
1. Terminology and introduction
Programmers write programs; administrators configure
these programs into systems; users apply these systems
to their tasks.

Some individuals combine these
roles, but most do not. For instance,
some expert users are also expert pro-
grammers but most are not; most users
rely instead on the large available body
of general-purpose programs written by
others.

Similarly, some expert users are
also expert administrators but most are
not. System administration can be dif-
ficult and painstaking work; programs
in a system can interact in unexpected
ways, and installing one program can
very readily break another. Unfortunately, the users of
personal systems must typically administer their own
systems, and we believe that this creates barriers to the
wider adoption of new personal systems.

As a result, a great many personal systems are poor-
ly configured and poorly maintained. They do not work
well. They are undependable. They are brittle. They are
insecure. How might we do better?

2. What can go wrong?
Let’s consider a (very) simple
example. The user, acting as the de
facto administrator, chooses four
programs—photo editor E, camera
driver C, printer driver P, and
kernel K—and configures them
into the system shown in Figure 2.
What can go wrong?
• The user can choose programs

that simply do not work together—at all. Printer
driver P may require a formatting language
that photo editor E cannot produce, or produces
incorrectly. If there are multiple versions of P and
E, the user can choose a bad pair.

• The user can misconfigure the programs, causing
them not to work together. Misconfiguring UTF-8
support in kernel K, let’s say, might change its se-
mantics enough to break its clients.

Most existing configuration tools are imperative in na-
ture. The system configuration exists as mutable state in
the file system, in the Windows registry, etc., and the de
jure or de facto administrator updates the configuration
in place by installing and uninstalling programs. A sys-
tem’s correctness therefore depends on the correctness

Making system configuration more declarative

John DeTreville
Microsoft Research

johndetr@microsoft.com

Abstract

System administration can be difficult and painstaking work, yet individual users must typically administer
their own personal systems. These personal systems are therefore likely to be misconfigured, undependable,
brittle, and insecure, which restricts their wider adoption. Because updating the configuration of today’s
systems involve imperative updates in place, a system’s correctness ultimately depends on the correctness
of every install and uninstall it has ever performed; because these updates are local in scope, there is no easy
way to specify or check desired properties for the whole system. We present a more checkable declarative
approach to system configuration that should improve system integrity and make systems more dependable.
As in the earlier Vesta system, we define a system model as a function that we can apply to a collection of
system parameters to produce a statically typed, fully configured system instance; models can reference and
thereby incorporate submodels, including submodels exported by each program in the system. We further
check each system instance against established system policies that can express a variety of additional ad
hoc rules defining which system instances are acceptable. Some system policies are expressible using addi-
tional type rules, while others must operate outside the type system. A preliminary design and implementa-
tion of this approach are under way for the Singularity OS, and we hope to specify and check a number of
ad hoc system properties for Singularity-based personal systems.

Figure 1.
Programmers,

administrators,
and users.

users

administrators

programmers

systems

programs

Figure 2. One
system configuration.

kernel K

camera
driver C

printer
driver P

photo
editor E

and the appropriateness of each install and uninstall the
system has ever performed, as well as their exact order.
• As the system changes over time, even an initially

good system can become misconfigured. Since
many configuration settings are shared or global, lo-
cal updates to one component or setting can readily
create problems elsewhere.

The result is that configuration management in current
systems falls short in several ways.
• System configurations are brittle, imperative, and

history-dependent, especially since our tools for
managing configurations can deal only with local
constraints. Let’s imagine that installing program C
or P must reconfigure K. If we install C, then P, is K
still correctly configured for C? If we uninstall C, is
K still correctly configured for P?

• System configurations are imprecise and overly
dynamic. When a program uses another program—
perhaps as a library, perhaps as a service, perhaps
otherwise—the system can choose the other pro-
gram in some arbitrary fashion at runtime, such that
we cannot check the combination statically.

