB version (SF=10) of
the TPC-R database.

6.1 Query Performance

With unlimited memory resources, the query perfor-
mance of a partially materialized view improves if the
view covers more queries because fewer queries will
use the, presumably, more expensive fallback plan.
The higher the hit rate, the closer its performance
to that of a fully materialized view, assuming both
views fit in memory. However, with limited memory
resources, a larger fraction of a partially materialized
view fits in memory, which reduces disk I/O. As a
result, the overall query performance of a partially
materialized view may be better than that of a fully
materialized view, even if the view does not cover all
the queries. The experiments reported in this section
are designed to quantify the net effect and see how
it is affected by skewness in the access pattern and
buffer pool size.

The workload consisted of query Q1 in Section 1
with varying parameter values. Three different
database designs were considered: using no views,
using fully materialized view V1, and using partially
materialized view PV1. When using the fully mate-
rialized view V1, the query execution plan is a sim-
ple index lookup of V1. When using the partially
materialized view PV1, the query execution plan is
a dynamic plan as shown in Figure 1. The fast
branch consists of a simple index lookup against PV1

while the fallback branch consists of an index lookup
against the part table followed by two indexed nested
loop joins with the partsupp table and the supplier
table respectively.

We ran the query two million times with randomly
selected partkey values drawn from a Zipfian distribu-

13

tion with a skew factor α. The control table pklist
of view PV1 contained the most frequent partkeys.
The size of the fully materialized view V1 is about
1GB. We fixed the size of the partially materialized
view PV1 to 5% of the size of V1, that is, about 51
MB. By varying the skew factor α, we were able to
change the view’s hit rate, that is, the fraction of
queries that can answered from PV1.

We considered three different skew factors. The
larger the skew factor α, the more skewed the ac-
cess pattern and the higher the hit rate for PV1. In
this experiment, α was chosen so that PV1 covered
90%, 95%, and 97.5%, respectively, of the query ex-
ecutions. The remaining query executions used the
fallback plan. The guard condition was evaluated by
an index lookup against the 1MB control table – the
overhead was very small. For each scenario, we also
explicitly varied buffer pool sizes.

Figure 3 shows the total execution time with dif-
ferent buffer pool sizes for the three scenarios. The
buffer pool is too small to hold all three base tables
(part, partsupp and supplier), which have a combined
size of 1.5 GB. Because part keys are randomly dis-
tributed, we expect to have poor buffer pool usage
and significant disk I/O. The smaller the buffer pool,
the more severe the I/O problem. With the fully
materialized view V1, no joins are needed and CPU
time is saved. However, V1 is still too large to fit
completely in the buffer pool, resulting in some I/O.
With the partially materialized view, PV1 is small
enough to fit completely in the buffer pool.

As expected, it is uniformly faster to use a materi-
alized view than computing the query from scratch,
see Figure 3. All three plan types benefit from an
increase in buffer pool size. Using the partially mate-
rialized view PV1 can be up to 62% faster than using
the fully materialized view V1 because of better buffer
pool utilization; performance is worse only when the
buffer pool is very small. When the access pattern
is more skewed, as shown in Figure 3(b) and 3(c),
the partially materialized view can achieve about the
same performance as the fully materialized view us-
ing only a quarter of the memory. When the access
pattern is less skewed, as shown in Figure 3(a), it is
slower to use PV1 than to use V1 when the memory
size is extremely small. This is because the partially

materialized view can only answer 90% of the queries.
For the remaining 10%, it is sufficiently expensive to
compute the results from scratch with the very lim-
ited memory available that it outweighs the savings
on the other 90% of the queries.

In the experiments reported here, we arbitrarily
limited the size of the partially materialized view to
5% of the fully materialized view. We have run ad-
ditional experiments to determine the optimal size of
the partially materialized view, how it varies with
skewness and buffer pool size, and how sensitive
query performance is to the size. The results indicate
that, for our parameter settings, the optimal size is in
the range 40-60% of the fully materialized view and
that the performance curve is quite flat around the
minimum. We also observed that even for the case
of a 64 MB buffer pool and α = 1.0, using the opti-
mal partial materialized view is faster than the fully
materialized view.

