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Abstract

Distributed systems and applications are often expected to enforce high-level
authorization policies. To this end, the code for these systems relies on lower-
level security mechanisms such as, for instance, digital signatures, local ACLs,
and encrypted communications. In principle, authorization specifications can be
separated from code and carefully audited. Logic programs, in particular, can
express policies in a simple, abstract manner.

We consider the problem of checking whether a distributed implementation
based on communication channels and cryptography complies with a logical au-
thorization policy. We formalize authorization policies and their connection to
code by embedding logical predicates and claims within a process calculus. We
formulate policy compliance operationally by composing a process model of the
distributed system with an arbitrary opponent process. Moreover, we propose a
new dependent type system for verifying policy compliance of implementation
code. Using Datalog as an authorization logic, we show how to type several exam-
ples using policies and present a general schema for compiling policies.
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1 Typing Implementations of Authorization Policies

Background Given a request to access a sensitive resource in a computer system,
an authorization policydetermines whether the request is allowed. The conditions in
authorization policies typically involve the action (for example, writing a file), objects
(the file being accessed, its directory), and subjects (the requester, the owner of the
file). A system complies with the policy if these conditions hold whenever the action is
performed. Authorization and access control issues can be complex, even at an abstract
level. Some policies address security concerns for multiple actors and may involve
numerous concepts such as roles, groups, partial trust, and controlled delegation. Their
study has a long historp, 28].

Authorization policies are often only expressed precisely in code, intermingled with
other functions and low-level enforcement mechanisms such as cryptography or sys-
tem calls. The result can be hard to analyze and audit. Hence, a reasonable guiding
principle is to express authorization policies in a high-level language, separate from
imperative code and independent of particular enforcement mechanisms. Specifically,
logic programming seems well suited for expressing policies precisely and concisely:
each authorization request is formulated as a logical request against a database of facts
and rules. Often, the policy itself carefully controls changes to the database. In par-
ticular, variants of Datalog have been usefully applied to design trust management
systems (e.g., PolicyMake6]; SD3 [21], Binder [12]), to express complex policies
(e.g., Cassandra&l]), and to study authorization languages (e.g., SDSI/SRKRE],

XrML [ 11]).

Our Approach Given a target authorization policy, we consider the problem of ver-
ifying whether a particular system correctly implements the policy. In a distributed
setting, this refinement typically involves security protocols and cryptography. For
instance, when receiving a request, one may first verify an identity certificate, then au-
thenticate the message, and finally consider the privileges associated with the sender.

Since the whole system can be seen as a complex cryptographic protocol, we adopt
two ideas used to specify security protocols:

e First, annotations on the code of a system mark security-related events such as
access rights being granted and checked. In previous work, the relation between
imperative code and declarative policies is usually informal: theoretical stud-
ies rarely connect an authorization logic to an operational semantics. Our work
makes the connection explicit; we aim to show that every successful access con-
trol decision made by code actually conforms to the authorization policy.

e Second, we adapt the standard “network is the opponent” threat model, a con-
servative model first formalized by Dolev and Ydd]. Hence, we aim to show
that active attacks on the underlying cryptographic protocols cannot bypass our
authorization policy; in particular, we want to prove the absence of man-in-the-
middle or impersonation attacks that often afflict cryptographic protocols.

Our formal development is within a typed version of the spi calc8lis[pi calcu-
lus with abstract cryptographic operations. We use inert processes—called statements



and expectations—as code annotations to state the global authorization policy, to mark
successful authorization checks, and to mark the pre-conditions for access to sensitive
resources.

e A statementecords an arbitrary logical clause. For example, a statement
employeéalice)

records thatlice belongs to the group of employees. Such an annotation would
follow code checking fomlicein a suitable database, for example. A statement
of a logical clause

canRea(X ,handbook:— employeéX)

records that any employee can read a particulahfiledbook Such a statement
might be a top-level annotation on the whole system, stating a global policy.

e An expectationis a falsifiable claim that a particular fact or clause is logically
entailed by the set of active statements. For example, the following expectation
records thatanReaghlicehandbook should be entailed in the current context.

expectcanReahlicehandbook

Such an annotation would precede the code providingaccess to the sensitive
resourceénandbookfor example. This expectation is justified if the two previous
statements are active. On the other hand, if those are the only active statements,
the expectation

expectcanReabobhandbook

is unjustified. The presence of this expectation at runtime may reveal a coding
error that allowsbob access tdhandbookwithout a preceding check fdrobin
the employee database.

Our methodology is to insert statements after code performing dynamic checks,
and to insert expectations before code accessing sensitive resources, so that access
control errors result in unjustified expectations. The role of our type system is to check
statically that in all executions, all expectations are justified by previously executed
statements.

Statements and expectations generalize the begin- and end-events of a previous
embedding17] of Woo and Lam'’s correspondenceéXd] in a process calculus. Corre-
spondences are a common basis for specifying correctness of authentication protocols.
(Authentication should not be confused with authorization, although the former is of-
ten a prerequisite for the latter; authorization answers questions such as “is this request
allowed?” while authentication answers subsidiary questions such as “who sent this
request?”)

In contrast to several previous works, we use the authorization language as a stat-
ically enforced specification, instead of a language for programming dynamic autho-
rization decisions. The two approaches are complementary. The static approach is less
flexible in terms of policies, as we need to anticipate the usage of the facts and rules



involved at runtime. In contrast, a logic-based implementation may dynamically accept
(authenticated) facts and rules, as long as they lead to a successful policy evaluation.
The static approach is more flexible in terms of implementations, as we can assemble
imperative and cryptographic mechanisms (for example, communications to collect re-
mote certificates), irrespective of the logic-based evaluation strategy suggested by the
policy. Hence, the static approach may be more efficient and pragmatically simpler to
adapt to existing systems. Non-executable policies may also be simpler to write and to
maintain, as they can safely ignore functional issues.

Summary of Contributions To our knowledge, our work is the first to relate autho-
rization logics to their cryptographic implementation in a process calculus. Specifi-
cally:

e We show how to embed a range of authorization logics within a pi calculus. (We
use Datalog as a simple, concrete example of an authorization logic.)

e We develop a new type system that checks conformance to a logic policy by
keeping track of logical facts and rules in the typing environment, and using log-
ical deduction to type authorization expectations. Our main result, The®rem
states that all expectations activated in a well-typed program follow from the
enclosing policy.

e As a sample application, we present two distributed implementations of a simple
Datalog policy for conference management featuring rules for filing reports and
delegating reviews. One implementation requests each delegation to be regis-
tered online, whereas the other enables offline, signature-based delegation, and
checks the whole delegation chain later, when a report is filed.

e As another application, we present a generic implementation of Datalog in the pi
calculus—well-typed in our system—which can be used as a default centralized
implementation for any part of a policy.

We built a typechecker and a symbolic interpreter for our language, and used them
to validate these applications. Our initial experience confirms the utility of such tools
for writing code that composes several protocols, even if its overall size remains modest
so far (a few hundred lines).

Related Work There is a substantial literature on type systems for checking security
properties. In the context of process calculi there are, for example, type systems to
check various information flow2] 18, 26] and authenticity 14, 16] properties in the
pi calculus and the spi calculus, access control properties of mobile code in the boxed
ambient calculus{], and discretionary access contr8] pnd role-based access con-
trol [7] in the pi calculus. Moreover, various experimental systems, such a24jIF [
and KLAIM [25], for example, include types for access control. Still, there appears to
be no prior work on typing implementations of a general authorization logic.

In the context of strand spaces and nonce-based protocols, Gugtnedn[20]
annotate send actions in a protocol with trust logic formulas which must hold when a



message is sent, and receive actions with formulas which can be assumed to hold when
a message is received. Their approach also relies on logically-defined correspondence
properties, but it assumes the dynamic invocation of an external authorization engine,
thereby cleanly removing the dependency on a particular authorization policy when
reasoning about protocols. A more technical difference between our approaches is that
we attach static authorization effects to any operation (input, decryption, matching)
rather than just to message inputs.

Blanchet's ProVerif p] checks correspondence assertions in the applied pi calculus
by reduction to a logic programming problem. ProVerif can check complex disjunctive
correspondences, but has not been applied to check general clausally-defined autho-
rization policies.

Guelevet al.[19] also adopt a conference programme committee as a running ex-
ample, in the context of model checking the consequences of access control policies.

Contents The paper is organized as follows. Sect®reviews Datalog, illustrates

its usage to express authorization policies, and states a general definition of authoriza-
tion logics. SectiorB defines a spi calculus with embedded authorization assertions.
Section4 presents our type system and states our main safety results. Sedtwal-

ops well-typed distributed implementations for our sample delegation policy. Séction
provides our pi calculus implementation of Datalog and states its correctness and com-
pleteness. Sectionconcludes and sketches future work.

Appendixes contain the proofs of the theorems stated in the body of the paper.
AppendixA contains the proofs for Datalog, and a generic substitutivity property of
authorization logics useful for our main results. Apper8igontains the proofs of our
robust safety result for the spi calculus. Appen@ixontains the formal definition of
syntactic sugar and the proofs for the encoding of Datalog in spi. Appé&ntists the
code of the example from Sectiérin the form accepted by our typechecker.

2 A Simple Logic for Authorization

We briefly present a syntax and semantics for Datalog, and discuss its use in formu-
lating authorization policies. (For a comprehensive survey of Datalog16k¢ The

results in subsequent sections are independent of many of the details of Datalog; we
formulate a notion ohuthorization logido capture the properties we rely on.

2.1 Syntax of Datalog

A Datalog program consists @dicts which are statements about the universe of dis-
course, anctlauses which are rules that can be used to infer facts. In the following,
we interpret Datalog programs as authorization policies.

Syntax for Datalog:
I

X,Y,Z logic variable
u:= term
X logic variable



M spi calculus message (see Sectyn

L:= literal

p(ug,...,up) predicatep holds for termsug, ..., U,
C:.= Horn clause

L:—Lg,...,Ln clause, witn > 0 andfv(L) C J; fv(Li)
S:= Datalog program (or policy)

{Cy,...,Cn} set of clauses

Convention: a clauske: — with an empty body (#act) is denoted simply by.

We letF range over facts.
L |

Terms range over logic variabl¥sY, Z and messageéd; these messages are treated as
Datalog atoms, but they have some structure in our spi calculus, defined in Sction
A clauselL:—L;,...,L, has ahead L, and abody; Lj,...,Lp; itis intuitively read

as the universal closure of the propositional formija\ ... AL, — L. In a clause,
variables occurring in the body bind those occurring in the head. A phrase of syntax is
groundif it has no free variables. We require that each clause be groufactA: is a
clause with an empty body.

We use the following notations: for any phrage we letfn(¢) andfv(¢) col-
lect free spi calculus names and free variables, respectively. We @fitethe tuple
©1,...,¢, for somet > 0. We write {u/X} for the capture-avoiding substitution of
termu for variableX, and write{Ti/X } instead of{u; /X1 } ... {un/X}. We letc range
over these substitutions. Similarly, we wri(# /x} for capture-avoiding substitution
of messag® for namex.

2.2 Semantics of Datalog

We describe standard semantics for deriving facts and clauses from a Datalog program.
Facts can be derived using the rule below:

Logical Inference of Facts:S|=F

I
(Infer Fact)
L:—Lg,...,LneS SELic Viel.n

SELo

forn>0

More generally, a clausg is entailedby a progranS, written S|= C, when we
have{F | SU{C} = F} C {F | SUSE F} for all programsS. Similarly, C is
uniformly contained in $hen the inclusion above holds for all progragisontaining
only facts. Entailment is a contextual property for program&Hf C andSC S, then
S = C. We rely on this property when we reason about partial programs. In Datalog,
entailment and uniform containment coincide, hence entailment is decidabland
can be checked operationally using t&setechnique.

Theorem 1 (Chase 27]) For all C and sets of clauses S, (1) and (2) are equivalent:

(1) for all sets of facts S{F | SU{C} EF} C{F | SUSEF};



(2) SU{L10,...,Lho} = Lo, where C=L:—Ly,...,L, ando = {X/X} is an in-
jective substitution such thdk} N (fn(S)ufn(C)) = @ andX = fv(Ly,...,Ln).

In light of the previous theorem, we generalize inference to clauses, as follows:

Logical Inference for Clauses (Entailment):SEC

I
(Infer Clause)
Su{Lio,...,Lhc} =Lo o mapsfv(Li,...,Ln) to fresh, distinct atoms

SEL:—Ly,....Ln

We rely on the following monotonicity and substitutivity properties of Datalog in-
ference when developing our type system.

Proposition 1 (Monotonicity) If S|=C then $J{C'} =C.

Proposition 2 (Substitutivity) If S|=C ando sends names to messages,SCo.

2.3 Some Predicates for Authorization

Our main example application is a simplified conference management system, in charge
of assigning papers to referees and collecting their reports. For simplicity, we focus on
the fragment of the policy that controls the right to file a paper report in the system,
from the conference manager’s viewpoint. This right, represented by the predicate
Repor{U,ID,R), is parameterized by the principal who files the report, a paper identi-
fier, and the report content. It means that princlgalan submit reporR on papeiD.
For instance, the faétepor{alice 42yeport42 authorizes a particular report to be filed.
Preferably, such facts should be deducible from the policy, rather than added to the pol-
icy one at a time. To this end, we introduce a few other predicates.

Some predicates represent the content of sertensionadatabase of explicitly
given facts. In our example, for instandeCMembefU) means that principdl is a
member of the programme committee for the conferefedere¢U,ID) means that
principalU has been asked to revié®; andOpinion(U,ID,R) means that principal
has written reporR on papeiD. Other predicates aretensionaj they represent views
computed from this authorization database. For instance, one may decide to specify
Repor{U,ID,R) using two clauses:

Repor{U,ID,R):—Refere¢U,ID),0Opinion(U,ID,R) (clauseA)
Repor{U,ID,R):—PCMembefU),0OpinionU,ID,R) (clauseB)

These clauses state tHatcan reportR on ID if she has this opinion and, moreover,
eitherU has been assigned this paper (clafiyeor U is in the programme committee
(clauseB)—thereby enabling PC members to file reports on any paper even if it has not
been assigned to them. Variants of this policy are easily expressible; for instance, we
may instead state that PC members can file only subsequent reports, not initial ones,
by using a recursive variant of clauBe

ReportU,ID,R):—PCMembefU),Opinion(U,ID,R),ReportV,ID,S)



Continuing with our example, we extend the policy to enable any designated refer-
ees to delegate their task to a subreferee. To this end, we add an extensional predicate,
DelegatéU,V,ID), meaning that principal intends to delegate pap#b to princi-
palV, and we add a clause to derive new fadetfere€V,ID) accordingly:

ReferegV,ID) :— Refere¢U,ID),DelegatéU,V,ID) (clauseC)

Conversely, the polic A,B,C } does not enable a PC member to delegate a paper,
unless the paper has been assigned to her.

