
An Efficient Nelson-Oppen Decision Procedure
for Difference Constraints over Rationals

Shuvendu K. Lahiri Madanlal Musuvathi

May 26, 2005

Technical Report
MSR-TR-2005-61

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

This page intentionally left blank.

An Efficient Nelson-Oppen Decision Procedure
for Difference Constraints over Rationals

Shuvendu K. Lahiri and Madanlal Musuvathi

Microsoft Research
{shuvendu,madanm}@microsoft.com

Abstract. Nelson and Oppen provided a methodology for modularly
combining decision procedures for individual theories to construct a de-
cision procedure for a combination of theories. In addition to providing a
check for satisfiability, the individual decision procedures need to provide
additional functionalities, including equality generation.
In this paper, we propose a decision procedure for a conjunction of dif-
ference constraints over rationals (where the atomic formulas are of the
form x ≤ y + c or x < y + c). The procedure extends any negative cycle
detection algorithm (like the Bellman-Ford algorithm) to generate (1)
equalities between all pair of variables, (2) produce proofs and (3) gen-
erates models that can be extended by other theories in a Nelson-Oppen
framework. All the operations mentioned above can be performed with
only a linear overhead to the cycle detection algorithm, in the average
case.

1 Introduction

Difference constraints are a restricted class of linear arithmetic constraints of the
form x ./ y+c, where x, y are variables, ./∈ {<,≤} and c is a rational constant.
These constraints naturally arise in many applications. For instance, the array
bounds’ check in a program and the timing constraints in job scheduling can be
specified as difference constraints.

There is a well-known, efficient decision procedure for difference constraints.
Given a set of difference constraints, one can reduce the problem of checking
its satisfiability to the problem of detecting negative cycles in an appropriately
generated graph [7]. Then, any of the negative-cycle-detection algorithms (see [6]
for a nice survey) can be used to decide the given constraints. For instance, the
classic Bellman-Ford [4, 13] algorithm can decide m difference constraints on n
variables in O(n ∗m) time and O(n + m) space complexity.

In this paper, we extend this basic decision procedure to produce an equality-
generating, proof-producing, and model-generating decision procedure for differ-
ence constraints. The motivations for these extensions are the following: Using
the Nelson-Oppen combination framework [16] requires the decision procedure to
generate any variable equalities implied by the input constraints. Also, when used
in a lazy-proof-explication framework [12, 11, 3], the decision procedure needs to
generate proofs, both when reporting unsatisfiability of the input constraints and

when generating any implied equality. Finally, the need for model-generation is
motivated by our use of the decision procedure in an unit-testing tool. In this
application, an input formula, when satisfiable, represents a feasible path in the
program. A model for this formula can then be used to produce a concrete test
input that drives the program along that path.

A trivial way to provide the extensions mentioned above is to compute the
transitive closure of the input constraints. For instance, the input constraints im-
ply an equality x = y if and only if the transitive closure contains the constraints
x ≤ y and y ≤ x. Given m difference constraints in n variables, computing the
transitive closure requires O(n3) time and O(n2) space. 1 While the worst-case
complexity is the same as the complexity of the Bellman-Ford algorithm, our ini-
tial experiments with this approach show that computing the transitive closure
is very slow in practice and is a major bottleneck for the decision procedure.
This is particularly apparent when the input is sparse, where m is much less
than the maximum possible O(n2).

In contrast, the decision procedure described in this paper generates equal-
ities, proofs, and models with very little overhead to the basic negative-cycle-
algorithm, in average linear time and space. Such an algorithm is critical for
the following pragmatic reasons. First, by not performing the transitive closure
our decision procedure is very fast for sparse difference constraints. Also, the
the time and space complexity of the decision procedure is determined only by
the negative-cycle-detection algorithm used. Thus, the efficiency of the decision
procedure can be further improved by using a negative-cycle-detection algorithm
that is optimized for the constraints appearing in a particular domain [6].

1.1 Related Work

Pratt [18] observed that most linear arithmetic queries in software verification
are limited to difference logic (DIF) queries. Recently, there has been a renewed
interest in solving DIF queries, namely because of the its importance in various
hardware [5] and software verification domains [2, 14].

Strichman et al. [22] provided a decision procedure for Boolean combina-
tion of DIF constraints by providing an satisfiability-preserving translation to a
Boolean formula. The Boolean formula is produced by treating each difference
constraint as a Boolean variable and adding all the “transitivity constraints”
due to the DIF constraints to the formula. This process can introduce an expo-
nential number of such constraints, resulting in a very large Boolean formula.
Bryant et al. [5] provide an alternate translation to Boolean formula based on
“finite-model” property of DIF logic. Each variable is encoded using a symbolic
bit-vector that is sufficient to preserve the satisfiability of the original formula.
This results in a polynomial time translation to SAT and is often more efficient
in practice. Talupur et al [23] improve upon this idea by providing a method to

1 Transitive closure can be computed more efficiently using matrix-multiplication
based methods. It is not clear how well these methods perform when used in a
decision procedure.

identify a small range for each variable to reduce the number of Boolean vari-
ables in the final encoding. However, the worst-case complexity of the method to
find the range can be exponential in the size of the input formula. The methods
in this category are “eager” in translating the formula to SAT, and have been
implemented in the tool UCLID [5]. Seshia and Bryant [21] exploit the sparse-
ness of non-difference constraints to provide a decision procedure for a Boolean
combination of linear arithmetic constraints.