6.2 Processing Fewer Rows

In the previous experiment, both views were clus-
tered on the control column p partkey. Query Q1

includes the very selective predicate (p partkey =
@pkey), so both plans included a small index scan
using the view’s clustering index. No matter which
view is used, the number of rows scanned is the same,
and so is the cost of computing the rest of the query.
Therefore, the overall number of rows processed is
the same for both views and the savings in elapsed
time is due to improved buffer pool utilization.

What if the views are not clustered on the control
column? In this case, fewer pages need to be fetched
and fewer rows processed when using a partially ma-
terialized view instead of a fully materialized view.
Simply put, there is less “junk” (non-qualifying rows)
to wade through to find the target rows. Query per-
formance should improve because less work needs to
be done.

To investigate this effect, we created the following
partially materialized view with an equality control
predicate on s nationkey and ran a query with selec-
tion predicates on p type and s nationkey.

PV10:

14

0

2

4

6

8

10

12

14

16

18

20

64 MB 128 MB 256 MB 512 MB

E
x

e
c

u
ti

o
n

 T
im

e
 (

K
 s

e
c

o
n

d
s

)

No View Full View Partial View

0

2

4

6

8

10

12

14

16

64 MB 128 MB 256 MB 512 MB

E
x
e
c
u

ti
o

n
 T

im
e
 (

K
 s

e
c
o

n
d

s
)

No View Full View Partial View

0

2

4

6

8

10

12

14

64 MB 128 MB 256 MB 512 MB

E
x

e
c

u
ti

o
n

 T
im

e
 (

K
 s

e
c

o
n

d
s

)

No View Full View Partial View

(a) Skew factor α = 1 (b) Skew factor α = 1.1 (c) Skew factor α = 1.125
Figure 3: Effect of Buffer Pool Size and Access Skewness

create table nklist(nationkey int primary key)

create view PV10 as

select p partkey, p name, p type, s name,

sp supplycost, s suppkey, s name, s nationkey

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and exists (select * from nklist nkl

where s nationkey = nkl.nationkey)

Q9:

select p partkey, p name, p type, s name,

sp supplycost, s suppkey, s name, s nationkey

from part, partsupp, supplier

where p partkey = sp partkey

and s suppkey = sp suppkey

and p type like ’STANDARD POLISHED%’

and s nationkey = @nkey

To speed up processing of the query, both PV10 and
the corresponding fully materialized view were clus-
tered on (p type, s nationkey, p partkey, s suppkey).
We varied the size of the partially materialized view
PV10 by varying the number of rows in the control
table. PV10 always contained the nationkey for Ar-
gentina. We ran query Q9 with @nkey = 1 (Ar-
gentina) 100 times and computed the average elapsed
time.

The above table compares query Q9 execution time
with a cold buffer pool. For both view types, the
main part of the execution consisted of an index scan
using the view’s clustering index. Because PV only
contains rows from a subset of nations, fewer rows

nklist Size Full View Partial View Savings(%)

1 1.130 0.121 89%
5 1.130 0.294 74%
10 1.130 0.594 47%
25 1.130 1.170 -3%

need to be read and processed compared with a fully
materialized view. As expected, the savings is high-
est when the partially materialized view is small and
increases linearly with the view size. The 3% increase
when the partially materialized view contains all rows
is caused by higher query startup cost and the the
cost of evaluating the guard condition.

Experiments with a warm buffer pool gave similar
results but the savings were lower. With a warm
buffer pool, no I/O is required to answer the query
regardless of view type so the reduction in execution
time is strictly due to reduced CPU time.

6.3 Update Performance

Partially materialized views are expected to have
lower maintenance cost than the corresponding fully
materialized view. To investigate this issue, we cre-
ated two instances of the 10GB TPC-R database,
one with the partially materialized view PV1 and the
other with the fully materialized view V1. We chose
the view configuration corresponding to Figure 3(b)
(skew factor α = 1.1, size of PV1 5% of the size of
V1) and set the maximum buffer pool size of 512MB.

