

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 1

Thousands of DebitCredit Transactions-Per-Second:
Easy and Inexpensive

Jim Gray, Microsoft Research
Charles Levine, Microsoft SQL Server

Jim Gray

Microsoft Research

1 April 2005
Revised September 2005

Technical Report
MSR-TR-2005-39

Microsoft Research
Advanced Technology Division

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 2

� �

�

Figure 1: A $10M Tandem 208 tps system (1, 2) and
a 2M$ IBM 70 tps system (3) circa 1988. A
$0.002M Toshiba 8,350 tps system circa 2005 (4);
the desktop equivalent of this machine costs ~$400 in
2005 (5).

�

�

Thousands of DebitCredit Transactions-Per-Second:
Easy and Inexpensive

1 April 2005
Jim Gray, Microsoft Research

Charles Levine, Microsoft SQL Server

Abstract: A $2k computer can execute about 8k transactions per second. This is 80x more than one of the
largest US bank’s 1970’s traffic – it approximates the total US 1970’s financial transaction volume. Very
modest modern computers can easily solve yesterday’s problems.
1. A Thousand-Transactions-per-second
was once difficult and expensive.
In 1973, Bank of America wanted to convert their pa-
per-based branches, tellers, and demand-deposit (sav-
ings) accounts to an online system, letting tellers per-
form a customer’s deposits and withdrawals. The cor-
responding transaction profile, called DebitCredit,
evolved to become a standard measure of transaction
processing [Serlin].

At the time, the system of ten thousand tellers needed
to perform 100 transactions per second. The ten million
account records were about 1GB and the 90-day gen-
eral ledger was about 4GB. At the time, the server
hardware for such a system cost more than ten million
dollars; but, it was not until 1976 that a commercial
database system was able to run 100 transactions per
second [Gawlick].

A decade later, Tandem used a 34-CPU 86-disk SQL
system costing ten million dollars to process 208-
transactions per second. At the time, this was consid-
ered a breakthrough because relational systems had a
reputation for poor performance [Tandem].

For much of the 1980’s the database and transaction
processing performance agenda was to achieve a thou-
sand transactions per second. Part of that process de-
fined the “one-transaction per second” unit. Informal
definitions [Datamation], [1Ktps] and bench-marketing
eventually led to the formation of the Transaction Proc-
essing Performance Council (www.tpc.org) which de-
fined the TPC-A transaction profile largely in line with
DebitCredit [Serlin]. By early 1990 several database
systems had achieved the 1,000 tps milestone. By the
late 1990’s, clusters of 100 machines were delivering
over 10,000 tpsA [Scalability]. Long before then, TPC-
A was replaced by the more challenging TPC-C
benchmark [TPC-C], [Levine].

TPC-C had a similar experience. The early systems deliv-
ered 1k tpmC at 2000$/tpmC, today systems are deliver-
ing about to 3M tpmC for about 5$/tpmC.

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 3

A. Throughput ramps-up as accounts become memory
resident and stabilizes at 2,500 tps and 70% CPU utiliza-
tion. At that point log writes are the only IO activity
(checkpoints are disabled for this run). A 2nd thread gives
5,000 tps and doubles log writes. A 3rd thread gives 6,500
tps and 1.5 transactions per log write (some group com-
mit.) By the 7th thread, peak is 8,843 tps, CPU is saturated,
and there are 2.5 transactions per log write.