• System configurations are insecure. When a system
boots, it runs whatever system it finds on its hard
drive, with no opportunity for enforcing an end-to-
end check.

3. What has been tried?
There are several existing approaches for improving the
task of system configuration, each with its own short-
comings.

3.1. Central administration

Central administration works well in many enterprise
environments, where expert professional administrators
can create some small number of standard configura-
tions. These central administrators can choose, custom-
ize, and configure programs to work well together, and
maintain the resulting configurations over time.

Central administration seems much less suitable for
personal systems. Home systems, for example, are quite
varied and quite frequently reconfigured. As other per-
sonal systems, such as mobile phones, become more like
home systems, they also become less amenable to central
administration. We therefore should not expect central
administration to work well for personal systems.

We also propose that, all else being equal, users’ in-
terests are best served when they can choose their own
programs [17].

3.2. Closed systems

A similar approach is the closed system, where a system’s
programs all come from a single supplier or integrator.

Closed systems are common in the world of consumer
electronics, where the manufacturer delivers and up-
grades a typical system’s firmware monolithically.

Most existing personal systems are not closed, ex-
cept for the very simplest, and closed systems seem less
and less suited over time to satisfy the ever-expand-
ing needs and expectations of individual users. Simple
closed systems cannot necessarily scale to serve com-
plex, varied environments.

3.3. Stronger isolation

Can we factor our open systems into some number of
closed programs that do not interact? Each program
might execute in a separate virtual machine or virtual
environment without interfering with the others.

No. Real programs interoperate with each other.
Program C copies photos from a digital camera; E edits
them; P prints them. Reducing extraneous interaction be-
tween programs can reduce interference, of course, but
real programs will always interact. We must allow us-
ers to choose their programs independently, even though
these programs can and will interact.

3.4. Stronger interfaces

Many systems let programs interact only across strong-
ly typed interfaces. Strong static typing can eliminate
many mismatches and misconfigurations, but it is not a
panacea; a program A can work perfectly well with B
but not at all with the identically typed B′, and then again
with B″.

Some bad configurations won’t type-check, but
many more will have subtler problems. We need solu-
tions that are more powerful than strongly typed inter-
faces as they currently exist.

3.5. Better programs

If program P works with K but not with K′, doesn’t that
mean that K satisfies its contract and K′ does not?—or
that P is somehow depending on unspecified behavior?
Can’t we just write P, K, and K′ correctly in the first
place?

No, in general, we can’t. We believe that our pro-
grams will continue to have bugs, and our interfaces
will continue to elide important information. We will
continue to integrate programs from different program-
mers with different assumptions, and we will continue
to discover their interfaces and requirements experimen-
tally. In short, we will continue to integrate imperfect
programs for the near future, and perhaps longer.

3.6. Smarter installers

Some installers can explicitly model programs’ depen-
dence on each other, eliminating some misconfigura-
tions; examples include Windows Installer [12] and the

Debian package management system [1]. If P and K′ do
not work together, installing P might also upgrade K′ to
K″, while upgrading K to K′ should perhaps fail if P is
already installed.

Existing installers of this sort typically can check
system configurations for local consistency but not for
global consistency. They can avoid some misconfigura-
tions but not others.

3.7. Smarter users

Many people argue that users should better understand
the internal workings of their systems, and that admin-
istering their systems helps them learn. If users learn
enough about how their systems work, the argument
goes, then they can configure their systems as they see
fit. Conversely, if users don’t really understand their sys-
tems, then they get what they deserve.

We argue the opposite. Eliminating the need for us-
ers to administer their own systems should be as ben-
eficial as eliminating the need for them to develop their
own programs. Most users—who are neither expert
programmers nor expert administrators—are better off
when others can perform these tasks for them.

3.8. Forensic tools

Since occasional system misconfigurations seem inevi-
table, it is useful to provide tools for diagnosing and un-
doing misconfigurations when they occur [18] [15]. Even
so, it would seem preferable to catch misconfigurations
at earlier stages, before falling back on forensic tools.