We ran experiments with two update scenarios: a
large update that modified every row in a table and

15

IndexScan
partkeylist

MergeJoin

delta
part

Nested

Loops

IndexScan
partsupp

Nested

Loops

IndexScan
supplier

Apply

Update

Sort

IndexScan
partkeylist

MergeJoin

IndexScan
part

MergeJoin

delta
partsupp

HashJoin

IndexScan
supplier

Apply

Update

Sort

IndexScan
partkeylist

MergeJoin

IndexScan
part

HashJoin

Apply

Update

IndexScan
partsupp

MergeJoin

delta
supplier

(a) Update Part (b) Update PartSupp (c) Update Supplier
Figure 4: Update Plans

0

1

2

3

4

5

6

7

8

9

Update Part Update PartSupp Update Supplier

E
x

e
c

u
ti

o
n

 T
im

e
 (

x
1

0
0

 s
e

c
o

n
d

s
)

Partial View Full View

0

2

4

6

8

10

12

14

16

Part (20K

Updates)

PartSupp (20K

Updates)

Supplier (10K

Updates)

E
x

e
c

u
ti

o
n

 T
im

e
 (

x
1

0
0

 s
e

c
o

n
d

s
)

Partial View Full View

(a) Table Update (b) Row Update
Figure 5: Maintenance Costs

small updates that modified a single base table row.
We measured the total update time, including the
time for the base table update and view maintenance
and the time to flush all updated pages to disk.

In the large update case, a single update query
was issued for each base table. The updates modi-
fied p retailprice in the part table, ps availqty in the
partsupp table, and s acctbal in the supplier table.

Figure 4 shows the corresponding update plans.
Recall that the control table contains only 5% of the
part keys (100,000 keys), so it is relatively small com-
pared with the base tables. The join with the control
table greatly reduces the number of rows causing it to
be applied as early as possible in each of the plans.
The more significant savings, however, results from
having far fewer rows to apply to the view.

Figure 5(a) shows the total update cost for the

large-update scenario. As expected, the observed
cost is much lower – up to 43 times – when using
a partially materialized view PV1 than when using
a fully materialized view. The gain when updating
partsupp is much smaller than for the supplier table.
We found that this is due to an optimization ineffi-
ciency for update plans. The optimizer produces an
update plan that computes the full delta for the af-
fected base table first and then runs update plans for
any affected materialized view. When updating part-
supp, which is the largest among the three tables, the
delta itself is so large that much of it has to be flushed
to disk. This adds significant overhead to the overall
update cost. The same reasoning applies to updates
of the part table. But update performance can be im-
proved by immediately filtering the base table delta
by semi-joining it with the partially materialized view

16

or, when applicable, the smaller control table. This
will be addressed in future work.

The second scenario we considered is a group of
small updates, each one updating a single column
of a single base table row based on a primary key
selection. The updated columns are the same as the
first scenario. The update plans generated were the
same as shown in Figure 4.

We applied a large number of these small updates
with randomly selected parameter values. The pa-
rameter values were uniformly distributed over their
domains. The observed total update times are plot-
ted in Figure 5(b). Again, maintaining the partially
materialized view PV1 is much cheaper and the re-
duction is as high as 124 times.

The reason for the smaller savings when updating
partsupp table is that each update only affects one
row in the full materialized view V1. Even though
we do much less maintenance work for the partially
materialized view PV1, the total execution cost is so
low that the query initialization cost is a significant
fraction of the overall cost. The initialization cost is
the same whether we use a fully or partially mate-
rialized view. However, when updating the supplier
table, each update affects 80 rows in V1 and those 80
rows are unclustered, which means that close to 80
disk pages are affected by each update. In this case,
the reduced maintenance work for PV1 makes a huge
difference.

Updating the control table pklist changes the con-
tent of the view PV1. The update performance is
similar to other base tables. The fourth column in
Figure 5(b) shows the overall cost for updating the
control table. These updates are cheap relative to V1

updates because PV1 is significantly smaller than V1.
In summary, compared with maintaining a fully

materialized view, the maintenance saving for a par-
tially materialized view depends on the following fac-
tors.

• The cost of computing the delta rows for the
view.

• How many rows in the view are affected by each
update.