As can be seen from these clauses, our logical formalization adopts the subjec-
tive viewpoint of the conference system, which implicitly owns all predicates used to
control reports. In contrast, more sophisticated authorization languages associate facts
with principals “saying” them. Even iDpinion(U,_) andDelegat¢U,...) are implicitly
owned byU, these predicates represent the fact that the conference system believes
these facts, rather thad's intents. Also, the distinction between intensional and ex-
tensional predicates is useful to interpret policies but is not essential. As we illustrate
in Sectionb, this distinction in the specification does not prescribe any implementation
strategy.

2.4 A General Notion of Authorization Logic

Although Datalog suffices as an authorization logic for the examples and applications
developed in this paper, its syntax and semantics are largely irrelevant to our technical
developments. More abstractly, our main results hold for any logic that meets the
requirements listed below:

Authorization Logic: (%,fn,|=)

An authorization logic(¢,fn,|=) is a set of clause€ € ¢ closed by substitutions
o of messages for names, with finite setsfrele names ffC) such thatCo = C if
dom(o)Nfn(C) = @ andfn(Co) C (fn(C) \ dom(c)) Ufn(c); and with anentailment
relation SE= C, between sets of claus&sC ¢ and clause€,C’ € ¢, such tha{Mon)
IS\: C= Su{C'} =Cand(Subst) 3=C = So |=Co.

By Propositionsl and?2, Datalog is an authorization logic.

3 A Spi Calculus with Authorization Assertions

The spi calculus3] extends the pi calculus with abstract cryptographic operations in
the style of Dolev and Yaolf3]. Names represent both cryptographic keys and com-
munication channels. The version of spi given here has a small but expressive range
of primitives: encryption and decryption using shared keys, input and output on shared
channel names, and operations on pairs. We conjecture that our results, including our
type system, would smoothly extend to deal with more complex features such as asym-
metric cryptography and communications, and a richer set of data types.



The main new features of our calculus are authorization assertions represented by
inert processes called statements and expectations. These processes generalize the
begin- and end-assertions in previous embeddings of correspondences in process cal-
culi [17]. Similarly, statements and expectations track security properties, but do not
in themselves affect the behaviour of processes.

A statemenis simply a claus€ (either a fact or a rule). For example, the following
process is a composition of clauaeof Section2.3with two facts:

A | Referegalice42) | Opinion(alice42yeport4) (processP)

An expectatiorexpectC represents the expectation on the part of the programmer
that the rule or fac€ can be inferred from clauses in parallel. Expectations typically
record authorization conditions. For example, the following process represents the
(justified) expectation that a certain fact follows from the clauséd3 of

P | expectReportalice 42yeport4) (procesx)

Expectations most usefully concern messages instantiated at runtime. In the fol-
lowing, the contenk of the report is received from the chanmel

P | out ¢ (report420k) | in c(x,y); expectReporfalice42x) (procesR)

(The distinguished messagé is an annotation to help typing, with no effect at run-
time.)

All the statements arising in our case studies fall into two distinct classes. One class
consists of unguarded, top-level statements of authorization rules, such as those in the
previous section, that define the global authorization policy. The other class consists
of input-guarded statements, triggered at runtime, that declare facts—not rules—about
data arising at runtime, such as the identities of particular reviewers or the contents of
reports. Moreover, all the expectations in our case studies are of facts, not rules.

The syntax and informal semantics of our full calculus is as follows. Binding occur-
rences of names have type annotatidnsy U; the syntax of our system of dependent
types is in Sectiod.

Syntax for Messages and Processes:

I

a,b,c k xy,z name

M,N = message
X name: a key or a channel
{M}N authenticated encryption t with key N
(M,N) message pair
ok distinguished message

PQR:= process
out M(N) asynchronous output of to channeM
in M(xT);P input of x from channeM (x has scop®)
newx.T;P fresh generation of name(x has scop®)
P|lQ parallel composition oP andQ
IP unbounded parallel composition of replicasof



0 inactivity
decrypt M as{y:T}N;P bindy to decryption oM with key N (y has scop®)
split M as(x:T,y:U);P solve(x,y) = M (x has scop& andP; y has scop®)
match M as(N,y:U); P solve(N,y) = M (y has scop®)
C statement of clausg
expectC expectation that clausgis derivable
Notations:(XT) 2 (x¢:T1, ..., Xn:Tn) andnew X T; P = newxy:Ty;. .. new xn:Tn; P
LetS={Cy,...,Cn}. We writeS|PforCy|...|Cy|P.
L

The split andmatch processes for destructing pairs are worth comparingpli
binds names to the two parts of a pair, whilenatch is effectively asplit followed
by a conditional; think ofnatch M as (N,y); P assplit M as (x,y);if x= N then P.
Taking match as primitive is a device to avoid using unification in a dependent type
system [L6].

Next, we present the operational semantics of our calculus via standard structural
equivalenceR = Q) and reduction® — Q) relations. The following rules are standard.
Statements and expectations are inert processes; they do not have particular rules for
reduction or equivalence (although they are affected by other rules). The conditional
operationsglecrypt, split, andmatch simply get stuck if decryption or matching fails;
we could allow alternative branches for error handling, but they are not needed for the
examples in the paper.

Rules for Structural Equivalence: P=Q

I

P=P (Struct Refl)
Q=P=P=0Q (Struct Symm)
P=Q,Q=R=P=R (Struct Trans)

P=P = newxT;P=newxT;P (Struct Res)
P=P =P|R=F|R (Struct Par)

P=P=IP=IF

P|O=P

PIQ=QJ|P
(PIQ[R=P[(Q[R)
IP=P|IP

Hp=1IpP

I(P|Q) =1P|1Q

10=0
newx.T;(P|Q)=P|newxT;Q
newxy:Ty;newx: To; P =

newxo:To;newx;:Tq; P
L

(Struct Repl)

(Struct Par Zero)
(Struct Par Comm)
(Struct Par Assoc)

(Struct Repl Unfold)
(Struct Repl Repl)
(Struct Repl Par)
(Struct Repl Zero)

(Struct Res Par) (fox ¢ fn(P))
(Struct Res Res)
(for X1 # Xo,x1 ¢ fn(T2), %2 ¢ fn(T1))

Rules for Reduction: P — P’

I
P-P=P|Q—P|Q
P— P =newxT;P— newxT;P

(Red Par)
(Red Res)



P=QQ—-Q,Qd=P=P—=F (Red Struct)

outa(M) |in a(xT);P — P{M/x} (Red Comm)
decrypt {M}kas{y:T}k;P — P{M/y} (Red Decrypt)
split (M,N) as(xT,y:U);P — P{M/x}{N/y} (Red Split)
match (M,N) as(M,y:U);P — P{N/y} (Red Match)

Notation: P —% P'isP=P orP —* P.
L

In examples, we rely on derived notations feary tuples and pattern-matching
via sequences of match and split operations. Fr2, (Mg, My, ..., Mp) abbreviates
(M1, (Mg,...,My)). For pattern matching, we writeple M as(N,...,N,); P, where
n> 0, M is a message (expected to be a tuple), and Bachan atomic pattern. Let an
atomic pattern be either a variable patteror a constant pattern, writteaM, whereM
is a message to be matched. Each variable pattern translatgdito and each constant
pattern translates toraatch. For exampletuple (a,b,c) as (x,=b,y);P translates to
the processplit (a, (b,c)) as (x,z); match z as (b, z); split (z z) as (y,z); P, wherez
is fresh. The translation introduces a fresh temporary nane occurring free irP,
and at the last step it duplicatesn order to allow a match or split operation. When
using thetuple notation, we omit the types from variable patterns because they can be
inferred during typechecking. AppendiXincludes the formal definition of this tuple
notation.

We enrich the syntax of inputs and decryption with the tuple notation as follows,
where in both translations the namyés chosen to not occur iN4,...,N,,,P.

in M(N4,...,N,);P
decrypt M as{N,...,N,}N;P

in M(y);tupleyas(Ny,....N,);P
decrypt M as{y}N;tuple yas(N,...,N,);P

> 1>

The notation does not translate to an atomic primitive; hence, in the case of input, a

message may be received, then silently discarded because it does not match the pattern.

This does not matter in our case because we are mostly interested in safety properties.
The presence of statements and expectations in a process induces the following

safety properties. Intuitively, an expectatiexpectC is justifiedwhen there are suffi-

cient statements in parallel to deri@ Then a process is safe if every expectation in

every reachable process is justified.

Safety:
A proces<P is safeif and only if whenever

P —% newXT;(expectC | P)

we haveP’ = new§:U;(Cy | ... |Cn | P”) and{Cy,...,Cq} = C with {J} Nfn(C) = 2.
|

The definition mentiong o allow fresh names i€, while it mentionsyto ensure
that the clause€, C, ..., C, all use the same names; the scopes of these names
are otherwise irrelevant in the logic. Were the definition to omit the outer restricted

10



namesx; the following process would be judged safe:
new x; expectFoo(x)

Conversely, were the definition to omit the intermediate restricted ngnties follow-
ing process would be judged unsafe:

Bar():—Foq(X) | expectBar() | newy; Foa(y)

Given a procesP representing the legitimate participants making up a system, we
want to show that no opponent proc€ssan induce® into an unsafe state, where some
expectation is unjustified. An opponent is any process within our spi calculus, except
it is not allowed to include any expectations itself. (The opponent goal is to confuse
the legitimate participants about who is doing what.) As a technical convenience, we
require every type annotation in an opponent to be a certain Wypetype annota-
tions do not affect the operational semantics, so the usmafoes not limit opponent
behaviour.

Opponents and Robust Safety:

A processO is anopponentf and only if it contains no expectations, and every l[ype
annotation igJn.

A proces<P is robustly safaf and only if P | O is safe for all opponentS.
L

As a consequence of this definition, in every run of a robustly safe prétass
parallel with some opponent, every expectation can be justified by statements activated
in P.

For example, the proces3 given earlier is robustly safe, because the statements
in P suffice to inferRepor{alice42yeport43, and they persist in any interaction with
an opponent. On the other hand, the prodess safe on its own, but is not robustly
safe. Consider the opponemit ¢ (bogusok). We have:

R | out c (bogusok) — P | out ¢ (report420k) | expectReporfalice 42 pogug

This is unsafe becausgepor{alice 42pogu9 is not derivable from the statements in
process. We can secure the channeby using thenew operator to make it private.
The processewc; R is robustly safe; no opponent can inject a message on

4 A Type System for Verifying Authorization Assertions

We present a new dependent type system for checking implementations of authoriza-
tion policies. Our starting point for this development is a type and effect system by
Gordon and Jeffreyl[5] for verifying one-to-many correspondences. Apart from the
new support for logical assertions, the current system features two improvements. First,
a new rely-guarantee rule for parallel composition allows us to typecheck a safe process
such ad_ | expectL; the analogous parallel composition cannot be typed in the orig-
inal system. Second, effects are merged into typing environments, leading to a much
cleaner presentation, and to the elimination of typing rules for effect subsumption.
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4.1 Syntax of Types and Environments

We begin by defining the syntax and informal semantics of message types.

Syntax for Types:
I 1
T,U = type

Un public data

Ch(T) channel for messages of type

Key(T) secret key for plaintexts of type

(xT,U) dependent pair (scope risU)

Ook(9) ok to assume the claus8s

T is generativgmay be freshly created) if and onlyTfis Un, Ch(U), or Key(U).

. A
Notation: (x1:T1, ..., Xn:Tn, Tn+1) = (X2 T1, -+ o, (Xni Tn, Tt1))
L 1

A message of typ&n is public data that may flow to or from the opponent; for
example, all ciphertexts are of tyfn. A message of typ€h(T) is a name used as a
secure channel for messages of tfpeSimilarly, a message of tygéey(T) is a name
used as a secret key for encrypting and decrypting plaintexts offtypemessage of
type (x:T,U) is a pair(M,N) whereM is of typeT, andN is of typeU {M/x}. Finally,
the tokerok is the unique message of ty@ék (S), provingSmay currently be inferred.

For example, the typ€h((x:Un, Ok (Reportalice 42,x)))) can be assigned tin
processR, stating that is a channel for communicating pai®l,ok) whereM : Un
andok : Ok (Reportalice 42,M)).

Next, we define typing environments—Ilists of nhame bindings and clauses—plus
two auxiliary functions. The functioeny—) sends a process to an environment that
collects its top-level statements, with suitable name bindings for any top-level restric-
tions. The functiorclause$—) sends an environment to the program consisting of all
the clauses listed in the environment plus the clauses in topkel) types.

Syntax for Environments, and Functions: domE), enyP), and clause$E)
I

E:= environment
1%} empty
E,xT x has typer
E,C Cis avalid clause

Notation:E(x) =T if E=E',xT,E”

E is generativef and only if E = x1:T1, ..., X,: Ty and eacH; is generative.
domE,C) =domE) domE,xT)=domE)uU{x} domg)=o

enV(P| Q% = enyP)%,en(Q)Y  (where{X 7} Nfn(P| Q) = 2)

en newx:T;P)** =xT,en(P)* (where{X}Nfn(P) = 2)
en(!P)*=en(P)* en(C)?=C enP)? = & otherwise
Convention:enyP) =S enyP) for some distinck such thaenyP)* is defined.
clause$E,C) = clause$E) U{C} clause$E,x:Ok(S)) = clause$E)US
clause$E,x:T) = clause$E) if T # Ok(S) clause$o) =2

L
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4.2 Judgments and Typing Rules

Our system consists of three judgments, defined by the following tables. The judgments
define well-formed environments, types of messages, and well-formed processes.