4. Declarative configuration
We propose a declarative approach to system configura-
tion that addresses many of these problems. Our propos-
al derives from the earlier Vesta software configuration
system [5] [6], which itself derived from the Cedar Sys-
tem Modeller [10].
• We compose a declarative

system model that com-
pletely and precisely speci-
fies the system as a whole.

• Evaluating the system mod-
el, as applied to the system
parameters, produces a
complete, fully configured
system instance.

• Extending the Vesta ap-
proach, we can further
check each system instance
against established system
policies that can express a variety of ad hoc rules
that define which system instances are acceptable.

We argue that this declarative approach to system con-
figuration can improve the integrity and thus the de-
pendability of personal systems. (Other analyses of the
problems of system administration have also focused on
mutable configuration state [7]; our declarative approach
can eliminate much of this mutable state.) A preliminary
design and implementation of this approach are under
way for Singularity, a new research OS intended to sup-
port the construction of dependable systems [8] [9].

4.1. Models

Models are hierarchical. The system
model can reference—and thus incor-
porate—any number of submodels,
usually including one for each compo-
nent program, and these submodels can
themselves be hierarchical. Program-
mers, publishers, and remote admin-
istrators can write these submodels,
while the local administrator composes
them into the local system model. Our
goal when writing system models and
submodels is to express rules for how
we can correctly compose the various
programs into systems. Our hope is
that system models can be easy to com-
pose from their submodels.

In our example, the system model incorporates
submodels for programs E, C, P, and K. We apply each
program model to its appropriate parameters to yield a
program instance, and we compose these program in-
stances into a fully configured system instance.

Let’s consider kernel K from Figure 2. (We present
these examples in the functional language Haskell [13]
[4], although our implementation for Singularity may
not itself use Haskell.) A program instance exports some
number of values. The kernel instance in our example
(examples are partially elided in this paper) exports the
kernel’s identity (a secure hash of type Hash) and a re-
boot operation (of type KReboot).
> data K = K Hash KReboot
The function kModel is our kernel model. It takes no
parameters, and returns a kernel instance of type K.
> kModel ()
> = K (Sha��� "b�f�…�ab�") doKReboot
(This partially elided hash identifies the binary for ker-
nel K. A more realistic example might return different
hashes depending on its parameters.) Here, doKReboot
implements the reboot operation for kernel K.

We define the types C, P, and E, and the functions
cModel, pModel, and eModel, similarly.

Finally, the data type System represents the system
instance; it exports its secure hash (of type Hash) and a

Figure 3. Models,
parameters, instances,

and policies.

checker

evaluator

system
model

system
instance

system
policies

system
parameters

Figure 4.
A system model

and its submodels.

system
model

submodel
for E

submodel
for C

submodel
for P

submodel
for K

run operation (of type SRun), along with its component
program instances.
> data System = System Hash SRun K C P E
The system model systemModel is a function that takes
the four program instances (of types K, C, P, and E) and
returns a system instance (of type System).
> systemModel k c p e
> = System
> (bind [hash k, hash c,
> hash p, hash e])
> doSRun k c p e
The function bind links a number of programs, identi-
fied in this example by their secure hashes, and returns
the secure hash of the result; doSRun is a function that
implements the system’s run operation.

4.2. Evaluation

Applying a model to its parameters evaluates to an in-
stance. We produce instances k, c, p, e, and system of
types K, C, P, E, and System.
> k = kModel ()
> c = cModel k
> p = pModel True k
> e = eModel True k c p
> system = systemModel k c p e
(Here, pModel and eModel each take one extra Bool
parameter.) The resulting value system is the fully con-
figured system instance, which exports k, c, p, and e.