• Whether the affected rows are clustered or not.

• If an update affects very few rows, the benefit
may not be that significant because of the con-
stant startup cost.

7 Conclusion

In current database systems, a view must be either
fully materialized or not materialized at all. We pro-
pose partially materialized views which materialize
only some of the rows and can easily and quickly mod-
ify which rows to be stored. Partially materialized
views are preferable in many database areas. We give
a formal definition of a partially materialized view
and extend regular view matching and maintenance
algorithms. Experimental results in our database sys-
tem show that partially materialized views have sig-
nificant benefits of lower storage requirements, better
buffer pool efficiency, better query performance, and
lower maintenance costs.

References
[1] M. Altinel, C. Bornhovd, S. Krishnamurthy, C. Mohan,

H. Pirahesh, and B. Reinwald. Cache tables: Paving the
way for an adaptive database cache. In Proceedings of
VLDB Conference, 2003.

[2] R. G. Bello, K. Dias, A. Downing, J. J. F. Jr., J. L.
Finnerty, W. D. Norcott, H. Sun, A. Witkowski, and
M. Ziauddin. Materialized views in Oracle. In Proceedings
of VLDB Conference, 1998.

[3] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently
updating materialized views. In Proceedings of ACM SIG-
MOD Conference, 1986.

[4] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
Proceedings of ICDE Conference, 1995.

[5] J. Goldstein and P. Larson. Optimizing queries using ma-
terialized views: A practical, scalable solution. In Pro-
ceedings of ACM SIGMOD Conference, 2001.

[6] G. Graefe. Executing nested queries. In Proceedings of
BTW Conference, pages 58–77, 2003.

[7] G. Graefe. Sorting and indexing with partitioned b-trees.
In Proceedings of CIDR Conference, 2003.

[8] G. Graefe and K. Ward. Dynamic query evaluation plans.
In Proceedings of ACM SIGMOD Conference, 1989.

[9] T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In Proceedins of ACM SIGMOD
Conference, 1995.

17

[10] H. Guo, P. Larson, R. Ramakrishnan, and J. Goldstein.
Relaxed currency and consistency: how to say ”good
enough” in SQL. In Proceedings of ACM SIGMOD Con-
ference, 2004.

[11] A. Gupta, I. S. Mumick, and K. A. Ross. Adapting mate-
rialized views after redefinitions. In Proceedings of ACM
SIGMOD Conference, 1995.

[12] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In Proceedings of ACM SIG-
MOD Conference, 1993.

[13] A. Y. Halevy. Answering queries using views: A survey.
The VLDB Journal, 10(4), 2001.

[14] E. N. Hanson. A performance analysis of view materi-
alization strategies. In Proceedings of ACM SIGMOD
Conference, 1987.

[15] R. Hull and G. Zhou. A framework for supporting data
integration using the materialized and virtual approaches.
In Proceedings of ACM SIGMOD Conference, 1996.

[16] IBM. Red Brick Warehouse 6.3, Peformance Guide,
2004.

[17] P. Larson, J. Goldstein, H. Guo, and J. Zhou. Mtcache:
Mid-tier database caching for SQL server. Data Engineer-
ing Bulletin, 27(2), 2004.

[18] P. Larson, J. Goldstein, and J. Zhou. MTCache: Mid-tier
database cache in SQL server. In Proceedings of ICDE
Conference, 2004.

[19] P. Larson and H. Z. Yang. Computing queries from
derived relations. In Proceedings of VLDB Conference,
1985.

[20] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance
of data cubes and summary tables in a warehouse. In
Proceedings of ACM SIGMOD Conference, 1997.

[21] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy.
Answering queries with aggregation using views. In Pro-
ceedings of VLDB Conference, 1996.

[22] S. R. Valluri. Partially materialized partitioned views.
In Proceedings of the 11th International Conference on
Management of Data (COMAD), 2005.

[23] H. Z. Yang and P. Larson. Query transformation for psj-
queries. In Proceedings of VLDB Conference, 1987.

[24] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh,
and M. Urata. Answering complex sql queries using auto-
matic summary tables. In Proceedings of ACM SIGMOD
Conference, 2000.

18