Judgments of the Type System:
I

EFo environmen€ is well-formed

EFM:T in environmeng&, messag® has typer
EFP in environmeng, process is well-typed
L

Rules for Environments: E F ¢
I
(Env @) (Envx) (EnvC)
EFo fn(T)CdomE) x¢ domE) EFo fn(C) CdomE)
ko ExTkFo E.Cko

Rules for Messagese -M : T

(Msgx)
EFo xedomE)
EFx:E(x)
(Msg Encrypt) (Msg Encrypt Un)
EFM:T EFN:Key(T) EFM:Un EFN:Un
EF{M}IN:Un EF{M}IN:Un
(Msg Pair) (Msg Pair Un)
EFM:T EFN:U{M/x} EFM:Un EFN:Un
EF (M,N): (xT,U) EF(M,N):Un
(Msg OKk) (Msg Ok Un)
EFo fn(S)CdomE) clause$E)=C VvCeS Eto

E+ok: Ok(9) EFok:Un

The rule(Msg Ok) populates a®k(S) type only if we can infer each clause in the
Datalog prograngfrom the clauses in the environmeht For example, if

E = aliceUn,42:Un,report42Un,
Referedalice 42), Opinion(alice 42 report4)

thenE I- ok : Ok(Reportalice 42 report43). The other message typing rules are fairly
standard. As in previous systeni®] 15], we need the rulefMsg Encrypt Un) (Msg
Pair Un) and(Msg Ok Un)to assigriJn to arbitrary messages known to the opponent.
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Rules for ProcessesE - P
I
(Proc Nil)  (Proc Rep) (Proc Res)

Elo EFP E,xTHFP T generative
EFO EFIP EFnewxT,;P
(Proc Par)
E,enQ)+FP E,enP)FQ fn(P|Q) C domE)
EFP|Q
(Proc Expect) (Proc Fact)
E,Cko clause¢E) =C E,Cko
E I~ expectC EFC
(Proc Decrypt) (Proc Input)
EFM:Un EFN:Key(T) E,yTHP EFM:Ch(T) ExTHP
E - decrypt M as{y:T }N;P EFin M(xT);P
(Proc Decrypt Un) (Proc Input Un)
EFM:Un EFN:Un E,yUnkP EFM:Un E,xUnFP
E + decrypt M as{y:Un}N;P EFin M(x:Un);P
(Proc Match) (Proc Output)
EFM:(xT,U) EEN:T EyU{N/x}-FP EFM:Ch(T) EFN:T
E - match M as(N,y:U{N/x});P E F out M(N)
(Proc Match Un) (Proc Output Un)
EFM:Un EFEN:Un E,yUnkP EFM:Un EFN:Un
E F match M as(N,y:Un);P E F out M(N)
(Proc Split) (Proc Split Un)
EFM:(xT,U) ExT,yUFP EFM:Un E,xUnyUnkP
EF split M as(xT,y.U);P E F split M as(x:Un,y:Un); P

There are three rules of particular inter€gtroc ExpectpllowsexpectC provided
C is entailed in the current environmenProc Factlallows any statement, provided
its names are in scopéProc Par)s a rely-guarantee rule for parallel composition; it
allowsP | Q, provided thaP andQ are well-typed given the top-level statement€of
andP, respectively. For example, iff?roc Par) @ + Foq() | expectFodq) follows from
@ + Fod) andFoq) F expectFoq)), the two of which follow directly by(Proc Fact)
and(Proc Expect)

4.3 Main Results

Ouir first theorem is that well-typed processes are safe; to prove it, we rely on a lemma
that both structural congruence and reduction preserve the process typing judgment.

Lemma 1 (Type Preservation) If E - P and either P= P’ or P — P’ then E- P'.
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Theorem 2 (Safety) If E - P and E is generative, then P is safe.

Our second theorem is that well-typed processes whose free names are public, that
is, of typeUn, are robustly safe. It follows from the first via an auxiliary lemma that
any opponent process can be typed by assuming its free names are 0htype

Lemma 2 (Opponent Typability) If fn(O) C {X} for opponent O the®Un - O.
Theorem 3 (Robust Safety)If xUnt P then P is robustly safe.

We conclude this section by showing our calculus can encode standard one-to-many
correspondence assertions. The idea of correspondences is that processes are annotated
with two kinds of labelled events: begin-events and end-events. The intent is that in
each run, for every end-event, there is a preceding begin-event with the same label.

For example, consider the (trivial) authorization lo@¢i€, fn,|=), whereL € ¥ are
the labels used for the correspondence assertenis, defined aL} = L for each
L € ¢, andfn is standard. In this setting, we can encode a particular syatpak
follows:

begin!L;P =L | P endL;P = expectL |P

With this encoding and a minor extension to the type system (tagged union types), we
can express and typecheck all of the authentication protocols from Gordon and Jeffrey’s
paper 5], including WMF and BAN Kerberos.

The correspondences expressible by standard begin- and end-assertions are a spe-
cial case of the class of correspondences expressible in our calculus where the pred-
icates in expectations aextensionagl that is, given explicitly by facts. Hence, we
refer to our generalized correspondence assertions based on intensional predicates as
intensional correspondencet® differentiate them from standard (extensional) corre-
spondences.

Finally, neither our operational semantics nor our type system handles one-to-one
correspondences, where each begin-event corresponds to at most one end-event. A
natural strategy for future work is to split the typing context into linear and classical
parts.

5 Application: Programme Committee Access Control

We provide two spi calculus implementations for the Datalog policy with delegation
introduced in SectioR (defining clause#\, B, andC). In both implementations, the
server enables enables those three clauses as part of its policy, and also maintains a
local database of registered reviewers on a private chamveth

A | B| C|newpwdb: Ch( u:Un, Key(v:Un,id:Un,Ok(Delegatéu,v,id))),
Key(id:Un,reportUn,Ok(Opinion(u,id,repor)));

Hence, each message pwdbcodes an entry in the reviewer database, and associates
the nameu of a reviewer with two keys used to authenticate her two potential actions:
delegating a review, and filing a report. The usage of these keys is detailed below.
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Although we present our code in several fragments, these fragments should be read
as parts of a single process, whose typability and safety properties are summarized at
the end of the section. Hence, for instance, our policy and the local chandélare
defined for all processes displayed in this section.

5.1 Online Delegation, with Local State

Our first implementation assumes that the conference system is contacted whenever a
referee decides to delegate her task. Hence, the system keeps track of expected reports
using another local database, each record noting a fact of the Rafiere¢U,ID).

When a report is received, the authenticated sender of the report is correlated with
the principal that appears in the corresponding record. When a delegation request is
received, the corresponding record is checked, then updated.

The following code defines the (abstract) behaviour of reviewsér is triggered
whenever a message is sentarateReviewelit has public channels providing con-
trolled access to all her privileged actions—essentially any action authenticated with
one of her two keys. For simplicity, we proceed without checking the legitimacy of
requests, and we assume thias not a PC member—otherwise, we would implement
a third action for filing PC member reports.

(lin createReviewdv);
new kdv: Key(z:Un,id:Un,Ok(Delegatév,z,id)));
newkrv: Key(id:Un,reportUn,Ok(Opinion(v,id,repor)));
( (fout pwdi(v,kdv,krv))
| (Yin sendreportonlingv,id,repor);
Opinion(v,id,repor) | out filerepor{v,{id,reportok}krv) )
| (Yin delegateonlingv,w,id);
Delegatév,w,id) | out filedelegatév,{w,id,ok}kdv) ))) |

In the code triggered bgreateReviewemessages, we first generate two new Keys
andkrv. The replicated output opwdb associates these keys with The replicated
input onsendreportonlinguards a process that files reports; in this process, the
authenticated encryptiofid,reportok }krv protects the report and also carries the fact
Opinion(v,id,repor) stating its authenticity. The replicated input delegateonline
similarly guards a process that file's delegations.

Next, we give the corresponding code that receives these two kinds of requests at
the server. (We omit the code that selects reviewers and sends messagfesemub)
In the code guarded byn filerepor{v,e), the decryption “provesOpinion(v,id,repor),
whereas the input orefereedtfproves” Referegv,id): when both operations succeed,
these facts and clause A jointly guarantee Rapor{v,id,repor) is derivable. Con-
versely, our type system would catch errors such as forgetting to correlate the paper
or the reviewer name (e.g., writingvsd instead of w,=id in refereedl, leaking the
decryption key, or using the wrong key.

The process guarded binlfiledelegatév,sigd) is similar, except that it uses the
fact Delegatév,w,id) granted by decrypting under kéylv to transformReferegv,id)
into Refereéw,id), which is expected for typingk in the output orrefereedb
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new refereedh Ch( (u:Un,(id:Un,Ok(Refere€u,id)))));
(tin filerepor{v,e);
in pwdb(=v,kdv,krv); decrypt e as{id,report_}krv;
in refereedf=v,=id,_); expectRepor{v,id,repor)) |
(lin filedelegatév,sigd);
in pwdb(=v,kdv,krv); decrypt sigdas {w,id,_}kdy;
in refereedf=v,=id,_); out refereedlw,id,ok)) |

The code for processing PC member reports is similar but simpler:

new kp:Key(u:Un,Ok(PCMembefu)));
(in createPCMembéu,pc);PCMembefu) | out po({(u,0k) }kp) ) |
(lin filepcreporgv,e,pctoken;

in pwdb(=v,kdv,krv); decrypt e as{id,report_}krv;

decrypt pctokenas{=v,_}kp; expectRepor{v,id,repor) ) |

Instead of maintaining a database of PC members, we (arbitrarily) use capabilities,
consisting of the name of the PC member encrypted under a new privatgkdne

code implements two services as replicated inputs, to register a new PC member and
to process a PC member report. The f@gtinion(v,id,repor) is obtained as above.
Although the capability sent back on chanpehas typeJn, its successful decryption
yields the facPCMembefv) and thus enablglepor{v,id,repor) by clauseB.

5.2 Offline Delegation, with Certificate Chains

Our second implementation relies instead on explicit chains of delegation certificates.
It does not require that the conference system be contacted when delegation occurs;
on the other hand, the system may have to check a list of certificates before accepting
an incoming report. Moreover, we rely on self-authenticated capabilities undéiakey
for representing initial refereeing requests, instead of messages on the private database
channefefereedb

The idea is that, when a refergdfiles a report for papeid, she also presents a
delegation chain showing she is authorized to file the report. In the implementation,
we let adelegation chain provingRefereév,id) be a message in one of two forms:

e either an authenticated encrypti¢n,id,ok}ka whereka is the key used by the
PC chair to appoint referees directly, implyiRgfereév,id);

e or a tuple {,{v,id,ok}kdt,ct), wheret is a principal with delegation keldt, so
that {v,id,ok}kdt provesDelegatét,v,id), andct is a (shorter) delegation chain
proving Referedt,id).

Given clauseC governing delegation, an easy bottom-up argument establishes that
the existence of such a delegation chain does indeed prefazeév,id). The following
code for accepting and checking a delegation chain supports this inductive argument.

( DelegatéU,W,ID):—DelegatéU,V,ID),DelegatéV ,W,ID) ) |
( Delegat¢U,U,ID):—Opinion(U,ID,R) ) |
new ka:Key((u:Un,(id:Un,Ok(Refereéu,id)))));
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(lin filedelegaterepoft,e,cv);
in pwdb(=v,kdv,krv); decrypt e as{id,report_}krv;
newlink:Ch(u:Un,c:Un,Ok(Delegatéu,v,id))); out link(v,cv,ok) |
lin link(u,cu,_);
(decrypt cuas{=u,=id,_}ka; expectRepor{v,id,repor)) |
(tuple cuas(t,delegationct); in pwdb(=t,kdt,.);
decrypt delegatioras {=u,=id,_}kdt; out link(t,ct,0k)) |

The two auxiliary clauses makeelegataeflexive and transitive; these clauses give
us more freedom but they do not affect the outcome of our policy—one can check that
these two clauses are redundant in any derivatidRegfort

The process guarded by the replicated input on chdileetlegaterepomllocates
a private channdink and uses that channel recursively to verify, one certificate at a
time, that the message filed with the report is indeed a delegation chain proving
Refereév,id). The process guarded liyik has two cases: the base cagdedfypt cu)
verifies an initial refereeing request and finally accepts the report as valid; the recursive
case {uple cu) verifies a delegation step then continues on the rest of the ctigin (
The type assigned tink precisely states our loop invariaribelegatéu,v,id) proves
that there is a valid delegation chain franithe current delegator) down tqthe report
writer) for paperid.

Proposition 3 Let By, assign typdJn to createReviewercreatePCMembersendre
portonling delegdeonling filereport, filedelegatefilepcreport filedelegatereportand
any other name in its domain.
Let B assign the types displayed aboveptedh refereedbkp, andka.
Let P be a process such thagEEp - P.
Let Q be the process comprising all process fragments in this section followed by P.
We have gn - Q, and hence Q is robustly safe.

This proposition is proved by typin@ then applying Theorem3. In its statement,

the proces® has access to the private keys and channels collectegt ithis process
accounts for any trusted parts of the server left undefined, including for instance code
that assigns papers to reviewers by issuing factRefiereeand using them to populate
refereedband generate valid certificates under key We may simply takd® = 0,

or let P introduce its own policy extensions, as long as it complies with the typing
environmentEy, andEp.

In addition, the context (implicitly) enclosing in our statement of robust safety ac-
counts for any untrusted part of the system, including the opponent, but also additional
code for the reviewers interacting wif (and possiblyP) using the names collected
in Eyn, and in particular the free names @f Hence, the context may impersonate
referees, intercept messages on free channels, then send on dhadekelgatereport
any term computed from intercepted messages. The proposition confirms that minimal
typing assumptions oR suffice to guarantee the robust safetyQof
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6 Application: A Default Implementation for Datalog

We finally describe a translation from Datalog programs to the spi calculus. To each
predicatep and arityn, we associate a fresh narpgwith a channel typd,. Unless

the predicatep occurs with different arities, we omit indexes and write jnsind T, for

pn andTp . Relying on some preliminary renaming, we also reserve a set of ndmes
for Datalog variables. The translation is given below:

Translation from Datalog to the Spi Calculus: [S]
I
Ton = Ch(xz:Un, ..., Xa:Un, OK(p(X1,...,%n)))

[S]=TMces[C]  [2]=0
%L: —L1,...,Lm] =[La,..., Ly ?[[L]*] form>0
[

p(ug,...,un)] " = out pa(ug,...,un,0k)
Ly, Lo, L[] = [La]* [[[Lz, o LB [el*[] =[]

[[p(uL EER) uﬂ)ﬂz['] =in pn(gb -y Up, ZOk); H
wherey; is u; whenu; & (7\ (ZUfv(uj<))) andy; is =u; otherwise.

P . whendP'.P —% P/ |[L]*
L

The procesgS] represents the whole progra® The procesgL:—Li,...,Lny]
is a replicated process representing the cldusel;,...,Ly. The procesgL]* is
an output representing the conclusiof a clause. The conteffts,Lo,...,Lm]*[],
where[] is a hole to be filled with a process, represents the body of a clause. Finally,
the predicate® ||| holds if the proces® eventually produces an output representing
the factL.

For example, using the policy of Secti@nthe translation of predicateeportuses
a channeReportof type Treport= Ch(U:Un, ID:Un,R:Un, Ok (Repor{U,ID,R))) and
the translation of clausé yields the process

[ReporfU,ID,R):—Refere¢U,ID),Opinion(U,ID,R)] =
lin Refere¢U,ID,=0k); in Opinion(=U,=ID,R,=0k); out Repor{U,ID,R,0k)

The next lemma states that a Datalog program, considered as a policy, is well typed
when placed in parallel with its own translation.

Lemma 3 (Typability of Encoding) Let S be a Datalog program using predicaigs
and namey with fn(S) C {y}. Let E=y:Un, pn:T, . We have E- S| [[S].

More precisely, the lemma also shows that our translation is compositional: one can
translate some part of a logical policy, develop some specific protocols that comply with
some other part of the policy, then put the two implementations in parallel and rely on
messages on channgisto safely exchange facts concerning shared predicates.

Lemma3 establishes that our translation is correct by typing. The following theo-
rem also states that the translation is complete: any fact that logically follows from the
Datalog program can be observed in the pi calculus.