Model evaluation has no side effects, and applying
the same system model to the same parameters always
produces the same system instance. We can produce a
new system instance from an updated model, or from
an old model with updated parameters, but we always
produce it functionally, and not as a local update to the
current system instance on the current machine.

The functional nature of model evaluation is con-
venient for system administrators, especially for the ad-
ministrators of distributed systems. For example, it lets
us produce system instances on systems other than the
ones on which they will run. It might be much simpler
to construct a new system model for a light switch on a
personal computer or some similarly powerful system
than on the light switch itself.

4.3. Type checking and subtyping

Not only are our system instances and program instances
values, they are also statically typed and statically check-
able. Our models, etc., are also statically checkable.

In our example, a system instance of type System
must contain a kernel instance of type K, and a system in-
stance will not type-check if another type is used. When
this is too constraining—perhaps we would like to use a
kernel of type K′ that also exports a shutdown operation,
so that K′ <: K—we can use subtyping to express looser

rules. Here, we redefine System to include any kernel
type k that exports at least a reboot operation, as defined
by the HasKReboot type class. (Belonging to a Haskell
type class is like implementing a C# or Java interface.)
> data System
> = forall k .
> HasKReboot k
> => System Hash SRun k C P E
(Here, k is an existentially quantified type variable.) We
also declare our own type K to belong to the type class
HasKReboot. We can make similar changes elsewhere
in our example to take further advantage of subtyping.

4.4. Installation

Installing a new system instance involves three steps.
1) We make the new system instance available on the

local machine or across the network.
2) We make the new system instance current by setting

the local machine to boot only from that instance, as
specified by the instance’s secure hash.

3) We atomically reboot the local machine.
(We expect that we can eliminate the reboot in many cas-
es.) More than one system instance can be available at
once—and they can share common structure—but only
one can be current at a time.

We provide no way for an installer or an administra-
tor to modify a system instance in place. (Such impera-
tive edits are brittle because the correctness of the system
depends on the correctness of all of these edits over its
lifetime.) Since our system instances are immutable, we
can refer to them by their secure hashes.

Because of our all-at-once approach to installation,
the order in which system instances are produced and
installed does not matter, and no sequence of installs and
uninstalls can result in a badly formed system instance.

4.5. Runtime

When a system instance boots, the hardware can check
that it is the current system instance, and refuse to pro-
ceed if it is not.

As stated in Section 4.1, system instances and pro-
gram instances export values, which can reference other
instances; in our example, a P might export two values:
a Bool and a K.
> data P = P Bool K
We let each program read its own program instance at
runtime, allowing it to read and act upon the values that
it exports. In this case, the Bool might have been a pa-
rameter to pModel, intended to control P’s execution.

4.6. Policies

Configuring real systems requires one to know a great
many ad hoc rules. One rule might be that program P is
known to work with K and not K′; another might be that

P has not been tested against K″ but that it ought to work
anyway—assuming that its Bool parameter was True.
We call these ad hoc rules, and we argue that ad hoc
rules account for much of the difficulty of real system
configuration. Our system policies therefore provide a
way to express a variety of ad hoc rules that can further
constrain the acceptable structure of the system. We need
these ad hoc rules because our programs are not perfect,
and because their most interesting properties are often
not discovered until after they are written and deployed.
System administration is often messy and unstructured,
and system policies let us express these ad hoc rules.

We can implement many of these system policies
using additional type rules. Imagine that program E
requires a kernel that supports UTF-8. We can encode
this policy by saying that its kernel must belong to the
Utf�Support type class (perhaps among others).
> data E
> = forall k .
> (Utf�Support k, HasKReboot k)
> => E Hash ERun k C P
Each known kernel type can then be listed as belonging
to the Utf�Support type class or not. When new deter-
minations are made—perhaps a new kernel is published,
or perhaps an old kernel is found not to support UTF-8 to
our satisfaction—we can import new definitions and act
on them. While we must make these annotations manu-
ally, we can check them automatically.

