
1. Terminology and introduction
Programmers write programs; administrators configure 
these programs into systems; users apply these systems 
to their tasks.

Some individuals combine these 
roles, but most do not. For instance, 
some expert users are also expert pro-
grammers but most are not; most users 
rely instead on the large available body 
of general-purpose programs written by 
others.

Similarly, some expert users are 
also expert administrators but most are 
not. System administration can be dif-
ficult and painstaking work; programs 
in a system can interact in unexpected 
ways, and installing one program can 
very readily break another. Unfortunately, the users of 
personal systems must typically administer their own 
systems, and we believe that this creates barriers to the 
wider adoption of new personal systems.

As a result, a great many personal systems are poor-
ly configured and poorly maintained. They do not work 
well. They are undependable. They are brittle. They are 
insecure. How might we do better?

2. What can go wrong?
Let’s consider a (very) simple 
example. The user, acting as the de 
facto administrator, chooses four 
programs—photo editor E, camera 
driver C, printer driver P, and 
kernel K—and configures them 
into the system shown in Figure 2. 
What can go wrong?
• The user can choose programs 

that simply do not work together—at all. Printer 
driver P may require a formatting language 
that photo editor E cannot produce, or produces 
incorrectly. If there are multiple versions of P and 
E, the user can choose a bad pair.

• The user can misconfigure the programs, causing 
them not to work together. Misconfiguring UTF-8 
support in kernel K, let’s say, might change its se-
mantics enough to break its clients.

Most existing configuration tools are imperative in na-
ture. The system configuration exists as mutable state in 
the file system, in the Windows registry, etc., and the de 
jure or de facto administrator updates the configuration 
in place by installing and uninstalling programs. A sys-
tem’s correctness therefore depends on the correctness 
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and the appropriateness of each install and uninstall the 
system has ever performed, as well as their exact order.
• As the system changes over time, even an initially 

good system can become misconfigured. Since 
many configuration settings are shared or global, lo-
cal updates to one component or setting can readily 
create problems elsewhere.

The result is that configuration management in current 
systems falls short in several ways.
• System configurations are brittle, imperative, and 

history-dependent, especially since our tools for 
managing configurations can deal only with local 
constraints. Let’s imagine that installing program C 
or P must reconfigure K. If we install C, then P, is K 
still correctly configured for C? If we uninstall C, is 
K still correctly configured for P?

• System configurations are imprecise and overly 
dynamic. When a program uses another program—
perhaps as a library, perhaps as a service, perhaps 
otherwise—the system can choose the other pro-
gram in some arbitrary fashion at runtime, such that 
we cannot check the combination statically.

• System configurations are insecure. When a system 
boots, it runs whatever system it finds on its hard 
drive, with no opportunity for enforcing an end-to-
end check.

3. What has been tried?
There are several existing approaches for improving the 
task of system configuration, each with its own short-
comings.

3.1. Central administration

Central administration works well in many enterprise 
environments, where expert professional administrators 
can create some small number of standard configura-
tions. These central administrators can choose, custom-
ize, and configure programs to work well together, and 
maintain the resulting configurations over time.

Central administration seems much less suitable for 
personal systems. Home systems, for example, are quite 
varied and quite frequently reconfigured. As other per-
sonal systems, such as mobile phones, become more like 
home systems, they also become less amenable to central 
administration. We therefore should not expect central 
administration to work well for personal systems.

We also propose that, all else being equal, users’ in-
terests are best served when they can choose their own 
programs [17].

3.2. Closed systems

A similar approach is the closed system, where a system’s 
programs all come from a single supplier or integrator. 

Closed systems are common in the world of consumer 
electronics, where the manufacturer delivers and up-
grades a typical system’s firmware monolithically.

Most existing personal systems are not closed, ex-
cept for the very simplest, and closed systems seem less 
and less suited over time to satisfy the ever-expand-
ing needs and expectations of individual users. Simple 
closed systems cannot necessarily scale to serve com-
plex, varied environments.

3.3. Stronger isolation

Can we factor our open systems into some number of 
closed programs that do not interact? Each program 
might execute in a separate virtual machine or virtual 
environment without interfering with the others.

No. Real programs interoperate with each other. 
Program C copies photos from a digital camera; E edits 
them; P prints them. Reducing extraneous interaction be-
tween programs can reduce interference, of course, but 
real programs will always interact. We must allow us-
ers to choose their programs independently, even though 
these programs can and will interact.

3.4. Stronger interfaces

Many systems let programs interact only across strong-
ly typed interfaces. Strong static typing can eliminate 
many mismatches and misconfigurations, but it is not a 
panacea; a program A can work perfectly well with B 
but not at all with the identically typed B′, and then again 
with B″.