Theorem 4 (Correctness and Completenesd)et S be a Datalog program and F a
fact. We have & F if and only if[F] {F.
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To illustrate our translation, we sketch an alternative implementation of our confer-
ence management server. Instead of coding the recursive processing of messages sent
by subreferees, as in Sectibywe set up a replicated input for each kind of certificate,
with code to check the certificate and send a message on a channel of the translation.
Independently, when a fact is expected, we simply read it on a channel of the transla-
tion. For instance, to process incoming reports, we may use the code

lin trivial _filerepor{v,id,repor);
in Repor{=v,=id,=report=0k); expectRepor{v,id,repor)

The translation of clause A sends a matching messageemorf provided the sys-

tem sends matching messages@pinion and Referee This approach is correct and
complete, but also non-deterministic and very inefficient. As a refinement, since any
(well-typed) program can access the channels of the translation, one may use the trans-
lation as a default implementation for some clauses and provide optimized code for
others.

7 Conclusions and Future Work

We presented a spi calculus with embedded authorization policies, a type system that
can statically check conformance to a policy (even in the presence of active attackers),
and a series of applications coded using a prototype implementation.

In itself, our type system does not “solve” authorization: the security of a well-
typed program still relies on a careful (manual) review of the policy, on the discrimi-
nating statement of trusted facts (or even rules) in the program, and on the presence of
expectations marking sensitive actions—indeed, in our setting, every program is safe
for a sufficiently permissive policy. Nonetheless, our type system statically enforces a
discipline prescribed by the policy across the program, as it uses channels and crypto-
graphic primitives to process messages, and can facilitate code reviews.

As it stands, our calculus and type system are simple and illustrative, but have
many limitations that may be investigated. For example, we do not consider revocation
or temporary activation of authorization statements. From a logical viewpoint, many
authorization languages also extend Datalog with notions of locality and partial trust,
considering for examples facts and clauses relative to each principal. A first step will
be to consider a combination of the present system with ideas from a recenth@prk [
on a type system for checking secrecy in a pi calculus despite the compromise of some
principals. We are also exploring extensions of our type system to support, for instance,
some subtyping, public-key cryptographic primitives, and linearity properties. More
experimentally, we plan to extend our typechecker and symbolic interpreter, and to
study their integration with other proof techniques.
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A Datalog Proofs
This section develops proofs of Theordrand Propositiond and?2.
Lemma4 If S=F then SU{C} =F.

Proof By induction on the deptH of the derivation tree foB|=F.

e (d=1): Suppos& = F becausd € S,
By set theoryF € SU{C}.
By (Infer Fact) SU{C} = F.

e (d=m+1): Suppos&= Lo becausé: —Lj,...,Ly € Sandvi € 1..n SE=Lio.
By settheoryl: —Lg,...,Ln € SU{C}.
By inductive hypothesisyi € 1..n SU{C} = Lio.
By (Infer Fact) SU{C} = Lo. O

Lemmab5 If SEF and SU{F} =F'then S=F'.
Proof By induction on the derivation @U{F} = F'. O
Lemma 6 If S|=F ando replaces names with messages, ther=SFo.

Proof By induction on the deptH of the derivation tree foS = F.

e (d=1): Suppos&S = F becausd € S
ByFeSFoeSo.
By (Infer Fact) So = Fo.

e (d=m+1): Suppos&S | Lp becausé:—L;,...,Ly € SandVi € 1..n SE Lip.
ByL:—Lj,...,Lne S Lo:—Lj0,...,Lho € So.
By inductive hypothesis{i € 1..n So = Lipo.

Sincep replaces variables with names atmdhames with messagesg = op
wherep’ is the result of applying to p.

The hypotheses can be re-writtenvas 1..n So = Liop’.
By (Infer Fact) So = Lop’. O

/

Proof of Theorem1.  For all clauses C and sets of clauses S, (1) and (2) are equiv-
alent:

(1) For all sets of facts S{F | SU{C} EF} C{F | SUSEF};

(2) SU{Li0,...,Lho} [ Lo, where C=L:—Ly,...,Ly and 6 = {X/X} is an in-
jective substitution such thdk} N (fn(S)un(C)) = @ andX = fv(L4,...,Ln).

Proof We prove the two implications separately.
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e ((2) = (1)): By induction on the structure &. LetC=L:—Ly,...,Lp.

— (S = 2): By definition of =, {F | {C} EF} =2 C{F | SEF}.
— (8 =3'U{F'}) By hypothesis{F | S'U{C} =F} C{F | STUSEF}.
We distinguish two cases.
SupposeF | S'U{C} EF} ={F |SU{C} EF}.
By Lemma4, {F | S'USEF} C{F | SUSEF}.
By transitivity, {F | SU{C} = F} C {F | SUSEF}.
Suppose insteafF | S'U{C} =F} C {F | SU{C} = F}.
We distinguish two further cases.
x {F|SU{ClE=F}={F}U{F|S'U{C} =F}.
By (Infer Fact) SUSF'.
By definition,{F'} C {F | SUS[=F}.
By set theory{F'} U{F | S"U{C} EF} C{F | SUSEF}.
* {F|SuU{C}=F}={F"}U{F | S'U{C} =F}, whereF" #F’.
By F” # F’, an instance ofinfer Fact)must be used to derive”.
By constructionC is the only rule present.
By (Infer Fact) F” = Lp, for somep such thatvi € 1..n SU{C} =
Lip.
We show thaS U {C} = Lip = SUS Lip, for a generid € 1..n,
by induction on the deptt of the derivation tree.
- (d = 1): SupposS U {C} [ Lip.
By hypothesisLip € S.
By (Infer Fact) SUSE Lip.
- (d=m+1): SupposS U{C} = Lipp’.
By hypothesisyi € 1..n SU{C} = Lipp’.
By inductive hypothesisyi € 1..n SUSE Lipp’.
By hypothesis of the theoren$U {L10,...,Lnc} = Lo, where
o = {X/X} is an injective substitution{x} N (fn(S) Ufn(L: — Ly,
...,Lp)) =@ andX = fv(Ly,...,Ln).
By definition of o, there exist®’ such thatoo’ = pp’.
By Lemmas6, So’ U{Li00’,...,Lho0o’} ELoo’.
By definition of o ando’, So’ = S.
By Lemma4 and Lemma5, SUSU{Li00’,....Lh-100'}
Loo’.
By iterating the argument on ail we gettoSUSE Loo’.
By definition of6’, SUS= Lpp’.

e ((1) = (2)): Suppose thafF | SU{L:—Ls,...,Ln} EF} C{F | SUSEF}
forall S.
Consider the case f{& = {L10,...,Lyo} for o in the hypothesis of the theorem.
By (Infer Fact) Lo € {F | SU{L:—Ly,...,Ln} EF}.
By settheoryLo € {F | SUSEF}.
By definition ofS, {L10,...,Lnc} USE Lo. O
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The next two lemmas prove monotonicity and closure under substitutions of Datalog,
which are the properties (Mon) and (Subst) needed to show that it is an authorization
logic.

Proof of Proposition 1 (Monotonicity)  If Si=C then SJ{C'} =C.
Proof By cases on the last rule used in the derivatio pf C, using Lemmal. O

Proof of Proposition 2 (Substitutivity)  If S|=C ando sends names to messages,
So =Co.

Proof By cases on the last rule used in the derivatios pf C.
(Infer Fact) By Lemmas.

(Infer Clause) SupposeSkL:—Ly,...,Ly because, for some injective substitution
p, fromfv(Ly,...,Ln) to fresh namesSuU {L1p,...,Lnp} = Lp.

By Lemmas, (SU{L1p,...,Lnp})o = Lpo.

By applying the substitution(Soc U{Lipo,...,Lhpo} E Lpo.

Sincep replaces variables with fresh names anceplaces existing names with
messageqo = op.

The hypotheses can be re-written(& U {L10p,...,Lhnop} = Lop.

By (Infer Clause)So |=Lo:—Lj0,...,Lho.

By factorizing the substitutioro = (L: —Ly,...,Ln)o. O

The following is a strengthening property of authorization logics with respect to
sets of clauses equivalent up to fresh renamings. It will be used in the proofs of Ap-
pendixB.2.

Lemma 7 Let (%,fn,|=) be an authorization logic, and let€ ¢, SS C ¢. If SU
S{y/X}US =C where{y}Nfn(SUSU{C}) = @ and they are distinct, then SS |=C.

Proof Leto = {y/X}. By (Subst) (SUScUS)o |=Co.
By definition, (SUScUS)o = So US o, henceScuSo = Co.
Since they are fresh and distinch = {X/y} is the inverse ob.
By (Subst) (SocuSo)p | Cop.
By definition, (Sc US¢)p = Sop USop = SUS andCop =C.
We conclude witt8U S = C. O

B Spi Calculus Proofs

This section has three parts. Appendixl contains the definition of an alternative,
more explicit, type system for the spi calculus and the proof that it is equivalent to the
one given in the main body of the paper. Appen8li shows the main properties of the
type system—subject congruence and subject reduction, in particular. Appi3dix
contains the proofs of opponent typability and of the main results of the paper concern-
ing safety.

All the results in this section are independent of the choice of authorization logics.

23



B.1 An Alternative Type System

We define a type system for the spi calculus that ggesanteego represent the top

level, active statements from processes while maintaining invariance under renaming
of bound names. It is informative to capture these guarantees explicitly with typing
rules, rather than to capture them implicitly via the separate funetnfP) as used

in the system in the main body of the paper. We show the equivalence of the two type
systems, and induce soundness of the main system from proofs about the alternative
system. Still, we expect that a direct proof of soundness for the main system would
proceed similarly to the proof for the alternative system.

Guarantees:
I 1
G,H = guarantee

0 no guarantee

G|H composition

newx:T;G restriction

C clauseC can be assumed

The functionen—) defined below, which given a guarantee extracts the corre-
sponding environment, is analogous to the one given in Sedtionprocesses.
From Guarantees to Environments:enyG)

Ienv(O)@ =g enC)?=C
en(G | H)™Y =en(G)X,en\(H)Y (where{X,y}Nn(G|H) = 2)
ennewx.T;G)** = xT,enG)X (where{X} Nfn(G) = @)

Convention:enyG) £ enVG)* for some distinck such thaenyG)X is defined.
L |

Guarantee subsumption is a binary relation on guarantees characterized by the ax-
ioms(G Sub Idempand(G Sub Order)If G C H then intuitivelyG contains fewer facts
thanH. Structural congruence for guarantees is defined in terms of subsumption.

Guarantee Subsumption:GC H

I

GEG (G Sub Refl)
GCHHCG=GLCGE (G Sub Trans)
GCH=newxT;GC newxT;H (G Sub Res)
GCG=G|HCG |H (G Sub Par)
G|0CG (G Sub Par Zero)
G|/HCH|G (G Sub Par Comm)
(GIG)|HEG]| (G |H) (G Sub Par Assoc)
G|GLCG (G Sub Idem)
GCG|H (G Sub Order)
newx.T;(G|H)C G|newxT;H (G Sub Res Parl) (fox ¢ fn(G))
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G|newxT;H CnewxT;(G|H) (G Sub Res ParR) (for¢ fn(G))
newxi:Ty;newxs:To; G C (G Sub Res Res)

newxo:To;newx;:Tq1; G (for X1 # %2, %1 ¢ fn(T2), %2 ¢ fn(T1))
L 1

Structural Congruence for Guarantees:G=H

I
G=H2GCHandHCG (G Struct)
L

Below we give the rules defining the type system with guarantees. TheRulass
Res) (ProcG Par)and(ProcG Fact)grow the guarantee of a proce¢BrocG Rep)
leaves it invariant, and all the other rules set i0to

Additional Judgment:

I
EFP:G good proces® guaranteein@s
L

Good ProcessesE - P : G (in environment E, processP grants G).

I
(ProcG Nil)  (ProcG Rep) (ProcG Res)
Ero EFP:G E,xTHP:G Tgenerative

E+O:0 E-FIP:G EFnewxT;P:newxT;G

(ProcG Par)
E,enGp)FP:G; E,en(G1)FQ:Gy fn(P|Q)C domE)
EFP|Q:G1| Gy

(ProcG Input) (ProcG Input Un)
EFM:Ch(T) ExxXTHP:G EFM:Un ExUnkP:G
EFin M(xT);P:0 EFin M(xUn);P:0
(ProcG Output) (ProcG Output Un)
EFM:Ch(T) EFN:T EFM:Un EFN:Un
EFoutM(N):0 EFoutM(N):0

(ProcG Decrypt)
EFM:Un EFN:Key(T) E,yTHP:G

E+decryptM as{y:T}N;P:0
(ProcG Decrypt Un)
EFM:Un EFN:Un E,yyUnkFP:G
E F decrypt M as{y:Un}N;P: 0
(ProcG Match)
EFM:(xT,U) EEN:T EyU{N/x}FP:G
E+ matchM as(N,y:U{N/x});P:0
(ProcG Match Un)
EFM:Un EFN:Un E,yUnkP:G

E F matchM as(N,y:Un);P: 0
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(ProcG Split) (ProcG Split Un)
EFM:(xT,U) ExT,yUFP:G E-FM:Un E,xUny.Un-P:G
EFsplit M as(xT,y:.U);P:0 E F split M as(x:Un,y:Un);P: 0
(ProcG Query) (ProcG Fact)
E,Cko clause¢E) =C E,Ctko
E I expectC: 0 EFC:C

Generic Judgment: ¢
I

Fi=o|M:T|P:G meta-syntax for the generic judgment
fno)=2 M(M:T)=(M)ufn(T) fn(P:G)="F(P)ufn(G)
oc=¢0 (M:T)c=Mo:To (P:G)o=Po:Go

L

We can show now that the two type systems are equivalent.

Lemma8 E - P and enyP)* = E’ if and only if E- P : G, for some G such that
E'=en(G)~.

Proof  We split the proof in two parts:
(1) if E+ P andenyP)* = E’ thenE I P : G, for someG such thaE’ = eny(G)*;
(2) if EFP: G, for someG such thaE’ = en(G)* thenE I- P andenyP)* = E'.
(1) By induction on the derivation dt + P.

(Proc Nil) Supposee - 0.
By hypothesisE - .
By definition, the onlyE’ such thaeny0)X = E’ is E’ = @, and necessarily
X=0.
By (ProcG Nil), EF0: 0.
By definition,en0)? = &.
(Proc Par) Suppos€ -P | Q.
By hypothesisE,en(Q)Y - P, E,en(P)* - Q, fn(P | Q) C dom(E).
By inductive hypothesiss,enVQ) - P : G with enyP)* = eny(G1)* and
E,enP)* I Q: G, with en( Q)Y = en(G;)Y.
By (ProcG PanEFP|Q: Gy | Gy
By definition,enyP | Q)%Y = enyP)%,en(Q)Y.
By definition,enyG; | G2)*Y = en(Gy )X, enyGy)Y.
By transitivity,enyP | Q)Y = en(G; | G2)*V.
(Proc Rep) Supposée + !P.
By hypothesisE + P.