For other policies, when type rules are not so direct-
ly applicable—for example, if there is a policy that the
system must fit in less than a megabyte of RAM—an ad
hoc checker can traverse the system instance and check
it against the desired policy.

Some some system policies can be authored by the
local system administrator, while may accompany pro-
grams from elsewhere, and yet others may come from
third parties. The local system administrator can choose
to adopt these imported policies or not.

If a system instance does not conform to the govern-
ing policies, the evaluator will not produce it and we can-
not use it; we must change the model or its parameters for
it to become acceptable.

4.7. Attribution

Another ad hoc policy—for example—might be that the
local system must provide a good French-language UI.
We might redefine a System’s program instances as be-
longing to the type class Français.
> data System
> = forall k c p e .
> (Français k, Français c,
> Français p, Français e)
> => System Hash SRun k c p e

We can then define our program instances—E, for ex-
ample—as belonging to Français.
> instance Français E
But who writes this instance definition? What is a “good”
French-language UI? Who gets to decide? And how
might we check so ill-defined a policy?

Our rule is that the local system administrator makes
such decisions, and a local system instance belongs to the
type class Français if and only if the local administra-
tor says so. The local administrator can of course choose
to defer to the program’s publisher when appropriate, or
to other authorities—perhaps to the Académie Française
[11], which could publish its own policies. The earlier
Binder security language provides mechanisms for at-
tribution and deferral (“delegation”) in a distributed en-
vironment [3] that should be useful here too.

Another policy might more realistically insist that
the system’s component programs not have been named
in US-CERT security alerts [16]. Ongoing security alerts
arriving at a system could cause the system no longer to
meet its policy, perhaps notifying an administrator.

4.8. Extensions

We hope to specify and check a variety of system prop-
erties using the approaches described here, and we hope
we can extend these approaches to extend the properties
we can specify and check.

Our current system instances are static, but we plan
also to support dynamic instances to model the system’s
runtime state. A program will be able to read its own
dynamic program instance, referencing other dynamic
program instances; this could provide a foundation for
easily configurable inter-program communications.

Real system state can seem quite complex. This pa-
per was written on a system with 216,141 files and 17,663
folders, but many of its 233,804 ACLs are little more
than accidents of history. While there is little chance
that these ACLs are all correct—whatever that might
mean!—there may be some greater chance that we can
write concise policies that can check the ACLs. Perhaps
such system state is not as complex as it seems!

Expressing our ad hoc policies as type rules requires
a powerful and flexible underlying type system. While
Haskell has an excellent type system, one can certainly
imagine possible improvements.

Our current approach to system security is restrict-
ed to ensuring system integrity. We hope also to address
confidentiality in future extensions.

In our current design we avoid the inviting possi-
bility of fixing system configuration problems automati-
cally as they are detected, such as by substituting a better
version of a kernel, since doing so currently seems much
more error-prone than relying on humans to fix these
problems. We expect to revisit this decision later.

5. Feasibility
Is this approach to system configuration feasible? The
only sure way to tell for sure is to build it and use it, but
we have some intuitions suggesting that it could work.

While earlier efforts at declarative configuration,
such as Vesta and the CML2 kernel configuration lan-
guage [14], have not been widely adopted, they were tar-
geted at programmers who already used and understood
the existing configuration tools, and who were therefore
disinclined to switch. This may not be a problem with
personal systems, where the need for new tools for users
and administrators should be more obvious.

Our system models and system policies may be too
complex and too difficult to get right. We argue only that
they will be smaller, simpler, and more precise than the
system instances they produce and check.

Since many people will write submodels, we must
create standards to allow their correct interoperation,
and ensure that malicious submodels cannot hijack a sys-
tem. Our current understanding of these problems is in-
adequate, but it should improve with further experience.