Some bad configurations won’t type-check, but 
many more will have subtler problems. We need solu-
tions that are more powerful than strongly typed inter-
faces as they currently exist.

3.5. Better programs

If program P works with K but not with K′, doesn’t that 
mean that K satisfies its contract and K′ does not?—or 
that P is somehow depending on unspecified behavior? 
Can’t we just write P, K, and K′ correctly in the first 
place?

No, in general, we can’t. We believe that our pro-
grams will continue to have bugs, and our interfaces 
will continue to elide important information. We will 
continue to integrate programs from different program-
mers with different assumptions, and we will continue 
to discover their interfaces and requirements experimen-
tally. In short, we will continue to integrate imperfect 
programs for the near future, and perhaps longer.

3.6. Smarter installers

Some installers can explicitly model programs’ depen-
dence on each other, eliminating some misconfigura-
tions; examples include Windows Installer [12] and the 



Debian package management system [1]. If P and K′ do 
not work together, installing P might also upgrade K′ to 
K″, while upgrading K to K′ should perhaps fail if P is 
already installed.

Existing installers of this sort typically can check 
system configurations for local consistency but not for 
global consistency. They can avoid some misconfigura-
tions but not others.

3.7. Smarter users

Many people argue that users should better understand 
the internal workings of their systems, and that admin-
istering their systems helps them learn. If users learn 
enough about how their systems work, the argument 
goes, then they can configure their systems as they see 
fit. Conversely, if users don’t really understand their sys-
tems, then they get what they deserve.

We argue the opposite. Eliminating the need for us-
ers to administer their own systems should be as ben-
eficial as eliminating the need for them to develop their 
own programs. Most users—who are neither expert 
programmers nor expert administrators—are better off 
when others can perform these tasks for them.

3.8. Forensic tools

Since occasional system misconfigurations seem inevi-
table, it is useful to provide tools for diagnosing and un-
doing misconfigurations when they occur [18] [15]. Even 
so, it would seem preferable to catch misconfigurations 
at earlier stages, before falling back on forensic tools.

4. Declarative configuration
We propose a declarative approach to system configura-
tion that addresses many of these problems. Our propos-
al derives from the earlier Vesta software configuration 
system [5] [6], which itself derived from the Cedar Sys-
tem Modeller [10].
• We compose a declarative 

system model that com-
pletely and precisely speci-
fies the system as a whole.

• Evaluating the system mod-
el, as applied to the system 
parameters, produces a 
complete, fully configured 
system instance.

• Extending the Vesta ap-
proach, we can further 
check each system instance 
against established system 
policies that can express a variety of ad hoc rules 
that define which system instances are acceptable.

We argue that this declarative approach to system con-
figuration can improve the integrity and thus the de-
pendability of personal systems. (Other analyses of the 
problems of system administration have also focused on  
mutable configuration state [7]; our declarative approach 
can eliminate much of this mutable state.) A preliminary 
design and implementation of this approach are under 
way for Singularity, a new research OS intended to sup-
port the construction of dependable systems [8] [9].

4.1. Models

Models are hierarchical. The system 
model can reference—and thus incor-
porate—any number of submodels, 
usually including one for each compo-
nent program, and these submodels can 
themselves be hierarchical. Program-
mers, publishers, and remote admin-
istrators can write these submodels, 
while the local administrator composes 
them into the local system model. Our 
goal when writing system models and 
submodels is to express rules for how 
we can correctly compose the various 
programs into systems. Our hope is 
that system models can be easy to com-
pose from their submodels.

In our example, the system model incorporates 
submodels for programs E, C, P, and K. We apply each 
program model to its appropriate parameters to yield a 
program instance, and we compose these program in-
stances into a fully configured system instance.

Let’s consider kernel K from Figure 2. (We present 
these examples in the functional language Haskell [13] 
[4], although our implementation for Singularity may 
not itself use Haskell.) A program instance exports some 
number of values. The kernel instance in our example 
(examples are partially elided in this paper) exports the 
kernel’s identity (a secure hash of type Hash) and a re-
boot operation (of type KReboot).
> data K = K Hash KReboot
The function kModel is our kernel model. It takes no 
parameters, and returns a kernel instance of type K.
> kModel ()
>   = K (Sha��� "b�f�…�ab�") doKReboot
(This partially elided hash identifies the binary for ker-
nel K. A more realistic example might return different 
hashes depending on its parameters.) Here, doKReboot 
implements the reboot operation for kernel K.

We define the types C, P, and E, and the functions 
cModel, pModel, and eModel, similarly.