By inductive hypothesis, ienyP)X = E’ then there exists & such that
EF P:Ganden(G)*=FE'
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By (ProcG Rep)E!P: G.
By definition,eny!P)X = enyP)*.
(Proc Res) Supposé - newx:T; P.
By hypothesisg,x:T F P.
By inductive hypothesis, iénvP)X = E’ then there is5 such thaE, x:T -
P:Ganden(G)*=F'.
By (ProcG Res)E - newx:T;P:newxT;G.
By definition,ennew x:T; P)YX = y:T,enyP)*.
By definition,ennewx:T; G)¥* = y:T,en(G)X.
By transitivity,ennew x:T; P)¥* = en\newx:T; G)¥X.
(Proc Fact) Supposé I C.
By hypothesisg,CF o.
By definition, the onlyE’ such thaenyC)X = E’ is E’ = C, and necessarily
X= 0.
By (ProcG Fact)E-C:C.
By definition,enyC)? = C.
The other cases are easy.

(2) By induction on the derivation dt - P : G, similarly to the previous point. O

B.2 Properties of the Type System

We proceed to show the main properties of the type system, in particular subject con-
gruence and subject reduction, which together give type preservation (L&nma

Lemma 9 If E - ¢ and xe dom(E) then f{E(x)) C dom(E).
Proof By structural induction off. O
Lemma 10 (Unique Types)IfE+x: T and EFx:U then T=U.

Proof By structural induction ore, noticing that sincd - x: T then rule(Msg X)
applies, and thereforlg(x) = T. O

Lemmall fEF-M:T then fiT)Ufn(M) C dom(E) and EF .

Proof By induction on the derivaton &+ M : T.

(Msg x) SupposéE - x: E(X).
By hypothesiskE I- ¢ andx € domE).
By Lemma, fn(E(x)) C dom(E).
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(Msg Encrypt) SupposéE - {M}N : Un.
By hypothesisE - M : T andE - N : Key(T).
By definition,fn(Un) = .
By inductive hypothesisk | o, fn(M) C domE) andfn(N) C dom(E).
By set theory and definition of free namé,{M}N) C domE).

(Msg Encrypt Un) Supposé - {M}N: Un.
By hypothesisE - M : Un andE - N : Un.
By definition,fn(Un) = @.
By inductive hypothesi€ + o, fn(M) C domE) andfn(N) C dom(E).
By set theory and definition of free namés,{M}N) C dom(E).
(Msg Pair) Supposé& = (M,N) : (xT,U).
By hypothesisE - M : T andE+ N :U{M/x}.

By inductive hypothesisk + o, fn(M) Ufn(T) C domE), and
fn(N)ufn(U{M/x}) C domE).

By definition,fn((x:T,U)) =fn(T) U (fn(U) \ {x}).

By set theory and definition of free namés((M,N)) Ufn((x:T,U)) C domE).
(Msg Pair Un) Supposé& F (M,N) : Un.

By hypothesisE - M : Un andE - N : Un.

By definition,fn(Un) = @.

By inductive hypothesisk I o, fn(M) C domE), andfn(N) C dom(E).

By set theory and definition of free namés(,(M,N)) Ufn((x:T,U)) C domE).
(Msg Ok) SupposéE I ok : Ok (D).

By hypothesiskg + ¢, fn(D) C domE) andclause$E) = D.

By definition,fn(ok) = .
(Msg Ok Un) Supposé F ok : Un.

By hypothesisk F <. By definition,fn(ok) = fn(Un) = 2. O

Lemma 12 If E - P : G then fiiG) C fn(P) C dom(E) and E enG)?+ o for {Z} N
domE) = 2.

Proof By induction on the derivation & - P : G.
(ProcG Nil) Trivial.
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(ProcG Par) Suppos€& P |Q: Gy | Go.
By hypothesisE,enG,)Y - P: Gy, E,en(G;)*F Q: G,, in(P | Q) C dom(E).
By inductive hypotheses, B -
E,en(Gy)Y, enl(Gl)X' o where{x'} NdomE, en(G,)¥) = @, in(G1) C fn(P),
andE,enyGy)%,enVGy)Y F o where{y'} ndom(E,en\G)¥) = @, in(Gy) C
fn(Q).
ChoosingZ = X,y, we haveE,en|G; | Gp)? o, in(Gy | Gp) C fn(P | Q) C
domE), and{Z} ndomE) = @.

(ProcG Rep) Suppos& P : G.
By hypothesisg - P: G.
By inductive hypothesisn(G) C fn(P) C dom(E) andE,enG)?+ o for {Z} N
domE) = @, and we conclude.

(ProcG Res) Supposé& - newx:T;P: newxT;G.
By hypothesisg,xTFP: G.

By inductive hypothesisin(G) C fn(P) C dom(E,x.T) andE,x.T,en(G)? - o
for {Zy NndomE,xT) = .

By definition,E,en(newx:T; G)Xi =E,xT, en\(G)f, and we conclude.

(ProcG Query) Suppose + expectC: 0.
By hypothesisg,CF o. By (EnvC), fn(C) C domE) and we conclude.

(ProcG Fact) Supposeée -C: C.
By hypothesisg,Ct <. By (EnvC), fn(C) C dom(E) and we conclude.

(ProcG Input) SupposéE +in M(x:T);P:0.
By hypothesisE - M : Ch(T) andE,x T+ P: G.
By inductive hypothesidn(G) C fn(P) C domE,x.T).
By set theoryfn(0) C (fn(P) \ {x}) C domE).

The remaining cases are similar to the cas@PobcG Input) g
Lemma 13 If enMG)* s defined, then dofanyG)¥) = {X}.
Proof By structural induction of®. O

Lemma 14 If y is a vector of distinct names and €@y~ and enyG)Y are defined then
clausegenyG)*) = clausegsenyG)¥){X/y}.

Proof By structural induction or®. O
Lemma 15 (Unique Guarantees)lfE-P:Gand E+P: G then G=G'.

Proof By induction on the derivation d& - P : G.
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(ProcG Par) Suppos€& P |Q: Gy | Go.
By hypothesisE,enG,)Y - P: Gy, E,enV(G1)*F Q: Gp, in(P | Q) € dom(E).
Only (ProcG Par)can deriveE’ - P| Q : G, therefore we hav&’ = G| | G,
E'.enG,)Y FP: G}, E/,en(G,)*F Q: G}, in(P| Q) C domE’).
By inductive hypothese&; = G| andG; = G,.
We conclude withG, | G, = G) | Gb.
(ProcG Rep) Suppose& P : G.
By hypothesisg - P: G.
Only (ProcG Repkan deriveE’ - P : G/, so we havee’ - P: G'.
By inductive hypothesisG = G'.
(ProcG Res) Supposé& - newx:T;P: (xT)G.
By hypothesisg,xTFP: G.
Only (ProcG Resgan deriveE’ - newx:T;P: G/, so we haveE’ xTHP: G.
By inductive hypothesisz = G'.
(ProcG Fact) Supposée - C: C.
By hypothesisg,C I .
Only (ProcG Fact)can deriveE’ - C : G/, so we haveG' = C = G, and we

conclude.
The other cases are trivial, because b8tAndG in EFP: G andE' - P: G are
always forced to bé. O

Lemma 16 (Strengthening) Let_# range ovef{o,M: T,P:G}. (i) IfE,xU,E'+ _#
and U is generative and € fn(_# ) Ufn(E’) then EE’ - 7. (ii) If E,C,E’ |- o then
E,E'+o.

Proof  Both cases follow by induction on the depths of the derivation. O

Lemma 17 If E,enVG)X,en(G)Y,E' - # and {X} N (fn(E’) ufn(_#)) = @ then
E,en(G)Y,E'- 7.
Proof

e The case foE,en(G)%,enG)Y, E’ I- o follows from Lemmals.

e The case folE,enyG)X,en(G)Y,E' - M : T is by induction on the derivation.
LetE; = E,enG)*,en(G)Y,E’ andE, = E,en(G)Y, E'.
By the previous point, we have thatHf - ¢ thenE, - ©.
(Msg x) SupposéE; Fx: E;(X).
By hypothesisk; F o.
By hypothesis of the lemma,c (dom(Ez) \ {X}).
By (MsgXx), Ex - x: Ex(x).
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(Msg Ok) Supposee; - ok : Ok(S).
By hypothesisk; + ¢ andfn(S) C (dom(E;) \ {X}) andvC € S
clause$kE;) = C.
By definition, clauses$E; ) = clause$E,) U clausegenyG)*).
By E; i ¢, and by hypothesis of the lemma,
{X} N (fn(clauses$Ey)) Ufn(9)) = @.
By Lemmal4, clausesenyG)Y) = clausegenyG)¥){y/X}.
By Lemma?, VC € Sclause$E) |=C.

The others cases are easy.

e The case foE,en(G)%,en(G)Y,E’ - P: H is by induction on the derivation.
LetE; = E,enVG)%,enG)Y,E’ andE, = E,env(G)Y,E’.
By the first point of this lemma, we have that&f + o thenE, - o.

(ProcG Nil) Supposeé; -0: 0.
By hypothesiskE | o.
By E, F ¢ and(ProcG Nil), Eo - 0: 0.
(ProcG Par) Suppos&; P | Q: Gy | Go.
By Lemmal2, fn(G;1 | Gy) C fn(P| Q).
By hypothesisEj,enG,)?+ P: G; andEy,eny(Gy)" - Q: G, andfn(P |
Q) C dom(Ey). ] )
By inductive hypothesi€,, en(G;)*+ P: G; andE,,eny(Gy)YV - Q : Go.
By (ProcG Par)Ex P | Q: Gy | Ga.
(ProcG Rep) Supposes; -!1P: G'.
By hypothesisE; - P: G'.
By inductive hypothesig, - P: G'.
By (ProcG Rep)Ex - P : G'.
(ProcG Res) SupposeE; - newx:T;P:newxT;G.
By hypothesisEy,xT+P: G
By inductive hypothesig,, x. T+ P: G
By (ProcG Res)Ex - newx.T;P:newxT;G.
(ProcG Query) Supposee; + expectF : 0.
By hypothesisE;,C+ o, clause$E;) = F.
By the first point of this lemmég,,CFH .
By definition, clause$E; ) = clause$E,) U clausegenyG)X).
By E;,C+ ¢, and by hypothesis of the lemma,
{X} N (fn(clause$E,)) Ufn(C)) = @.
By Lemmal4, clausesenyG)Y) = clausegenyG)){y/X}.
By Lemma7, clause$E;) = C.

By (ProcG Query)E; - expectF : 0.
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(ProcG Fact) Supposée; -C: C.
By hypothesisE;,Ct .
By the first point of this lemmég,,CFH .
By (ProcG Fact)E; - C: C.
(ProcG Input) SupposéE; -in M(xT);P: 0.
By hypothesisg; =M : Ch(T), E;,xT+HP: G.
By the previous point of this lemm&,; - M : Ch(T).
By Lemmal2, fn(G') C fn(P).
By E1,xT Fo, {X}nfn(G) = 2.
By inductive hypothesig,, x. T+ P: G
By (ProcG Input) Ex - in M(xT);P: 0.

The other cases are similar to the case(RyocG Input) O

Lemma 18 (Exchange)lf Eq, E», E3,E4 _# and dontEz) Nfn(Es) = @ and fE2) N
dOfT(Eg) =@ then &,Ey,E3, E4 - /

Proof  We split the proof depending o .

e By induction on the depth of the derivation Bf, E»,E3,E4 - ©. Consider the
last rule.

(Env @) Trivial.

(Env X) Supposé, x:T + o.
By hypothesiskg - ¢, fn(T) C domE) andx ¢ dom(E).
If E = Eq, E, E3,E4 whereEs = E),x:T we conclude applying the induc-
tive hypothesis.
If E =E1,Ez,Es andEs = E5, x:T, by inductive hypothesiBy, E;, E; |- o.
By Lemmal6, E1,E5 F <.
By (Envx), E1,E3F <.
By Lemma22, E1,E3,Eo F <.
The case foE = Ej, E» is trivial.

(Env C) Similar to the previous case.

¢ By a straightforward induction on the depth of the derivatiorEofE,E’ E, -
M : T, using point (1).

e By induction on the depth of the derivationlef, E,E’,E, - P: G.

(ProcG Nil) Supposeés;,Ex E3,E4+0: 2.
By hypothesisE;, Ez, E3, B4+ ©.
By point (1),E;,E3, Ez, B4 ©.
By (ProcG Nil), E1,E3,Ez,E4 - 0: @.
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(ProcG Input) SupposeéE;, Ez, E3 Eqtin M(xT);P: @.
By hypothesisEy, Ez, E3,E4+ M : Ch(T), E1,E2,E3,E4,xT P G.
By point (ii), Ex, Es, E2,E4 - M : Ch(T).
By inductive hypothesif;, E3, Ep, E4, xT - P: G.
By (ProcG Input) Eq,E3,Ep,E4 Fin M(xT);P: .

The other cases are similar. O
Lemma 19 (i) If G C G’ then f(G) C fn(G'). (i) If G = G’ then fr(G) = fn(G).

Proof (i) By induction on the length of the derivation 6'C G'.
(i) By definition, of G = G’ and by point (i). O

Lemma 20 If E,en(G)*,E' - _# and GC G/, fn(G) = fn(G') and {X} N (fn(E’) U

fn(_#))=o,thenEenG' )% E' 7 and{Z} N (fn(E")ufn( #)) = 2.
Proof By induction on the derivation a6 C G'.

(G Sub Refl) Supposeés C G.
By hypothesis of the lemm&, enG)X,E' - ¢

(G Sub Trans) Supposés C G'.
By hypothesisGC H andH C G'.
By inductive hypothese&,enH)",E' - _# andE,en(G)%E' ¢ for some
wandzsuch thafw} N (fn(E")Ufn(_#)) = @ and{Z} N (fn(E")Ufn(_7)) = &,
and we conclude.
(G Sub Res) Supposeew x:T; G C newx:T;H. By hypothesisG C H.
By hypothesis of the lemm&, en(newxT;G)X,E' - 7.
By definition,ennewx:T;G)* = xT,eny(G)Y for X = x,.
By inductive hypothesis,xT,en(H)",E' - ¢, where
{W}N(fn(E")Ufn( 7)) = 2.
By definition, ennew x:T;H)? = xT,enH)" whereZ = x,W, and we con-
clude.
(G Sub Par) Supposés |HC G| H.
By hypothesisGC G'.
By hypothesis of the lemm&,en(G |H)\E'- ¢#.
By definition,eny(G | H)X = en(G)*, enH )2, where{x;} Nfn(H) = 2.
By inductive hypothesiss,enyG')4, enH)2,E' - _#, where
{Z1}Nnfn(H) = 2.
By definition,en(G')%, en(H )2 = en(G' | H)?, whereZ = 7;, %, and we con-
clude.