While we have certainly not eliminated the need for
system administration, we believe that we have reduced
the work involved. A sufficient reduction should allow us
to outsource the remaining administration tasks, includ-
ing detecting, diagnosing, and repairing any problems
that otherwise elude us.

Finally, we note that we have based this work in its
entirety on the assumption that the complexity of system
configuration limits the use and acceptance of personal
systems. We have no quantitative evidence to support
this assumption, although we do have a growing collec-
tion of supporting anecdotes.

References
[1] J. H. M. Dassen, Chuck Stickelman, Susan G. Klein-

mann, Sven Rudolph, and Josip Rodin. The Debian
GNU/Linux FAQ chapter 6—Basics of the Debian
package management system. February 2003.

[2] Christian Collberg, John H. Hartman, Sridivya
Babu, and Sharath K. Udupa. “SLINKY: Static
linking reloaded.” Proceedings of the USENIX 2005
Annual Technical Conference, Anaheim, California,
pp. 309–322, 2005.

[3] John DeTreville, “Binder, a logic-based security
language.” Proceedings of the 21st IEEE Symposium
on Security and Privacy, Oakland, California, pp.
105–113, May 2002.

[4] The GHC Team. The glorious Glasgow Haskell
compilation system user’s guide. Version 6.4, March
2005.

[5] Allan Heydon, Roy Levin, Timothy Mann, and Yuan
Yu. “The Vesta approach to software configuration

management.” Compaq Systems Research Center
Research Report 168, March 2001.

[6] Allan Heydon, Roy Levin, Timothy Mann, and
Yuan Yu. “The Vesta software configuration man-
agement system.” Compaq Systems Research Cen-
ter Research Report 177, January 2002.

[7] David A. Holland, William Josephson, Kostas Ma-
goutis, Margo I. Seltzer, Christopher A. Stein, and
Ada Lin. “Research issues in no-futz computing.”
Proceedings of the 8th Workshop on Hot Topics in
Operating Systems, pp. 106–112, Schoss Elmau,
Germany, May 2001.

[8] Galen C. Hunt and James R. Larus. “Singularity
design motivation.” Microsoft Research Technical
Report MSR-TR-2004-105, November 2004.

[9] Galen C. Hunt, James R. Larus, David Tarditi, and
Ted Wobber. “Broad new OS research: Challenges
and opportunities.” Proceedings of the 10th Work-
shop on Hot Topics in Operating Systems, Santa Fe,
New Mexico, June 2005.

[10] Butler W. Lampson and Eric E. Schmidt. “Organiz-
ing software in a distributed environment.” ACM
SIGPLAN Notices 18, 6 (June 1983), pp. 1–13.

[11] Louis [XIII of France]. “Lettres patentes pour
l’établissement de l’académie françoise.” January
1635.

[12] Microsoft Corporation. Microsoft Platform SDK:
Windows Installer. November 2004.

[13] Simon Peyton Jones, editor. Haskell 98 language
and libraries: The revised report. Cambridge Uni-
versity Press, 2003.

[14] Eric S. Raymond. The CML2 resources page. Feb-
ruary 2002.

[15] Joshua A. Redstone, Michael M. Swift, and Brian N.
Bershad. “Using computers to diagnose computer
problems.” Proceedings of the 9th Workshop on Hot
Topics in Operating Systems, Lithue, Hawaii, pp.
91–96, May 2003.

[16] United States Computer Emergency Readiness
Team (US-CERT), National Cyber Security Divi-
sion, Department of Homeland Security. Technical
cyber security alerts, 2005.

[17] 20th Century Fox. I, Robot. Motion picture theatrical
release, 2004.

[18] Yi-Min Wang, Chad Verbowski, John Dunagan, Yu
Chen, Yuan Chun, Helen J. Wang, and Zheng Zhang,

“STRIDER: A black-box, state-based approach to
change and configuration management and support.”
Proceedings of the 17th Large Installation System
Administration Conference, San Diego, California,
pp. 159–172, October 2003.