Finally, the data type System represents the system 
instance; it exports its secure hash (of type Hash) and a 
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run operation (of type SRun), along with its component 
program instances.
> data System = System Hash SRun K C P E
The system model systemModel is a function that takes 
the four program instances (of types K, C, P, and E) and 
returns a system instance (of type System).
> systemModel k c p e
>   = System
>       (bind [hash k, hash c,
>              hash p, hash e])
>       doSRun k c p e
The function bind links a number of programs, identi-
fied in this example by their secure hashes, and returns 
the secure hash of the result; doSRun is a function that 
implements the system’s run operation.

4.2. Evaluation

Applying a model to its parameters evaluates to an in-
stance. We produce instances k, c, p, e, and system of 
types K, C, P, E, and System.
> k = kModel ()
> c = cModel k
> p = pModel True k
> e = eModel True k c p
> system = systemModel k c p e
(Here, pModel and eModel each take one extra Bool 
parameter.) The resulting value system is the fully con-
figured system instance, which exports k, c, p, and e.

Model evaluation has no side effects, and applying 
the same system model to the same parameters always 
produces the same system instance. We can produce a 
new system instance from an updated model, or from 
an old model with updated parameters, but we always 
produce it functionally, and not as a local update to the 
current system instance on the current machine.

The functional nature of model evaluation is con-
venient for system administrators, especially for the ad-
ministrators of distributed systems. For example, it lets 
us produce system instances on systems other than the 
ones on which they will run. It might be much simpler 
to construct a new system model for a light switch on a 
personal computer or some similarly powerful system 
than on the light switch itself.

4.3. Type checking and subtyping

Not only are our system instances and program instances 
values, they are also statically typed and statically check-
able. Our models, etc., are also statically checkable.

In our example, a system instance of type System 
must contain a kernel instance of type K, and a system in-
stance will not type-check if another type is used. When 
this is too constraining—perhaps we would like to use a 
kernel of type K′ that also exports a shutdown operation, 
so that K′ <: K—we can use subtyping to express looser 

rules. Here, we redefine System to include any kernel 
type k that exports at least a reboot operation, as defined 
by the HasKReboot type class. (Belonging to a Haskell 
type class is like implementing a C# or Java interface.)
> data System
>   = forall k .
>       HasKReboot k
>       => System Hash SRun k C P E
(Here, k is an existentially quantified type variable.) We 
also declare our own type K to belong to the type class 
HasKReboot. We can make similar changes elsewhere 
in our example to take further advantage of subtyping.

4.4. Installation

Installing a new system instance involves three steps.
1) We make the new system instance available on the 

local machine or across the network.
2) We make the new system instance current by setting 

the local machine to boot only from that instance, as 
specified by the instance’s secure hash.

3) We atomically reboot the local machine.
(We expect that we can eliminate the reboot in many cas-
es.) More than one system instance can be available at 
once—and they can share common structure—but only 
one can be current at a time.

We provide no way for an installer or an administra-
tor to modify a system instance in place. (Such impera-
tive edits are brittle because the correctness of the system 
depends on the correctness of all of these edits over its 
lifetime.) Since our system instances are immutable, we 
can refer to them by their secure hashes.

Because of our all-at-once approach to installation, 
the order in which system instances are produced and 
installed does not matter, and no sequence of installs and 
uninstalls can result in a badly formed system instance.

4.5. Runtime

When a system instance boots, the hardware can check 
that it is the current system instance, and refuse to pro-
ceed if it is not.

As stated in Section 4.1, system instances and pro-
gram instances export values, which can reference other 
instances; in our example, a P might export two values: 
a Bool and a K.
> data P = P Bool K
We let each program read its own program instance at 
runtime, allowing it to read and act upon the values that 
it exports. In this case, the Bool might have been a pa-
rameter to pModel, intended to control P’s execution.

4.6. Policies

Configuring real systems requires one to know a great 
many ad hoc rules. One rule might be that program P is 
known to work with K and not K′; another might be that 



P has not been tested against K″ but that it ought to work 
anyway—assuming that its Bool parameter was True. 
We call these ad hoc rules, and we argue that ad hoc 
rules account for much of the difficulty of real system 
configuration. Our system policies therefore provide a 
way to express a variety of ad hoc rules that can further 
constrain the acceptable structure of the system. We need 
these ad hoc rules because our programs are not perfect, 
and because their most interesting properties are often 
not discovered until after they are written and deployed. 
System administration is often messy and unstructured, 
and system policies let us express these ad hoc rules.

We can implement many of these system policies 
using additional type rules. Imagine that program E 
requires a kernel that supports UTF-8. We can encode 
this policy by saying that its kernel must belong to the 
Utf�Support type class (perhaps among others).
> data E
>   = forall k .
>       (Utf�Support k, HasKReboot k)
>       => E Hash ERun k C P
Each known kernel type can then be listed as belonging 
to the Utf�Support type class or not. When new deter-
minations are made—perhaps a new kernel is published, 
or perhaps an old kernel is found not to support UTF-8 to 
our satisfaction—we can import new definitions and act 
on them. While we must make these annotations manu-
ally, we can check them automatically.