On the other hand, theorem provers based on a more “lazy” translation to
SAT use a decision procedure for a conjunction of DIF constraints. MATH-
SAT [1] uses a DIF logic solver as the first step to check the satisfiability of a
linear arithmetic constraint before using a more general linear arithmetic deci-
sion procedure. Nieuwenhuis et al. [17] use a decision procedure for DIF that can
incrementally produce all the constraints implied by a set of constraints. The
procedure also produces proofs of unsatisfiability. The implied constraints are
used to improve the constraint propagation and conflict analysis of a DPLL [9,
10] style solver for first-order theories. Cotton et al. [8] use a decision proce-
dure for DIF based on negative cycle detection algorithm and integrate conflict
analysis of DIF with the conflict analysis of the SAT solver. Unlike our method,
these methods do not require producing equalities over variables, as the decision
procedure does not operate in a combination framework.

Model generation for linear arithmetic queries in a combination framework
has been recently addressed by Ruess et al. [19]. They extend the Simplex deci-
sion procedure to generate satisfying assignments (over rationals) in the presence
of disequalities. Our contribution is to extend Bellman-Ford algorithm to han-
dle disequalities. For the restricted fragment of DIF, this provides an efficient
algorithm to generate such models, while Simplex suffers from a worst-case ex-
ponential complexity in solving linear constraints.

2 Background

In this section, we briefly describe some notations and a high-level description
of theorem provers based on Nelson-Oppen combination. Since our intention
is to explain the decision procedure for difference theory in the Nelson-Oppen
setting, we do not elaborate on the technical definitions of theories, signatures
etc.; interested readers are refered to excellent survey works [16, 25] for rigorous
treatment.

2.1 Premilinaries

Figure 1 defines the syntax of a quantifier-free fragment of first-order logic. An
expression in the logic can either be a term or a formula. A term can either be a
variable or an application of a function symbol to a list of terms. A formula can
be the constants true or false or an atomic formula or Boolean combination of
other formulas. Atomic formulas can be formed by an equality between terms or
by an application of a predicate symbol to a list of terms. A literal is either an

term ::= variable | function-symbol(term, . . . , term)

formula ::= true | false | atomic-formula

| formula ∧ formula | formula ∨ formula | ¬formula

atomic-formula ::= term = term | predicate-symbol(term, . . . , term)

Fig. 1. Syntax of a quantifier-free fragment of first-order logic.

atomic formula or its negation. We will often identify a conjunction of literals
l1 ∧ l2 . . . lk with the set {l1, . . . , lk}.

The function and predicate symbols can either be uninterpreted or can be
defined by a particular theory. For instance, the theory of integer linear arith-
metic defines the function-symbol “+” to be the addition function over integers
and “<” to be the comparison predicate over integers. For a theory T , the sig-
nature Σ denotes the set of function and predicate symbols in the theory. If an
expression E involves function or predicate symbols from two (or more) theories
T1 and T2, then E is said to be an expression over a combination of theories
T1 ∪ T2.

A formula F is said to be satisfiable if it is possible to assign values to the
various symbols in the formula from the domains associated with the theories to
make the formula true. A formula is valid if ¬F is not satisfiable (or unsatisfi-
able). We say a formula A implies a formula B (A ⇒ B) if and only if (¬A)∨B
is valid. A satifiability procedure for Σ-theory T checks if a formula φ (over Σ)
is satisfiable in T .

2.2 Nelson Oppen Combination

Given two convex and stably infinite2 theories T1 and T2 with disjoint-signatures
Σ1 and Σ2 respectively (i.e. Σ1 ∩Σ2 = {}), and a conjunction of literals φ over
Σ1∪Σ2, we want to decide if φ is satisfiable under T1∪T2. Nelson and Oppen [16]
provided a method for modularly combining the satisfiability procedures for T1

and T2 to produce a satisfiability procedure for T1 ∪ T2.
The Nelson-Oppen procedure works as follows: The input φ is split into the φ1

and φ2 such that φi only contains symbols from Σi and φ1∧φ2 is equisatisfiable
with φ. Each theory Ti decides the satisfiability of φi and returns unsatisfiable
if φi is unsatisfiable in Ti. Otherwise, the set of equalities implied by φi over
the variables common to φ1 and φ2 are propagated to the other theory Tj . The
theory Tj adds these equalities to φj and the process is repeated until the set of
equalities saturate.