(G Sub Par Zero) Supposeés |0C G.

By hypothesis of the lemm&,en(G | 0)},E'+ 7.

By definition,eny(G | 0)* = en\G)%, and we conclude.
(G Sub Par Comm) Supposé&s |[HC H | G.

Supposés |HCH | G.

By hypothesis of the lemm&,en(G | H)X,E' - 7.

By definition, enyG | H)* = en(G)*t,enH )2, where{%;} Nfn(H) = @ and

(%} NG) = 2.

By Lemmals, E,en(H)%,en(G)}1,E' - 7.

By definition,enyH | G)2*t = enH )2, eny(H ), and we conclude.
(G Sub Par Assoc) SupposéG |G') [HC G| (G | H).

By definition,eny((G | G') | H)X = en(G | G’ | H))%, and we conclude.
(G Sub Idem) Supposeés | GC G.

By hypothesis of the lemm&,en(G | G)X,E' - 7.

By definition,eny(G | G)* = en(G)Y,enG)?, where{y} N (fn(E") Ufn(_#)) =
z.

By Lemmal7, E,en(G)LE' - 7.
(G Sub Order) Suppos& C G |H. By hypothesis of the lemm&, en(G)*,E'I- 7.
By definition,env(G | H)? = en(G)¥,enyH )Y choosingZ = X, V.
By hypothesis of the lemm#n(G) = fn(G').
By Lemmal2, E,enG)*,E’ - ¢, and thereforén(G) ndomE’) = @.
By repeatedly applying Lemm22, E,en(G)X,en\H)Y,E’ - # and we con-
clude.
The remaining cases are analogous to the ongd@ub Par Comm) O
Lemma 21 If E,en(G)X,E’ - P: G and{X} N (fn(P)Ufn(E’)) = @ then EE' - P: G.
Proof By induction on the derivation &&,en(G)X,E’ - P: G.

(ProcG Par) SupposéE,enV Gy | G2)*V,E'FP|Q: Gy | Gy.
By hypothesisE,enG; | G,)*Y,E/,en(G)?+ P: G; and

E,en(Gy | G2)™Y,E/,en(G1)" + Q: Gy, andfn(P | Q) C dom(E).

By definition,enyG | Go)*Y = enV(G1 )X, enG3)Y.

By inductive hypotheses, N -
E,en(Gy)Y,E',en(Gy)* P: G; andE,enG;)*, E’,enG1)" - Q: Go.
By Lemmals, - - -
E,enVGy)Y,enG,)%E'+ P: Gy andE,eny(Gy)*,enG1)V,E' - Q: Gy.
By Lemmal7, E,E’,en(G)?F P: Gy andE,E’,enG1)" - Q: Gy.

By (ProcG Par)E,E'-P|Q: Gy | Gy.
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(ProcG Rep) Supposée,G,E' P : G.
By hypothesisE,G,E' P : G.
By inductive hypothesi&, E' - P: G.
By (ProcG Rep)E,G,E’'+IP: G.

(ProcG Res) Supposé, ennew x:T; G)YX E’ - newx.T;P: newxT;G.
By hypothesisE,en(newx:T;GY* E/ xT - P: G.
By definition,ennewx:T; G)YX = y:T,enyG)~.
By inductive hypothesi€,y:T,E',x:T - P: G, wherey ¢ fn(P) Ufn(E’).
By Lemmal6, E,E/,xT+P:G.
By (ProcG Res)E,E’ - newx.T;P: newxT;G.

(ProcG Fact) Supposé&,C,E’'-C:C.
By hypothesisg,C,E’,.CF o.
By Lemmals, E,E’ I- o.
By (ProcG Fact)E,E’'+-C:C.

All the other cases are trivial, @\(0)? = @. O

Lemma 22 (Weakening) (i) If E,E’'+ _# and fn(C) C domE) then EC,E'- _#. (ii)
IfE,E'+ _#,fn(T) C domE) and x¢ domE,E’), then ExT,E'- 7.

Proof  We split the proof of each point depending ghn.

@) (1) If E,E'+ o andfn(C) C domE) thenE,C,E’ - o.

By induction on the depth of the derivation BfE’ I- o.

(2) If E,E'-M: T andfn(C) C domE) thenE,C,E'-M: T.
By induction on the depth of the derivation &fE' =M : T.
The most interesting case is the base caséVisg Ok)
SupposeE, E’ - ok : Ok(S).
By hypothesisg,E’ I ¢ andfn(S) C dom(E,E’), and foranyC' € S,
clausesE.E') =C'.
By (i).1, we haveE,C,E' Fo.
By definition ofdom fn(S) C domE,C,E’).
By property(Mon) of the authorization logic, for ang’ is S,
clause¢E,C,E') =C'.
By (Msg Ok), E,C,E’ I- ok : Ok(S).

(3) If E,E'+P: Gandfn(C) C domE) thenE,C,E'-P:G.
By induction on the depth of the derivation BfE’' - P : G.
The case fo(ProcG Querylses propertyMon) of the authorization logic.
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(i) (1) If E,E'Fo,fn(T) C domE) andx ¢ dom(E,E’), thenE,xT,E’ |- o.

By induction on the depth of the derivation BfE’ I- ¢.

(2) FE,E'-M:T,fn(T) CdomE) andx ¢ domE,E’), thenE,xT,E'-M:
T.
By induction on the depth of the derivation BfE' M : T.

(3) If E,E'+P:G,fn(T) CdomE) andx ¢ dom(E,E’), thenE,xT,E'-P:G.
By induction on the depth of the derivation BfE’' - P : G.
The most interesting case is the inductive cas€PoocG Res)
Supposee, E' - newy:U;P: newy.U;G.
By alpha conversion, consider an instance sfich thaty ¢ dom(E,E") U
{x}.
By hypothesisg,E',y.U -P:G.
By hypothesis of the lemma,¢ domE,E’) U {y}.
By inductive hypothesi€, x.T,E',y:U - P: G.
By (ProcG Res)E,xT,E' - newy:U;P:newyU;G.

O

Lemma 23 (Substitution) If E1,xT,Eo - # and B+ M : T then g,Ex{M/x} I
J{M/x}.

Proof  We split the proof depending o .

(1) By induction on the depth of the derivation Bf,x:T,E, I ¢. Consider the last
rule used.

(Env X) Supposée,y:U - o.
By hypothesiskg - ¢, fn(U) C domE) andx ¢ dom(E).
Supposé = E;, x:T,E; whereE; = B}, y:U.
By inductive hypothesis;, E5{M/x} F <.
By hypothesis of the lemm&; - M : T.
By Lemmall, fn(T)Ufn(M) C dom(Ey).
By definition,dom(Ez, E5{M/x}) = dom(Ey, E)) \ {x}.
Applying the substitutionfn(U{M/x}) C dom(Ey, E5{M/x}).
By (Envx), E1,EX{M/x},y:U{M/x} |- o.

(Env C) Similar to the previous case.

(2) By induction on the depth of the derivation Bf,x.T,Eo - N:U. LetE =
E1,xT,Eo.

(Msgx) Supposé +y: E(y) becausé& + ¢ andy € domE).
By point (1),E1, Ex{M/x} F .
We distinguish two cases. Suppasg x.
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Sincey # x, y € dom(Eq, Eo{M/x}).

By (Msgx), Ex,E2{M/x} Fy: E{M/x}(y).

Suppose insteagl= x.

By hypothesis of the lemm&; - M : T.

By Lemma22, E;,Ex{M/x} - M : T.

Sincey = x, by definition,E(y) =T.

By substitutiony: E(y)){M/x} =M : T, and we conclude.

(Msg Ok) SupposeE I ok : Ok(S) because F ¢, fn(S) C dom(E) andVC €
Sclauses$E) = C.

By point (1),E1, Ex{M/x} F .

By definition,in(S{M/x}) C dom(E1, Ex{M/x}).

By E o, x ¢ fn(clause$E;)).

By definition,clause$E; ) = clause$E;){M/x} and therefore
clauses$kE;, Ex{M/x} = clause$E;, Ez){M/x}.

By property(Subst)of the authorization logic,

VC € Sclauses$E;, Ez){M/x} =C{M/x}.

By (Msg OKk), Eq,Ex{M/x} I ok : Ok(S{M/x}).

The other cases are easy, and follow using the inductive hypothesis and point (1).

(3) By induction on the depth of the derivation Bf,x:T,E, - P : G, in particular
using point (1), point (2) and properf$ubst)of the authorization logic. [

Lemma 24 (Subject Congruence)lf E - P: G and P= P’ then there exists a’Guch
thatE- P :G and G=G.

Proof By induction on the derivation d® = P’ we show:
(1) if EFP:GthenEFP :G;
(2) if EFP :G thenEFP:G.

(Struct Refl) Supposd® =P.
Both (1) and (2) are immediate.

(Struct Symm) Supposé® = Q.
By hypothesisQ = P.
Both (1) and (2) follow immediately applying the inductive hypotheses (2) and
D).
(Struct Trans) Supposé® =R.
By hypothesisP=Q,Q=R

Both cases follow easily from transitivity of implication and the inductive hy-
potheses.
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(Struct Res) Supposaewx.T;P =newx.T;P.
By hypothesisP = P'.
By hypothesis of (1)E - newx:T;P: G.
By (ProcG Res)E,x.T + P: G whereG = newx.T;G.
By inductive hypothesi€, xTHP :G'=G'.
By (ProcG Res)E - newx.T;P : newx.T;G".
By definition of= and(G Sub Res)G = newx.T;G".
The proof for (2) is symmetric.

(Struct Par) Suppos® | Q=P | Q.
By hypothesisP = P'.
By hypothesis of (1)EFP | Q: G.

By (ProcG Par)E,enG,)Y - P: G; andE,en(G1)* - Q: G, andfin(P | Q) C
domE) whereG = G; | G,.

By inductive hypothesiss, enG,)Y P : Gy = Gy.
By Lemmal9, fn(G1) = fn(G)).

By Lemma20, E,en(G})* - Q: Gy.

By (ProcG Pan)E+P' | Q: G| | Gy

By definition of= by (G Sub Par)G = G] | G.
The proof for (2) is symmetric.

(Struct Repl) SupposeP =1!P'.
By hypothesisP = P'.
By hypothesis of (L)E P : G.
By (ProcG Rep)E-P: G.
By inductive hypothesik - P : G' = G.
By (ProcG Rep)E - IP': G.
The proof for (2) is symmetric.

(Struct Par Zero) Supposé® |0=P.
By hypothesis of (1)E-P|0: G.

By (ProcG Par)E,en(Gy) - P: Gy andE,en(G;) F 0: G, andfn(P | 0) C
domE) whereG = G; | Gy.

By (ProcG Nil) E,en(G1) - 0:0,G;=0andG =Gy | 0.
By definition ofeny0), E - P: G;.

By (G Sub Par ZerQ)G = G;.

The proof for (2) is similar.

38



(Struct Par Comm) Supposé | Q=Q|P.

By hypothesis of (1)EFP | Q: G.

By (ProcG Par)E,en(Gz) - P: G; andE,en(Gy) - Q: G, andfn(P | Q) C
domE) whereG = G; | Gy.

By (ProcG Par)EF Q| P: Gy | G.
By (G Sub Par CommG =Gy | Gs.
The proof for (2) is symmetric.

(Struct Par Assoc) SupposéP | Q) |[R=P| (Q|R).

By hypothesis of (1)EF (P| Q) |R: G.

By (ProcG Par)E,en(G;)?+ P | Q: Gy andE,en(Gy) - R: Gy, fn((P | Q) |
R) C domE), andG = G | G,.

By (ProcG Par)E,enVG;)%, env(Gy)Y - P : Gg andE,enV(G)?, enVGz)* - Q::
Gy, fn(P | Q) C domE,enyGyz)), andG; = Gz | Ga.

By Lemmail8, E,enVG;)Y,enVGz)? F P : Gz andE,enyGs)X,enVG2)? - Q :
Ga.

By (ProcG Par)E,enV(Gs)* Q| R: G4 | Gy.

By (ProcG Pan)EFP| (Q|R):Gs| (Ga]| Gy).

By (G Sub Par Asso¢ls = (G3 | G4) | G2 =G3 | (Ga | Gp).
The proof for (2) is similar.

(Struct Repl Unfold) SupposeP =P |!P.

By hypothesis of ()E+ P : G.

By (ProcG Rep)EF-P: G.

By Lemma22, E,enG) +!P: GandE,enG) - P: G.

By (ProcG Par)EFP|!P:G|G.

By (G Sub Idem)G | G=G.

By hypothesis of 2)EFP|!P: G.

By (ProcG Par)E,enyGy) - P: G; andE,en(G;) F IP : Gy, whereG = G |
Gz.

By (ProcG Rep)E,enGy) - P: G,.
By Lemmals, G; = Go.

By Lemma2l, E+P: Gs.

By (G Sub Idem)G = G.

(Struct Repl Repl) Suppose P =!P.

By hypothesis of (1)EF!'P: G.
By (ProcG Rep)E+IP: G.
The proof for (2) is similar.
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(Struct Repl Par) Suppose(P| Q) =!P|!Q.
By hypothesis of (L)E-!P | Q: G.
By (ProcG Rep)E-P|Q: G.
By (ProcG Parn)E,enGy) - P: Gy andE,enG;) - Q: Gy, whereG =G | G,.
By (ProcG Rep)E,enGg) F !P: Gy andE,en(Gy) F IP: Gy.
By (ProcG Rep)EFIP|!Q: G.
The proof for (2) is similar.

(Struct Repl Zero) Suppose0= 0.
By hypothesis of (1)E10: G.
By (ProcG Rep)E |- 0: G, where by(ProcG Nil)G = 0.
The proof for (2) is similar.

(Struct Res Par) Supposaewx.T;(P| Q) =P |newxT;Q.
By hypothesisx ¢ fn(P).
By hypothesis of (1)E - newxT;(P| Q) : G.
By (ProcG Res)E,xT P |Q: G whereG = newx.T;G.

By (ProcG Par)E,xT,en(G,)Y - P: Gy andE,x.T,en(G;1)*+ Q : G, where
G =G, |Gy

By (ProcG Res)E,en(G1)* - newx.T;Q: Gy.

Sincex ¢ fn(P), by Lemmal6, E,en(G,)Y - P: G1.

By (ProcG Par)EF P | newxT;Q.

The proof for (2) is similar, using Lemn2 instead of Lemm4.6.