For other policies, when type rules are not so direct-
ly applicable—for example, if there is a policy that the 
system must fit in less than a megabyte of RAM—an ad 
hoc checker can traverse the system instance and check 
it against the desired policy.

Some some system policies can be authored by the 
local system administrator, while may accompany pro-
grams from elsewhere, and yet others may come from 
third parties. The local system administrator can choose 
to adopt these imported policies or not.

If a system instance does not conform to the govern-
ing policies, the evaluator will not produce it and we can-
not use it; we must change the model or its parameters for 
it to become acceptable.

4.7. Attribution

Another ad hoc policy—for example—might be that the 
local system must provide a good French-language UI. 
We might redefine a System’s program instances as be-
longing to the type class Français.
> data System
>   = forall k c p e .
>       (Français k, Français c,
>        Français p, Français e)
>       => System Hash SRun k c p e

We can then define our program instances—E, for ex-
ample—as belonging to Français.
> instance Français E
But who writes this instance definition? What is a “good” 
French-language UI? Who gets to decide? And how 
might we check so ill-defined a policy?

Our rule is that the local system administrator makes 
such decisions, and a local system instance belongs to the 
type class Français if and only if the local administra-
tor says so. The local administrator can of course choose 
to defer to the program’s publisher when appropriate, or 
to other authorities—perhaps to the Académie Française 
[11], which could publish its own policies. The earlier 
Binder security language provides mechanisms for at-
tribution and deferral (“delegation”) in a distributed en-
vironment [3] that should be useful here too.

Another policy might more realistically insist that 
the system’s component programs not have been named 
in US-CERT security alerts [16]. Ongoing security alerts 
arriving at a system could cause the system no longer to 
meet its policy, perhaps notifying an administrator.

4.8. Extensions

We hope to specify and check a variety of system prop-
erties using the approaches described here, and we hope 
we can extend these approaches to extend the properties 
we can specify and check.

Our current system instances are static, but we plan 
also to support dynamic instances to model the system’s 
runtime state. A program will be able to read its own 
dynamic program instance, referencing other dynamic 
program instances; this could provide a foundation for 
easily configurable inter-program communications.

Real system state can seem quite complex. This pa-
per was written on a system with 216,141 files and 17,663 
folders, but many of its 233,804 ACLs are little more 
than accidents of history. While there is little chance 
that these ACLs are all correct—whatever that might 
mean!—there may be some greater chance that we can 
write concise policies that can check the ACLs. Perhaps 
such system state is not as complex as it seems!

Expressing our ad hoc policies as type rules requires 
a powerful and flexible underlying type system. While 
Haskell has an excellent type system, one can certainly 
imagine possible improvements.

Our current approach to system security is restrict-
ed to ensuring system integrity. We hope also to address 
confidentiality in future extensions.

In our current design we avoid the inviting possi-
bility of fixing system configuration problems automati-
cally as they are detected, such as by substituting a better 
version of a kernel, since doing so currently seems much 
more error-prone than relying on humans to fix these 
problems. We expect to revisit this decision later.



5. Feasibility
Is this approach to system configuration feasible? The 
only sure way to tell for sure is to build it and use it, but 
we have some intuitions suggesting that it could work.

While earlier efforts at declarative configuration, 
such as Vesta and the CML2 kernel configuration lan-
guage [14], have not been widely adopted, they were tar-
geted at programmers who already used and understood 
the existing configuration tools, and who were therefore 
disinclined to switch. This may not be a problem with 
personal systems, where the need for new tools for users 
and administrators should be more obvious.

Our system models and system policies may be too 
complex and too difficult to get right. We argue only that 
they will be smaller, simpler, and more precise than the 
system instances they produce and check.

Since many people will write submodels, we must 
create standards to allow their correct interoperation, 
and ensure that malicious submodels cannot hijack a sys-
tem. Our current understanding of these problems is in-
adequate, but it should improve with further experience.

While we have certainly not eliminated the need for 
system administration, we believe that we have reduced 
the work involved. A sufficient reduction should allow us 
to outsource the remaining administration tasks, includ-
ing detecting, diagnosing, and repairing any problems 
that otherwise elude us.

Finally, we note that we have based this work in its 
entirety on the assumption that the complexity of system 
configuration limits the use and acceptance of personal 
systems. We have no quantitative evidence to support 
this assumption, although we do have a growing collec-
tion of supporting anecdotes.
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