Therefore, in addition to checking the satisfiability of a set of literals, each
theory also has to derive all the equalities over variables that are implied by the

2 We need these restrictions only to state the N-O combination result. The definition
of convexity and stably infiniteness can be found in [16, 25].

set of literals. The satisfiability procedure is called equality generating if it can
generate all such equalities.

If the formula φi is satisfiable, then theory Ti can generate satisfying assign-
ments for the variables and symbols in φi. If each theory can generate diverse
assignments for the shared variables (described in Section 6), then we can gen-
erate a satisfying assignment for the symbols and variables in φ.

2.3 Lazy Theorem Proving

To check the satisfiability of a formula ψ with arbitrary Boolean structure, many
modern theorem provers [12, 3] use a encoding of ψ into a Boolean formula, and
use a Boolean Satisfiability (SAT) solver to check the satisfiability of the Boolean
formula. We provide a brief description of the method below.

The formula ψ is checked using a Boolean SAT solver, after treating each
atomic formula as a Boolean variable. If the SAT solver determines that the
formula is unsatisfiable, then ψ is unsatisfiable. Otherwise, the satisfying assign-
ment from SAT φ (a conjunction of literals from ψ) is checked for satisfiability
using the Nelson-Oppen combination procedure described in the last section. If
φ is satisfiable over the first-order theories, the formula ψ is satisfiable. Other-
wise, a “conflict clause” is derived from the theories that will prevent the same
assignment being produced by the SAT solver. One way to derive such as clause
is to select the literals that appear in the “proof” of unsatisfiability of φ. We call
this method the lazy theorem proving using proof explication.

Therefore, an additional requirement for the decision procedures working in
the Nelson-Oppen procedure (operating in a lazy theorem proving context) is to
produce a proof of unsatisfiability. To achieve this, the satisfiability procedure for
each theory needs to produce a (1) proof of every equality x = y over the shared
variables, and (2) a proof of unsatisfiability if the theory reports unsatisfiable.

3 Difference Logic and Satisfiability

Difference logic is a simple yet useful fragment of linear arithmetic, where the
atomic formulas are of the form x ./ y + c, where x, y are variables, ./∈ {<,≤}
and c is a rational constant. Any equality x = y+c is represented as a conjunction
of x ≤ y + c and y ≤ x − c. Constraints like x ./ c are handled by adding a
special variable x0 to denote the constant 0, and rewriting the constraint as
x ./ x0 + c [22]. To simplify our discussion, we assume that there are no strict
inequalities. This poses no problems as one can simply reduce the bound c by a
small amount [20]. The function symbol “+” and the predicate symbols {<,≤}
are the interpreted symbols of this theory.

Given a set of difference contraints φ, we can construct a graph Gφ(V, E),
where the vertices of the graph are the variables in φ and there is a directed edge
in the graph from x to y of weight c, if y ≤ x + c ∈ φ. For each edge e ∈ E, we
denote s(e), d(e) and w(e) to be the source, destination and the weight of the
edge.

A simple path P in Gφ is a sequence of edges [e1, . . . , en] such that d(ei) =
s(ei+1), for all 1 ≤ i ≤ n − 1, and no vertex is repeated. We always refer to a
simple path as a path, unless otherwise mentioned. For a path P

.= [e1, . . . , en],
s(P) denotes s(e1), d(P) denotes d(en) and w(P) denotes the sum of the weights
on the edges in the path, i.e. Σ1≤i≤nw(ei). A simple cycle C is a sequence of
edges [e1, . . . , en] where s(e1) = d(en) and no vertex appears as a source or
destination twice in the path. We use u ; v in E to denote that there is a path
from u to v through edges in E.

It is well known [7] that a set of difference constraints φ is unsatisfiable if and
only the graph Gφ has a simple cycle C, such that w(C) < 0. Hence, checking
satisfiability can be reduced to checking for negative cycles in the graph Gφ.
The Bellman-Ford [4, 13] algorithm described below is a way to detect negative
cycles in a directed graph. Although the algorithm is well known, we describe
it here because it will be used in subsequent sections (e.g. while describing the
proof of unsatisfiability).

3.1 Bellman-Ford algorithm

Given a directed graph G (possibly with negative weights), Bellman-Ford algo-
rithm detects the single source shortest path from any given vertex s to all other
vertices in the graph. The algorithm returns false when there is a negative cycle
in the graph, and true otherwise. For any vertex v ∈ V , δ(v) denotes the shortest
path from s to v, upon the completion of the algorithm with true. In that case,
the map p(v) denotes the parent of the vertex v in the shortest path tree rooted
at s.