(Struct Res Res) Supposaew x1:T1; new X2:To; P = new xz: To; new xq: Ty, P.
By hypothesisx; # X2, X1 ¢ fn(T2), %o ¢ fn(T1).
By (ProcG ReSs)E, x1:T1 F newxz:To; P : G.
By (ProcG Res)E, x1:T1,x:To F P: G.
Sincex # xp,X1 ¢ fn(T2), %2 ¢ fn(T1), by Lemmal8, E, xo:To, x1:T1 - P: G.
By two applications ofProcG Res)E - newxz:Ty; ,newx;:Ty; P : G.
The proof for (2) is symmetric. O

Lemma 25 (Subject Reduction)If E - P : G and P— P’ then there exists a‘Guch
thatE- P : G and GC G

Proof  The proof is by induction on the derivation Bf— P’.
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(Red Comm) Supposeut a(M) | in a(x:T);P — P{M/x}.

By hypothesis of the lemm& F out a(M) | in a(xT);P: G.

By (ProcG Par)E +outa(M):0andE Fin a(x:T);P: 0, andG = 0| 0 because
the only rules applicable to the premises @PeocG Outputr (ProcG Output
Un) for the first sub-term, an@ProcG Input)or (ProcG Input Un¥or the second.

We distinguish two cases.

e If EF outa(M) : 0is derived by(ProcG OutputthenE I~ a: Ch(U) and
EFM:U, and by Lemmal0, E I in a(x:T);P: 0 is derived by(ProcG
Input), andT = U andE,x:U - P: G’ for someG'.

By Lemma23, E + P{M/x} : G'{M/x}.

e If E+ outa(M) : Ois derived by(ProcG Output UnjhenE + a: Un and
EF M :Un, and by Lemmal0, E - in a(x:T);P: 0 is derived by(ProcG
Input Un), andT = Un andE,x:Unt+ P : G’ for someG'.

By Lemma23, E,x:Un+ P{M/x} : G'{M/x}.

(Red Decrypt) Supposelecrypt {M}kas{y:T }k;P — P{M/y}.

If E+ decrypt {M}kas{y:T }k;P: Gis derived by(ProcG DecryptithenG = 0,
EFM:T,Erk:Key(T),andE,y.THP: G

By Lemma23 E +P{M/y}: G'{M/y}.
The case for ruléProcG Decrypt Unjs similar.

(Red Split) Supposesplit (M,N) as(x:T,y:U);P — P{M/x}{N/y}.

If EF split (M,N) as(xT,y:U);P: G is derived by(ProcG SplitjthenG = 0,
EF(M,N): (xT,U) andE,xT,yU+P:G.

By (Msg Pair)EF-M : T andE+ N :U{M/x}.

By Lemma23, E,y:U{M/x} - P{M/x} : G'{M/x}.
By Lemma23, E - P{M/x}{N/y} : G'{M/x}{N/y}.
The case for ruléProcG Split Un)is similar.

(Red Match) Supposenatch (M,N) as(M,y:U);P — P{N/y}.

If E+ match (M,N) as(M,y:U);P: Gis derived by(ProcG MatchthenG = 0,
EF(M,N): (xT,U),EFM:TandE,yU{M/x} -P:G.

By (Msg Pair) EF- N : U{M/x}.
By Lemma23, E+ P{N/y}: G'{N/y}.
The case for ruléProcG Match Un)s similar.

(Red Par) Supposé® |Q— P | Q.

By hypothesisP — P'.

By hypothesis of the lemm& P | Q: G. By (ProcG Par)E,en(G;) - P: Gy,
E,en(G1) - Q: Gy, fn(P | Q) C domE), andG = G; | Gy.
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By inductive hypothesi€, en(G,) + P': G, for someG’ such thaG; C G'.
By Lemma22, E.en(G') - Q: Go.

By (ProcG Par)E+P | Q: G | Gy.

By definition of (GSubPaj, G1 | G, C G | Gs.

(Red Res) Supposaewx:T;P — newx:T;P'.
By hypothesisP — P'.
By hypothesis of the lemm& - newx.T;P: G.
By (ProcG Res)E,xTFP:G andG = newxT;G.
By inductive hypothesi€, x.T - P : G’ andG' C G".
By (ProcG Res)E Fnewx.T;P :newx.T;G".
By (G Sub Res)(xT)G C (xT)G".
(Red Struct) Supposé® — P'.
By hypothesisP=Q,Q - Q,Q =P
By Lemma24onE+HP: G, EF Q: Gy whereG, =G.
By inductive hypothesis oR - Q: Gy, EF Q : Gy andG; C Go,.
By Lemma24, E+ P : G3 = Go.
By definition of= and by(G Sub Trans)G C Gs. O

Proof of Lemma 1 (Type Preservation). If E - P and either P= P or P — P’ then
E-P.

Proof By definition ofE - P and Lemmag4 and?25. O

B.3 Type Safety

We describe the proofs of opponent typability and of the main results of the paper
concerning safety.

B.3.1 Properties of the Opponent
Lemma 26 For any M, if fn(M) = {X} thenX:Un+ M : Un.
Proof By structural induction oM.

e (M =x) LetE =x:Un, wherefn(M) = {x}.
By (Envx) and(Env @), E I <.
By (Msgx), E- M : Un.
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e (M = {M}N) Let E = XUn,y:Un,ZUn, where{X} = fn(M)Nfn(N), {y} =
in(M) \ {%}, and{2} = f(N)\ {2}.
By inductive hypothesisg:Un,y:Un - M : Un andx:Un,ZUn - N : Un.
By Lemma22, EF- M :UnandEF N:Un.
By (Msg Encrypt Un)E F {M}N: Un.
e (M= (M,N)) Let E = xUn,y:Un,ZUn, where {X} = fn(M) nfn(N), {J} =
(M) \ {%}, and{2} = f(N)\ {2}.
By inductive hypothesisg:Un,y:Un - M : Un andx:Un,ZUn + N : Un.
By Lemma22, EF-M:UnandEF N:Un.
By (Msg Pair Un)E+ (M,N) : Un.

e (M = ok) We havefn(M) = 2.
By (Env @), @ I ¢. By (Msg Ok Un) @ I ok : Un. O

Lemma 27 (Opponent Typability) For any opponent PEUnt P: G, where fiP) C
{x}.

Proof  The proof is by induction on the structure of the opporfgnivhich by defi-
nition cannot contain queries, and assigns typeo every name. LeE = X:Un.

e (P =0) By constructionE is well-formed.
By (ProcG Nil, E+-0: 0.
e (P=Q|R) By inductive hypothesis, assurke- Q : G; andE I~ R: Gy, where
enG1)Y =y:UnandenyG,)* =ZUn.
By hypothesisfn(Q | R) C dom(E).
By Lemma22, E,ZUn+ Q: G; andE,yUnt R: G,.
By (ProcG Parn)EF Q| R: Gy | Go.

e (P =1!P) By inductive hypothesis, assurie- P’ : G.
By (ProcG Rep)EH!P: G.
e (P=newxUn;P)
By inductive hypothesis (and Lemm& or Lemma22where neededf, x:Un -
PG
By (ProcG Res)E F P: newx:Un;G.
e (P=in M(x:Un);P) Let{Z x} = {X} U{x}.
By inductive hypothesis, assuré@n,x:Un - P’ : G.
By Lemma26, E-M : Un.
By (ProcG Input Un)E - P: 0.
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e (P=outM(N)) By Lemma26, E+ M : UnandEF N : Un.
By (ProcG Output Un)E+ P: 0.

e (P=decryptM as{y:Un}N;P’) Let{Z y} = {X} U{y}.

By inductive hypothesis, assurﬁﬂ%,y:Un FP:G.
By Lemma26, EF M :UnandEHF N : Un.
By (ProcG Decrypt Un)E+ P: 0.

e (P=matchM as(N,y:Un);P) Let{Zy} = {X} U{y}.
By inductive hypothesis, assur@dn,y:Un - P’ : G.
By Lemma26, EF-M :UnandEF N :Un.

By (ProcG Match Un)E+ P: 0.

e (P=split M as(x:Un,y:Un); P") Let{Z x,y} = {X} U{x,y}.
By inductive hypothesis, assurﬁm]],x:Un,y:Un FP:G.
By Lemma26, EF- M : Un.

By (ProcG Split Un)E+P: 0.
e (P=C) By constructionfn(C) = domE).
By (EnvC), E,Ct .
By (ProcG Fact)E+P: C. O

Proof of Lemma2.  For any opponent PX.Un I P, where fiiP) C {X}.

Proof  Follows directly from Lemma&7 and LemmeB. O

B.3.2 Safety and Robust Safety

Lemma 28 (Normal Form) If E - P: G and clause@nyG)X) = {Cy,...,Cy} then
there exists a Psuch that P= newXT;(Cy | ... |Cn | P).

Proof By induction on the derivation & - P : G.

(ProcG Fact) Supposée-C : C.
Proces$® = P’ = Cis in the required form.

(ProcG Res) Supposé& FHnewx:T;P: newx.T;G.
By hypothesisg,x.T - P: G.

By inductive hypothesis? = newxT;(Cy|...|Cn|P) where
clausesenG)*) = {Cy,...,Cn}.

By (Struct Res)newx:T;P = newx:T,i:f; (Ci|...1Ch | P).
By definition,clause¢ennew x:T; G)*X) = {Cy,...,Cq}.
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(ProcG Rep) Suppos& P : G.
By hypothesise - P : G.
By inductive hypothesis? = newxT;(Cy|...|Cn|P) where
clause¢enyG)*) = {Cy,...,Cn}.
By (Struct Repl)and (Struct Res Pay)!P = new XT;(C|...|C|P)IP=
newxX.T;(Cy|...|Cn| (P |!P)).

(ProcG Par) Suppos€& P |Q: Gy | Ga.
By hypothesisE,enG,) - P: Gy, E,en(G1) + Q: Gy.
By inductive hypothese®, = newxT; Crl...| CnN\ P’) where
clauseseny(Gy1)*) = {Cy,...,Ca} andQ = new y.U;(Ci | ... [ Cl, | Q) where
clausesenyG,)Y) = {C3,...,Ci}.
By a-conversion and commutativit | Q = new X.T,¥:U;(Cy | ... | Cy | Cy |
G (PT1Q)).
By definition, clause¢enG; | G2)®Y) = {Cy,...,Cn,C},...,Ch}

All the other cases are trivial, &= 0, clause$eny0)?) = @, andP = P'. O
Proof of Theorem?2. If E + P and E is generative then P is safe.

Proof We need to show that whenever—* new %:T;(expectC | P'), we can
refactorP’ so thatP’ = new§:U; (Cy | ... | Cq | P”), and{Cy,...,Cn} = C, with {J} N
fn(C) = 2.

By hypothesisE + P.

By Lemma25and Lemma24, if P —% newX:T; (expectC | P') then

E - newXT; (expectC | P') : G, for someG.

This must follow from repeatedly applyin@’rocG Resfrom the premiseE, T -
expectC | P’ : Gy, whereG = newxT:G;.

This must follow from(ProcG Parand(ProcG Query)from the premises

(i) E,xT,en(Gy)Y F expectC : @ and

(i) E,xT I P': Gy, wherefn(expectC) = fn(C) € dom(E) and
clause$E,xT,en(Gy)Y) = C, and{y} Nfn(C) = 2.

Assume, without loss of generality, thdausegenG;)Y) = {Cy,...,Cn}.

By generativity ofE and by definition{Cy,...,Cy} EC.

By Lemma28on (ii), P = newy:U; (Cy | ... | Cy | P”). O

Proof of Theorem3.  If XUnt P then P is robustly safe.

Proof  Consider an arbitrary oppone@t and let{z} = fn(O) U {X}.

By hypothesis<Un - P : G, for someG.

By Lemma27,ZUntF O: G, for someG'.

By Lemma22, ZUn,enyG) - O : G’ andzZUn,enG') - P: G.

By (ProcG Par)zZUn+-P|0:G|G.

By Theorem2, P | O is safe. O
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C Encodings for Patterns and Datalog

In this section we first introduce the formal definition of syntactic sugar. We show that
a derived typing rule is admissible. We then prove correctness and completeness of
the implementation of Datalog. The results of this section assume that we are using
Datalog as the underlying authorization logic.

C.1 Syntactic Sugar

The syntactic sugar for input and decryption consists in a straightforward translation
into the syntactic sugar for tuple matching. The definition of the latter is given by
induction on the length of the tuple, by cases depending on whether the first parameter
is used for binding or for matching.

Syntactic Sugar: Input, Decryption and Pattern-Matching

T — — 1

in M(M);P=in M(y:Tyc(M));tuple y as(M); P (S Input)

(wherey ¢ fn(M) Ufn(P))

decrypt M as{N}N;P = decrypt M as{y: Ty (N)}N;tuple y as(N);P (S Decrypt)
(wherey & fn(M) Ufn(P))

tuple M as(z,M); P = split M as (z Ty, (M),y:Tyg(M));tuple y as(M); P(S Split)
(wherey ¢ fn(M) Ufn(P) U {z})

tuple M as(2); P = split (M,M) as(zTy(M),y:Ty(M)); P (S Split 0)
(wherey ¢ fn(P) U {z})

tuple M as(=N,N); P = match M as(N,y:Tyg(M));tuple yas(N);P (S Match)
(wherey ¢ fn(M) Ufn(P))

tuple M as(=N); P = match (M,M) as(N,y:Ty(M)); P (S Match 0)
(wherey ¢ fn(P))

When an environmeri is fixed, the macrdyc x . /g (M) can be translated
if E- M : T whereT’ is respectivelyT, Ch(T),Key(T), (x: T,U) or (x:U,T).
L

In the encoding of Datalog each predicate of aritgorresponds to a channel of
arity n+ 1 carrying a tuple of names of tyjun, together with amk token guaranteeing
that the predicate holds for all the communication parameters. To simplify the typing
of the encoding, we derive a dedicated typing rule for this very common case.

Derived Typing Rule:

(ProcG InputDer)
EFp:Thp E,U:Un,y: Ok(p(uy,...,un)) FP: G

Erin p(uy,...,u,,=0k);P:0

whereU are theu; occurring as input patterng;Z fn(P).
L |

Lemma 29 Rule(ProcG Input Der)is admissible.
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Proof We show thatifE - p: Ty p andE,GiUn,y Ok(p(ug,...,un)) FP: G, then
EtFin p(uy,...,u,,=0k);P:0.

By (S Input) in p(uy,...,U,,=0K);Pis translated as

in p(y:Ty(p));tuple y as (Uy, ..., U, =0K); P.

By definition of encodingT, , = Ch(u:Un,...,un:Un, Ok(p(ug, ..., un))).

We can conclude bgProcG Input)f we can show that

E,y:(ui:Un,...,up:Un, OK(p(uy,...,un))) Ftuple yas(uy, ..., u,,=0k);P: 0.