The following algorithm Bellman-Ford(G(V, E), s), computes the shortest
path from s to each of the vertices in G:

1. Initialize:
– Set δ(s) ← 0. For any vertex v ∈ V \ {s}, set δ(v) ←∞. For any vertex

v ∈ V , set p(v) ← nil.
2. For i = 1 to |V | − 1 do:

(a) For each edge (u, v) ∈ E
i. If δ(v) > δ(u) + w(u, v) then

– Set δ(v) ← δ(u) + w(u, v).
– Set p(v) ← u.

3. For each edge (u, v) ∈ E:
(a) If δ(v) > δ(u) + w(u, v) then

i. return false.
4. return true.

To detect negative cycles in the graph Gφ, the first step is to add a new
vertex xmax to the graph, and add edges of weight zero from xmax to all other
vertices in Gφ. Let Hφ be the new graph. The graph Gφ contains a negative cycle
if and only if the algorithm Bellman-Ford(Hφ, xmax) returns false. The runtime
of the algorithm is O(|V | ∗ |E|).

Proposition 1. When the Bellman-Ford algorithm returns true, then for any
edge (u, v) ∈ E, δ(v) ≤ δ(u) + w(u, v).

Let us define the slack sl(u, v) for any edge (u, v) (after Bellman-Ford algo-
rithm returns true) as: sl(u, v) = δ(u)− δ(v) + w(u, v). It is easy from Proposi-
tion 1 to see that sl(u, v) ≥ 0 , for any edge (u, v).

Proposition 2. For any cycle C
.= [e1, . . . , en] in Gφ, w(C) = Σei∈Csl(ei).

4 Equality Generation for Difference Constraints

In this section, we illustrate how to generate all the variable equalities implied
by the constraint φ. We assume that φ is satisfiable — i.e. that the Bellman-
Ford algorithm has returned true on the graph Gφ(V, E) constructed as shown in
Section 3. Now, one can always produce such equalities by performing a transitive
closure of the constraints in φ and checking if x ≤ y and y ≤ x have been derived.
However, the algorithm suffers from worst case O(|V |3) time and O(|V |2) space
complexity. We show an algorithm to derive all such equalities in O(|V | + |E|)
average case space and time, after the completion of the Bellman-Ford algorithm.
This algorithm assumes an average constant time for hash table insertions and
lookups. Without this assumption, our algorithm has a time complexity O(|V | ∗
logC + |E|) where C is the weight of the maximum weighted path in Gφ.

We now describe the algorithm EqGen(Gφ, δ) for generating equalities over
the variables in V .

1. Let E′ be set of edges in G such that an edge e ∈ E′ if and only if sl(e) = 0 .
2. Create the induced subgraph G′φ(V, E′) from Gφ(V, E).
3. Group the vertices in G′φ into strongly connected components (SCCs). Ver-

tices u and v are in the same SCC if and only if u ; v and v ; u in E′.
This can be done in linear time [24].

4. For each SCC S, let V S
d = {x | x ∈ S and δ(x) = d}. This can be done in

average linear time using a hash table.
5. For each V S

d = {x1, . . . , xk}, where k ≥ 2, generate the equalities x1 =
x2, x2 = x3, . . . , xk−1 = xk.

Theorem 1. Let E be the set of equalities generated by the EqGen(Gφ, δ) pro-
cedure. For any equality x = y over V , φ ⇒ x = y if and only if E ⇒ x = y.

We will use a few intermediate lemmas before proving the above theorem.

Lemma 1. A cycle C
.= [e1, . . . , en] in Gφ has w(C) = 0, if and only if C is a

cycle in G′φ.

Lemma 2. An edge e in Gφ representing y ≤ x + c, ei can be strengthened to
represent y = x + c (called an equality-edge), if and only if e lies in a cycle of
weight zero.

Lemma 2 implies that the equality edges in Gφ are exactly those edges in G′φ
that are present in the SCCs of G′φ. Since SCCs preserve the cycles in G′φ, any
edge e in Gφ lies in a zero-weight cycle if and only if e lies in some SCC in G′φ.

Lemma 3. For two variables x and y in V , φ ⇒ x = y if and only if x and y
lie in some SCC of G′φ and δ(x) = δ(y).

Finally, the proof of Theorem 1 follows easily from Lemma 1 and Lemma 3.
Note that for any pair of vertices x and y, x and y lie in a cycle of weight zero and
δ(x) = δ(y) = d if and only if {x, y} ⊆ V S

d , for some SCC S. Therefore, either
x = y is present in E , or follows from E by using symmetry and transitivity.

5 Proof generation

When Bellman-Ford algorithm returns false, there is a negative cycle in the
graph Gφ. This negative cycle is the proof of unsatisfiability. The cycle can
be obtained by simply traversing the p pointers. Let v be the vertex such
that δ(v) > δ(u) + w(u, v) in step 3(i). Let u1

.= p(u), u2
.= p(u1), . . . , uk

.=
p(uk−1), . . . be the vertices that are obtained by following the parent pointer p.
For this sequence, there exists 1 ≤ i < j, such that uj = ui. The set of edges
[(uj , uj−1), (uj−1, uj−2), . . . , (ui+1, ui)] forms a negative cycle in Gφ.