We prove it by induction on the number of parameters left to piarse

e (i =0): We need to show th#,y:Ok(p(ug,...,un)) F tuple y as(=ok);P: 0.
By (S Match 0) tuple y as (=o0k); P = match (y,y) as(ok,y: Ty(y)); P.
By hypothesisE, G:Un,y : Ok(p(uy, ...,un)) - P: G.
By (ProcG Matchnd Lemm&2 we conclude.
e (i=j+1): We need to show th&, y:(un—i;+1:Un,...,u,:Un, Ok (p(Uy,...,Un)))
Ftupleyas (Ui 1;--.,U,,=0K);P: 0.
We split the proof in two cases, dependingwpn;_, ;.
— (Up_i41 = Un—i+1): By (S Split) tuple yas(Up_j,1,...,U,=0K);P =

splity as (Un—i+1:TyL(Y), Y:Tyr(Y)); tuple y as (Un—j+1. .., Uy, =0Kk); P.
By definition, Tyg(y) = (Un—j+1:Un,...,us:Un, OK(p(ug,...,un))) and

Tyc(y) =Un.
By (ProcG Split)and by the inductive hypothesis, we conclude.

— (Uy_i;1 = =Un_iy+1): Similar to the previous case, usili§ Match)and
(ProcG Matchjnstead of(S Split)and(ProcG Split) O

C.2 Correctness and Completeness

In this section we show that the encoding of Datalog is both correct and complete. Itis
correct in the sense that if we can derive a fadh the encoding of a Datalog program
S([9] &), then the we can also derive itin the original progr&gF). Itis complete

in the sense that if we can derive a fact in Datal8g«(F) then we can also derive it in

the encoding([S] |r).

Predicates of a Datalog Program:pred S)

I

predo) =2 pred{C}US) =predC)UpredS) predp(us,...,un))={pn}
predLy,...,Ln) = UiernPredLi) predLo:—L) = predLo) UpredL)
Notation:L = Lg,...,Ln

Extracting Bindings from Literals: en\F(Ll, ...yLn)

I

enzuiVits 1) (Ly,...,Ln) =en¥(Ly,...,Ln 1), eniUVitn-1) (L)
env(p(Us,...,Un)) = €NV (U, ..., Un),:OK(p(U,...,Un)) ~ (whereyis fresh
en\F(ula ceey un) = en\F(UJ_, cany Un,l), en\;UfV(Ul,...,Un,]_) (un)
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enF(X)=X:Unif XZZ enF(X)=¢if XcZ enF(M)=

The next two lemmas show that any process obtained by encoding a Datalog pro-
gram, in parallel with the clauses of the program itself is typable in an environment
formed according to the rules of the encoding.

Lemma 30 Consider a clause & L: —Lpm,...,L1, and letp, = predC) and fn(C) C
{J}. Let E=y:Un, pnTnp We have ECH C ]} 0.

Proof LetX,=@ andZ; = %;;Ufv(Li+1). By induction on the number of literais
that remain to be considered, we show that

E,L:—Lm,...,Ly,enVF+(Lm,...,Liz1) F [Li,...,La] 5 [[L]F] : O

e i=0:E,C,en#i(Lp,...,L1) F [L]* : Oeasily follows from(ProcG Outputand
(Infer Fact)

e i = j+1: We are to shovi,C,enV+(Ly,...,Li11) - [Li, Lj, ..., La] 5 [[L] 1] :
0.
Suppose, without loss of generality, that= p(uy,...,un).
By definition of encoding,
[, Lo La B (ILT ] = i p(uy . ., Uy, =0K); [Lj, .., Ly HUMB L] ).
By definition ofZj, ¥; = Z; Ufv(L;).
By inductive hypothesis,C,en# (Lm, ..., L) F [Lj, ..., Ly [[L]*] : O.
By (ProcG Input Der)
E,C,enV+1(Lm,...,Lit1) Fin p(uy, ..., Un, =0K); [Lj,..., L] 5 [[L] ] : O.
By definition of encoding and bfProcG Rep)ve conclude. O

Proof of Lemma 3 Let S be a Datalog program using predicat@sand names/
with fn(S) C {y}. Let E=y:Un, Pr:Tnp p- We have E- S| [S].

Proof By induction on the structure &
e (S= @): We conclude withz - 0.

e (S= S U{C}): By definition of encoding, we need to show ttat- S | [[S] |
Cl[c].
By inductive hypothesis and weakening, we h&v€ - S | [S].
By Lemma30 and weakeningg,S,C I [[C] : O.
By (ProcG Factpand weakeningz:, S +C: C.
By (ProcG Par)E,S+C|[C]:C
By (ProcG Parpand weakening, we conclude. O
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Lemma 31 Let L= p(u,...,Uy) be a Datalog literal, leto, p be substitutions (with
disjoint domains) of messages for Datalog variables, andlée a set of Datalog
variables such that dof) = 3. Then,([L]*[P])o | [Lop]]" —"1 Pop.

Proof By induction on the arityn of the predicatep and by definition of syntactic
sugar, following the structure of the proof of Lemi2@ O

Lemma 32 LetC=Lg:—L1,...,Ln be a Datalog clause, and let be a substitution
of messages for Datalog variables such that all the are ground facts. There exists

a process P such thg€] | [Lio]" | ... | [Lno]]T —L P ([Lo]")o.

Proof By definition of encoding,

[CT Lol | ... [ [tao]™ = [CT | [La, ... Lal “[[Lo] ] | [Lac] ™ | ... | [Lac]*. We
show, by induction om, that([Ly,...,La]*[[Lo]*])o | [Laop]* | ... | [Laop]* —%

[Lo] * op wheredom(c) = %, which implies the thesis.

e (n=0): By hypothesisC is a ground fact.

By definition of encoding([¢]%[C])o = ([C] " )o and we conclude, with = &.
e (n=m+1): Suppose, without loss of generality, thaf, 1 = p(u,...,un).

By definition of encodingLm. 1,L1,. .., Lm]*[[Lo] *] = Q where

Q=i P(uy, -, Uy, =0K): [La, .., L MEm 2 [[L] ]

By Lemma3l, %6 | [Laop] ™ | ... | [Lmop] ™ | [Lmirop] ™ ="

([Ly,..., LNV [[Lo] ) op | [Liop]* | ... | [Lmop] ™,

wheredom(p) = fv(Lm;1).

By inductive hypothesis,

([La,- - L] 2 M- [[Lo] “yop | [Laop]* | ... | [Lmop]* —% [[LO]]+GPE

The lemma below shows that an encoded program is not consumed by reductions.
Lemma 33 If [§] —% P then there exists'RBuch that P= [F] | P'.
Proof By definition of encoding, structural congruence and reduction. O

Finally, we can show correctness and completeness for the encoding. Completeness
follows by induction on the derivations 6f; correctness follows by subject reduction.

Proof of Theorem4 Let S be a Datalog program and F a fact. We have & if
and only if[S] Jr.

Proof
(=) By induction on the depth of the derivation tree fl= F.

e (d=1): By hypothesisF € S. LetS=SU{F}.
By definition of encoding[S] = [[ST '[F]T =[S | [F]*-
By definition of}, [S] {r.

49



e (d = m+1): By hypothesisF = Lo for some grounding substitution of
messages for variablesand for some clause =L:—L;,...,L, such that
S=SU{C}. Moreover,Sk= Ljo for all i, and eaclvjo is ground.

By inductive hypothesiq[S] |5 for all i.

By definition of |, 3R.[§] —% R | [Lic] " for all i.

By Lemma33, for eachi there exist$ such thaR =g | P

By reordering the reductions, we have tfigt —~ Q=[9] | P | [Lio]" |
.| By | [Lho] ", where eact?’ =P | [Lic]*.

By definition of encodingQ = [S] | [L:—L1,....La] | P} | [L1o]T | ... ]
Pl [Lao]™

By Lemma32, there exist$’ such thaQ —% P’ | [Lo]™.

By definition of |}, [I] JL6-

(«<) By Lemma3, there exists a generative environmerguch tha€ - S| [9)].
By definition of}, IP[S] —% P|[F]™*.
By Lemmal, EF S|P [F]*.
Without loss of generality, suppose= p(us,...,uUn).
By definition of encoding[[p(us,...,us)]" = out p(uy,...,us,0k) andTpn =
Ch(uz:Un,...,up:Un, OK(p(ug,...,un))).
The judgmen€& + S| P | [F]* implies that rule(ProcG Parhas been applied
twice, with premisesk, enyGz),enG3) - S: G; andE,en(G1),enyGs) - P:
Gy andE,enyGy),en(Gy) - [F] ™ : Gs.
By constructionG; = S, G, = Gz = &, since the procest] contains no state-
ments.
Simplifying, the premises becomg:- S: G; andE, S+ P: & andE, Sk [F]|*:
.

The last judgment must follow by rul@rocG Outputfor channel typdl, », and
some applications of message rules ending with an instar{ddsof Ok)for type

Ok (F).
SincekE is generative we have thelause$E) = @.
We conclude because the necessary premise of the r@leiB. O

D Listing of Programme Committee Example

The following shows the sample application from Secticas processed by our type-
checker and symbolic interpreter. The syntax accepted by ourimplementation is slightly
more verbose than in the paper; we require square brackets around statements, and we
require additional round brackets in the syntax of terms.

The symbolic interpreter simulates each of the processes introdutedéstate-
ments in a context consisting of the clauses declaredlblgal statements, and the
process abbreviations declared fpcessstatements. Beforehand, the typechecker
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tests that each of the processes mentionddare statements is well-typed in an en-
vironment consisting of all typed names and clauses declaregldial statements,

and given the process abbreviations declaregrogessstatements. We deem global
names of typ&Jn to be public, and available to the attacker, whereas we deem global
names of channel or key types to be private, and not initially available to the attacker.
Suppose we compose each such process with statements of the global clauses, and
enclose the result in a series of restrictions for each of the global names with a type
other tharln (the namegwdb, refereedbkp, andka). By Theorem3, the outcome is
robustly safe.

global [ReporfU,ID,R):—Refere¢U,ID),0Opinion(U,ID,R)]. // clause A
global [ReporfU,ID,R):—PCMembefU),0Opinion(U,ID,R)]. // clause B
global [Refere¢V,ID) :— Refere¢U,ID),DelegatéU,V,ID)]. // clause C

/I Section 5.1: Online Delegation, with Local State

global pwdb: Ch((u:Un,
(Key((v:Un,(id:Un,Ok(Delegatéu,v,id))))),
Key((id:Un,(reportUn,Ok(Opinion(u,id,repor)))))))).
global refereedh Ch((u:Un,(id:Un,Ok (Referegu,id))))).

global createReviewen, sendreportonliné&n, delegateonlindn.
global filereportUn, filedelegatdJn.
processCreateReviewd) =
lin createReviewdv);
new kdv: Key((z:Un,(id:Un,Ok(Delegatév,z,id)))));
new krv: Key((id:Un,(reportUn,Ok(Opinion(v,id,repor)))));
( (*out pwdb(v,kdv,krv))
| (Yin sendreportonlingv,id,repor);
[Opinion(v,id,repor)] | out filerepor(v,{(id,(reportok)) }krv) )
| (Yin delegateonling=v,w,id);
[Delegatév,w,id)] | out filedelegatév,{(w,(id,0k)) } kdv) )).

processFileReporf) =
lin filerepor{v,e);
in pwdb(=v,kdv,krv); decrypt e as{id,report_}krv;
in refereed=v,=id,_); expectRepor{v,id,repor).
processFileDelegaté) =
lin filedelegatév,sigd);
in pwdh(=v,kdv,krv); decrypt sigdas{w,id,_}kdv;
in refereed=v,=id,.); out refereedfw,id,ok).

global Alice:Un,Bob:Un. // Two reviewers
global Paper058Jn. // A paper identifier
global deltaUn,milestoneUn,breakthrougtun. // Some grades

/I Example 1: Direct reporting via online database of referees
trace CreateReview€) | FileReporf) |

out createReviewéAlice) |

[ReferegAlice,Paper05y | out refereedAlice,Paper05®Kk) |
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out sendreportonlin@lice,Paper05gieltd.

/l Example 2: Delegation and reporting via online database of referees
trace CreateReviewd) | FileReporf) | FileDelegaté) |
out createReviewdAlice) |
[RefereéAlice,Paper05y | out refereedAlice,Paper05®Kk) |
out createReviewgBob) | out delegateonlin@lice,Bob,PaperO58|
out sendreportonlin®ob,Paper058nilestong.

/I Reviews from PC members, using capabilities
global createPCMembadudn,filepcreport Un.

processCreatePCMemberAndFilePCReprt
newkp : Key((u:Un,Ok(PCMembefu))));
(tin createPCMembéu,pc);[PCMembefu)] | out po({(u,0k) }kp))|
(Yin filepcreporfv,e,pctoken;
in pwdb(=v,kdv,krv); decrypt e as{id,repor{_}krv;
decrypt pctokenas{=v,_}kp; expectReporfv,id,repor)).

/l Example 3: PC member registering review via appointment capability
trace CreateReviewd) | CreatePCMemberAndFilePCRepdit

/I PC chair appoints Alice as a PCMember

out createReviewdAlice) | newk:Un; out createPCMembéAlice k) |

/Il Alice uses the capability pctoken to register a review

in k(pctoken); in pwdh(=Alice,_krAlice);
[Opinion(Alice,Paper058nilestond] |

out filepcreporAlice,{ (Paper05&milestoneok)) }krAlice,pctoker).

/I Section 5.2: Offline Delegation, with Certificate Chains

global [Delegat¢U,W,ID):—DelegatéU,V,ID),Delegat¢V,W,ID)].
global [Delegat¢U,U,ID):—OpinionU,ID,R)].
global ka: Key((u:Un,(id:Un,Ok(Refereéu,id))))), filedelegatereportn.
processFileDelegateRepaof) =
lin filedelegaterepoft,e,cv);
in pwdl(=v,kdv,krv); decrypt e as{id,report_}krv;
new link:Ch((u:Un,(c:Un,Ok(Delegatéu,v,id))))); out link(v,cv,ok) |
lin link(u,cu,.);
(decrypt cuas{=u,=id,_}ka; expectRepor{v,id,repor)) |
(tuple cuas(t,delegatiorct); in pwdh(=t,kdt,);
decrypt delegatioras {=u,=id,_}kdt; out link(t,ct,0k)).

/I Example 4: Offline delegation.

trace CreateReviewdy | FileDelegateRepo(} |
// PC chair appoints Alice and Bob as reviewers.
out createReviewdAlice) | out createReviewgBob) |

/I PC chair uses ka to appoint Alice as reviewer of Paper058

52



[RefereéAlice,Paper05y |
newm1:Un; out m1 ({(Alice,(Paper05®Kk)) tka) |

/I Alice delegates Paper058 to Bob

in m1(cAlice:Un); in pwdb(=Alice,kdAlice,.);
[DelegatéAlice,Bob,Paper05§ |

newm2:Un; out m2 ((Alice,({(Bob,(Paper05®k)) }kdAlice,cAlice))) |

/I Bob sends in his review

in m2(cBok:Un); in pwdh(=Bob,_,krBob);
[Opinion(Bob,Paper058nilestong] |

out filedelegaterepofBob,{ (Paper05&milestoneok)) }krBob,cBob).
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