One the other hand, when the procedure generates an equality u = v, we
have to provide a proof for the equality. We will use the SCC computation phase
to enable generating the cycle in G′φ containing u and v. To do this, we briefly
look at the main steps of the algorithm for generating SCCs.

The following algorithm SCC(G(V,E)), computes the SCCs for a graph
G(V, E). Similar to the Bellman-Ford algorithm, we maintain parent pointers
p for each vertex.

1. Perform a depth-first search (DFS) on G.
– Record the finishing time f [v] for each vertex v in G. Intuitively, the

finishing times indicate the order in which the vertices were popped
from the stack (after exploring all its descendants) during the traversal
of the graph.

– During the DFS, update the parent pointer p of any vertex v, p(v) ← u,
where v was first visited through the edge (u, v) ∈ E.

2. Construct GT .= G(V, ET), where ET = {(v, u) | (u, v) ∈ E}. Let pT be the
parent pointers for the graph GT .

3. Perform DFS on GT in the order of decreasing f [v]. Update the parent
pointers pT (u) for each vertex as before.

4. The DFS on GT induces a set of trees. The set of nodes in each tree represents
an SCC.

For an SCC S, let root(S) denote the root of the tree for S (that also cor-
responds to the node with the highest f value in S). For any vertex u, define
u1

.= p(u), u2
.= p(u1), . . . and u−1

.= pT (u), u−2
.= pT (u−1),

Lemma 4. For any SCC S (with size at least two), and for any pair of distinct
vertices u and v in S, the sequence of edges [(u, u−1), (u−1, u−2), . . . , (u−k, root(S))]
followed by [(root(S), vm), (vm , vm−1), . . . , (v1 , v)] forms a path (not necessarily
simple) from u to v in E.

Lemma 5. If the SCC algorithm is run on G′φ, then for every pair of vertices
u and v in an SCC S with δ(u) = δ(v), a path from u to v (and from v to u)
with weight zero can be constructed using p and pT pointers in O(|V |) time.

Thus, if u and v belong to the same SCC in the graph G′φ, and δ(u) = δ(v),
then the path from u to v of weight zero will derive v ≤ u and the path from v
to u of weight zero will derive u ≤ v. This will constitute the proof of u = v.

Theorem 2. For every equality u = v implied by φ, the proof of u = v can be
generated in O(|V |) time.

If there are q (bound by |V |) irredundant equalities implied by φ, the time
for generating the proof for the equalities is bound by O(q ∗ |V |). The algorithm
is a linear output-sensitive algorithm.

6 Model Generation

For a conjunction of difference constraints φ, the δ values computed by the
Bellman-Ford algorithm satisfies all the constraints in φ. However, this is not
sufficient to produce a model in the Nelson-Oppen combination framework. Con-
sider the following example where a formula involves the logic of equality with
uninterpreted functions (EUF) and difference constraints.

Let ψ = (f(x) 6= f(y)∧ x ≤ y) be a formula in the combined theory. Nelson-
Oppen framework will add ψ1

.= f(x) 6= f(y) to the EUF theory (T1) and
ψ2

.= x ≤ y to the difference logic theory (T2). Since there are no equalities
implied by either theory, and each theory Ti is consistent with ψi, the formula ψ
is satisfiable. Now, the difference logic theory generates the model 〈x 7→ 0, y 7→ 0〉
for ψ2. However, this is not a model for ψ.

To generate an assignment for the variables that are shared across two theo-
ries, each theory Ti needs to ensure that the variable assignment ρ for Ti assigns
two shared variables x and y equal values if and only if the equality x = y is
implied by the constraints in theory Ti. We call such assignments as diverse.

If we assume that the domain of any Σ-structure is Q, the set of rational
numbers, then every function (predicate) is interpreted as a function (relation,
respectively) over rationals. Since the symbols {+,≤} are interpreted by the lin-
ear arithmetic theory (in this case, the difference logic theory) only, the absolute
values assigned to the shared variables are only relevant for this theory. Hence,
the diverse model generated by the linear arithmetic theory can be extended by
each theory to provide a model for the overall formula. In the above example,
any extension of the model 〈x 7→ 0, y 7→ 1, f(0) 7→ 0, f(1) 7→ 1〉 satisfies the
formula ψ.

The following section describes a more general problem of generating models
when a set of disequalities Γ are explicitly specified. Assuming that the Bellman-
Form algorithm has run, this algorithm generates a model in O(|V |+ |E|+ |Γ |)
time. It is straightforward to modify this algorithm to generate diverse models in
O(|V |+ |E|) time by implicitly specifying disequalities for every pair of variables
x 6= y, if x = y is not implied by the set of constraints.

6.1 Model Generation with Disequalities

In this section, we describe rational model generation for a set of difference
constraints Φ, along with a set of disequalities Γ

.= {xi 6= yi, . . .} over variables.
We assume that the set of constraints Φ ∪ Γ is satisfiable.

We assume that we have run Bellman-Ford algorithm on GΦ to compute
δ(v) for each vertex v ∈ V . Also, assume that have constructed the graph
G′Φ(described in Section 4) that contains the vertices with zero-slack edges. Fi-
nally, we generate the SCC graph GSCC

Φ of G′Φ as follows. The vertices S1, . . . , Sn

of GSCC
Φ are the SCCs in the graph G′Φ. Let SCC (v) be the SCC S to which

the vertex v ∈ V belongs to. For each edge (x, y) ∈ E, GSCC
Φ contains an edge

(SCC (x),SCC (y)). It is well known that GSCC
Φ is a directed acyclic graph and

can generated from G′Φ in O(|V |+ |E|) time.
The values δ(v) for each vertex v ∈ V computed by the Bellman-Ford algo-

rithm is a feasible solution for Φ as it satisfies all the constraints in Φ. However,
these values might not satisfy the disequalities in in Γ , i.e. it is possible for
δ(x) = δ(y) for x 6= y ∈ Γ . To generate a model for Φ∪Γ , we perturb the values
δ(v) for v ∈ V so as to satisfy the disequalities in Γ as well as the constraints in
Φ.

Given the SCC graph GSCC
Φ , the model generation algorithm orders its ver-

tices in topological-sort order ¹, where S ¹ T for every edge (S, T) in GSCC
Φ . 3

Such an ordering can be performed in linear time [15]. The model generation
algorithm makes a single traversal in the SCC graph GSCC

Φ in the topological
sort order. During this traversal, the algorithm assigns a value γ(S) for each S
in GSCC

Φ . This value represents the perturbation of all the vertices in the SCC
represented by S.

The disequalities in Γ are captured in GSCC
Φ by the relation 6∼ as follows:

For vertices S and T in GSCC
Φ , S 6∼ T exactly when there exists x ∈ S, y ∈ T ,

T ¹ S and x 6= y ∈ Γ .
The model generation algorithm follows.

1. Let ε
.= min ({|δ(x)− δ(y)| | x ∈ V, y ∈ V, δ(x) 6= δ(y)} ∪ {sl(e) | sl(e) 6= 0}).

If the set of values is {}, then return.
2. For each S ∈ GSCC

Φ , set γ(S) ← 0
3. For each S in the topological order ¹ in GSCC

Φ do:
(a) If there exists T such that S 6∼ T ∧ γ(S) = γ(T)

3 In practice, it is very easy to modify the SCC algorithm to generate the SCCs in
topological sort order — a separate pass is not necessary.

i. γ(S) ← γ(S) + ε/2
ii. ε ← ε/2

(b) For each edge (S, U) ∈ GSCC
Φ

i. γ(U) ← max(γ(U), γ(S))
4. For each v ∈ V , output δ′(v) = δ(v)− γ(SCC (v))

To prove that this algorithm generates a model form Φ ∪ Γ , we need the
following lemmas.

Lemma 6. For each SCCs S, T in GSCC
Φ and for each x, y ∈ V , the following

holds

1. sl(x , y) 6= 0 ⇒ ε ≤ sl(x , y)
2. δ(x) 6= δ(y) ⇒ ε ≤ |δ(x)− δ(y)|
3. 0 ≤ γ(s) < ε
4. For edge (S, T) in GSCC

Φ , γ(S) ≤ γ(T)

Lemma 7. The assignment δ′ output by the algorithm satisfies all constraints
in Φ.

Lemma 8. For x 6= y ∈ Γ , δ′(x) 6= δ′(y).

Theorem 3. The assignment δ′ at the end of the above algorithm satisfies Φ∪Γ .

7 Conclusion

In this paper, we have presented an efficient decision procedure for handling
difference constraints in a decision procedure that operates in a SAT-based
proof-explicating, Nelson-Oppen combination framework. The procedure also
generates models in the presence of disequalities. The overhead of equality gen-
eration, proof generation and model generation over satisfiability checking (using
Bellman-Ford algorithm) is only O(|V |+ |E|) (both time and space) in the av-
erage case.

We are currently implementing this idea in ZAP theorem prover. We hope to
present some experimental comparison of our method with a decision procedure
based on transitive closure.

References

1. G. Audemard, P. Bertoli, A. Cimatti, A. KorniÃlowicz, and R. Sebastiani. A SAT
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In Andrei Voronkov, editor, Proceedings of the 18th International Confer-
ence on Automated Deduction (CADE-18), volume 2392 of LNCS, pages 195–210.
Springer Verlag, July 2002.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and Implementation
(PLDI ’01), Snowbird, Utah, June, 2001. SIGPLAN Notices, 36(5), May 2001.

3. C. W. Barrett, D. L. Dill, and A. Stump. Checking Satisfiability of First-Order For-
mulas by Incremental Translation to SAT. In Proc. Computer-Aided Verification
(CAV’02), LNCS 2404, pages 236–249, July 2002.

4. R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.

5. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and Verifying Systems
using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted
Functions. In Computer-Aided Verification (CAV’02), LNCS 2404, pages 78–92,
July 2002.

6. Boris V. Cherkassky and Andrew V. Goldberg. Negative-cycle detection algo-
rithms. In European Symposium on Algorithms, pages 349–363, 1996.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

8. S. Cotton, E. Asarin, O. Maler, and P. Niebert. Some progress in satisfiability
checking for difference logic. In FORMATS/FTRTFT, pages 263–276, 2004.

9. M. Davis, G.eorge Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

10. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201–215, July 1960.

11. L. de Moura and H. Rueß. An Experimental Evaluation of Ground Decision Pro-
cedures. In Computer Aided Verification (CAV ’04), LNCS 3114. Springer-Verlag,
2004.

12. C. Flanagan, R. Joshi, X. Ou, and J. Saxe. Theorem Proving usign Lazy Proof
Explication. In Computer-Aided Verification (CAV 2003), LNCS 2725, pages 355–
367. Springer-Verlag, 2003.

13. L. R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

14. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In
Symposium on Principles of programming languages (POPL ’02), pages 58–70.
ACM Press, 2002.

15. Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, 1968. Second edition, 1973.

16. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):245–
257, 1979.

17. R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation
and its Application to Difference Logic. In Computer Aided Verification, 17th
International Conference, CAV 2005 (to appear), LNCS. Springer, 2005.

18. V. Pratt. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, Mass., September 1977.

19. H. Rueß and N. Shankar. Solving linear arithmetic constraints. Technical Report
CSL-SRI-04-01, SRI International, January 2004.

20. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

21. S. A. Seshia and R. E. Bryant. Deciding quantifier-free presburger formulas using
parameterized solution bounds. In 19th IEEE Symposium of Logic in Computer
Science(LICS ’04). IEEE Computer Society, July 2004.

22. O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Separation Formulas with
SAT. In Proc. Computer-Aided Verification (CAV’02), LNCS 2404, pages 209–222,
July 2002.

23. M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range allocation for separation
logic. In Computer Aided Verification, 16th International Conference, CAV 2004,
volume 3114 of Lecture Notes in Computer Science. Springer, 2004.

24. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of
Computing, 1(2):146–160, 1972.

25. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen com-
bination procedure. In F. Baader and K. U. Schulz, editors, Frontiers of Combining
Systems: Proceedings of the 1st International Workshop (Munich, Germany), Ap-
plied Logic, pages 103–120. Kluwer Academic Publishers, March 1996.

A Proofs of various Lemmas and Theorems

A.1 Proof of Proposition 2

Proof. Consider a cycle C
.= [e1, . . . , en] in G′φ. For each edge ei ∈ C, we know

sl(ei) = δ(s(ei))−δ(d(ei))+w(ei). Since C is a cycle, each vertex u ∈ C appears
as a source and a destination the same number of times, therefore Σei∈Cδ(s(ei))−
δ(d(ei)) = 0. Therefore w(C) = Σei∈Cw(ei) = Σei∈Csl(ei).

A.2 Proof of Lemma 1

Proof. We first prove the above lemma for simple cycles only. Since there are no
negative weight cycles in Gφ or G′φ, any cycle of weight zero has to be composed
of simple cycles each with weight zero.

If there is a simple cycle C
.= [e1, . . . , en] in G′φ, then for each edge ei, we

know that sl(ei) = δ(s(ei)) − δ(d(ei)) + w(ei) = 0 . Using Proposition 2, we
know w(C) = 0.

On the other hand, consider a cycle C
.= [e1, . . . , en] in Gφ with w(C) = 0.

Using Proposition 2, Σei∈Csl(ei) = 0. Since any slack sl(ei) is non-negative, we
know that every edge ei ∈ C has sl(ei) = 0 , and is therefore present in G′φ.
Hence C is present in G′φ.

A.3 Proof of Lemma 2

Proof. It is easy to see that if e representing y ≤ x + c lies in a simple cycle
[e, P] (where P is a path) of weight 0, then x ≤ y − c is implied by edges in P .
Thereby, the edge e can be strengthened to represent y = x + c.

On the other hand, assume that x ≤ y − c is implied by φ, and y ≤ x + c is
present φ (i.e., e is in Gφ). Also assume that e does not lie in any cycle of weight
0 — therefore there is no path from y to x with weight −c. Since x ≤ y − c is
implied by φ, there is a path Py,x from y to x, such that w(Py,x) ≤ −c4. Since
w(Py,x) 6= −c, there is a negative cycle in the graph. Hence, e has to lie in a
simple cycle of weight 0.
4 The formal justification is that a difference constraint x ≤ y + c is implied by a set

of difference constraints φ if and only if x ≤ y + c can be derived from φ using a unit
linear combination of a subset of constraints from φ.

A.4 Proof of Lemma 3

Proof. An equality x = y is implied by φ if and only if there is a path Px,y from
x to y in Gφ of weight 0, and there is path Qy,x from y to x of weight 0. We will
show that all the edges in these paths are equality-edges.

Since we know that the weight of the cycle [Px,y, Qy,x] is 0, any edge ei ∈
[Px,y, Qy,x] has sl(ei) = 0 . Moreover, each edge e ∈ Px,y (or Qy,x) lies in the
cycle [Px,y, Qy,x] and therefore by Lemma 2, also an equality edge. Hence, by
Lemma 1, the cycle [Px,y, Qy,x] is present in some SCC of G′φ.

Now, consider any edge ei ∈ Px,y. Since sl(ei) + δ(d(ei))− δ(s(ei)) = w(ei),
and w(Px,y) = 0, δ(y)− δ(x) = w(Px,y) = 0.

A.5 Proof of Lemma 4

Proof. Consider any vertex u in an SCC S. After the DFS of GT in step 3 of the
above algorithm, the pT pointers store a path from root(S) (the root of the tree
for S) to u through the edges [(root(S), u−k), (u−k , u−k+1), . . . , (u−1 , u)] in ET .
Since the edges in ET are reversed E edges, [(u, u−1), (u−1, u−2), . . . , (u−k, root(S))]
forms a path from u to root(S) in G. Since [(root(S), vm), (vm , vm−1), . . . , (v1 , v)]
is a path from root(S) to v in E, the concatenation of the two sequences of edges
forms a path from u to v in E.

A.6 Proof of Lemma 5

Proof. This follows easily from Lemma 4 and the fact that for any path Pu,v in
G′φ, w(Pu,v) = δ(u)− δ(v) + sl(Pu,v) = 0 , since all edges in G′φ has slack zero.

A.7 Proof of Lemma 6

Proof. The proof of statements 1 and 2 follows straight from the choice of ε in
Line 1 of the algorithm.

For the proof of statement 3, note that γ(x) is initially set to 0 for all ver-
tices x ∈ V and monotonically increases during the execution of the algorithm.
However, as ε is halved whenever a γ(x) is increased for any x, these cumulative
additions Σ1≤i

(
ε/2i

)
cannot exceed ε.

The proof of statement 4 relies on the fact that the algorithm traverses S
before T as S ¹ T . While visiting S, the update in Line 3(b)i ensures that
γ(T) ≥ γ(S). After visiting S, the algorithm never modifies γ(S) while γ(T) can
only increase.

A.8 Proof of Lemma 7

Proof. To prove this lemma, we need to show that for every edge (x, y) in G,
δ′(y) − δ′(x) ≤ w(x, y). Consider one such edge (x, y). Let S = SCC (x) and
T = SCC (y).

Case 1: The slack sl(x , y) = 0 . If S = T then trivially δ′(y) − δ′(x) = δ(y) −
δ(x) ≤ w(x, y). If S 6= T then the edge (S, T) is in GSCC

Φ and therefore

δ′(y)− δ′(x) = δ(y)− δ(x) + γ(S)− γ(T)
≤ δ(y)− δ(x) by Lemma 6.4
≤ w(x, y)

Case2: The slack sl(x , y) > 0 . In this case:

δ′(y)− δ′(x) = δ(y)− δ(x) + γ(S)− γ(T)
< δ(y)− δ(x) + ε by Lemma 6.3
≤ δ(y)− δ(x) + sl(x , y) by Lemma 6.1
= w(x, y) from definition of sl(x , y)

Thus, we have shown that for every edge (x, y) in δ′(y)−δ′(x) ≤ w(x, y), proving
the lemma.

A.9 Proof of Lemma 8

Proof. Let S = SCC (x) and T = SCC (y). Let us consider the two cases.

Case 1: δ(x) = δ(y). Without loss of generality, assume T ¹ S. Clearly, T 6= S,
otherwise either δ did not satisfy Φ or the disequality x 6= y is contradictory
with Φ. When visiting S, the algorithm ensures that γ(S) 6= γ(T). Also,
γ(S) does not change any after visiting S, and γ(T) was already fixed after
visiting T in some previous iteration. Thus, δ′(x) 6= δ′(y).

Case2: δ(x) 6= δ(y). Without loss of generality, assume δ(y) > δ(x). Then

δ′(y)− δ′(x) = δ(y)− δ(x) + γ(S)− γ(T)
≥ ε− γ(t) + γ(s) by Lemma 6.2
> γ(s) by Lemma 6.3
≥ 0 by Lemma 6.3

Thus, we have δ′(y) > δ′(x), proving the lemma.