~ 100% cpu utilization
after 300
seconds
cache is
warm 1-thread

equilibrium

2-
th

re
ad

3-
th

re
ad

4-
th

re
ad

5-
th

re
ad

6-
th

re
ad

7-
th

re
ad

several transactions
per log write

~ 100% cpu utilization
after 300
seconds
cache is
warm 1-thread

equilibrium

2-
th

re
ad

3-
th

re
ad

4-
th

re
ad

5-
th

re
ad

6-
th

re
ad

7-
th

re
ad

several transactions
per log write

B. 1-thread, 2M transactions, 15 minute warm run.

70% cpu utilization

2,250 tps avg 2,635 tps peak and 2.2 k disk IOps

checkpoint

1.1MBps log write = 1.1MBPS IOps

70% cpu utilization

2,250 tps avg 2,635 tps peak and 2.2 k disk IOps

checkpoint

1.1MBps log write = 1.1MBPS IOps

C. 8-thread warm run with checkpoint.

~ 100% cpu utilization

4.5 MBps log IO

ch
ec

kp
oi

nt

3k disk write per second

8.3 ktps avg 8.9ktps max

~ 100% cpu utilization

4.5 MBps log IO

ch
ec

kp
oi

nt

3k disk write per second

8.3 ktps avg 8.9ktps max

Figure 2: Performance monitor graphs. Samples every
10 seconds: red: CPU, green: tps, black: IO/s, yellow:
bytes/sec, blue: log flushes/s.

2. DebitCredit on a PC?
We conjectured that a year 2003 PC could do ALL the
1970 U.S. banking transactions and store all the 1970
US bank accounts. Is that really true? In the early
1970s Bank of America did 10% of the U.S. banking
transitions so the total would be 1,000 transactions per
second and 100M accounts.

A Toshiba Protégé M200 TabletPC (see Figure 1.4) has
a 1.6 GHz Centrino™ CPU with 2MB L2 cache, 1GB
PC2700 RAM, a Hitachi 5K80 74GB 5400 RPM 2.5”
ATA disk with 8MB write-enabled cache, and runs
WindowsXP TabletPC 2005 SP2 with Microsoft
SQLServer 2000 SP2. We wrote the following pro-
grams (see Appendix) for it:
(1) Create and populate a SQLServer DebitCredit da-

tabase with 10M accounts.
(2) A DebitCredit database transaction (no message

handling).
(3) An N-stream DebitCredit test harness.
These programs miss a few DebitCredit requirements:
there is no message handling; the accounts all fit in
RAM; and the log and database are on the same disk.
Those issues are discussed in the next section, but here
are the measurements.

It takes 365 seconds to create the database and log files
and 173 seconds to populate the 10M accounts and
10,000 tellers. So, the benchmark takes ten minutes to
set up. Randomly warming up the cache (getting all
250MB of the accounts into memory) from a cold start
takes about 4 minutes (Figure 2A) – it takes less than
15 seconds if done as a sequential scan. The 10M ac-
count records (of about 25 bytes each) occupy about
250MB on disk and RAM. Overall, the database and
database server have a working set of about 325 MB.
At equilibrium the account, branch, and teller records
are in main memory - there are no more reads of the
database from disk. SQLServer is writing the log and
the history table. Figure 2.A shows the dynamics of
ramp up and of adding more request streams (threads).
As threads are added one begins to see group-commit
and CPU savings from shared commit processing.

A single-threaded DebitCredit run uses about 70% of
the processor, averages 2,250 transactions per second,
and has a peak rate of 2,635 tps (Figure 2.B). In the
single-threaded case each transaction is flushing a par-
tially filled 512-byte log page. That causes 30% CPU
wait time. Checkpoints are configured to limit recovery
time to 10 minutes. Notice that checkpoint causes
throughput to drop.

A multi-threaded run averages over 8,346 transactions
per second and is CPU bound (actually memory latency
bound). The 8,923 tps peak rate suggests each transac-

tion costs ~112 CPU microseconds (~191k clock ticks).
CpuMon indicates 1.9 CPI and so ~100 k instructions per
transaction The graph shows approximately 3 transactions
per log force, about 500 log bytes per transaction, and the
disk controller saturating at 3,500 requests per second. As
threads are added one begins to see group-commit and
CPU savings from shared commit processing.

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 4

3. Caveat: Why these tps results are bogus
Ten million customer accounts and 90 days of history
occupy 5 GB and fit comfortably on the computer’s 74
GB disk – but that is a 100tps system. According to the
DebitCredit (and TPC-A, TPC-B) scaling rules [Ser-
lin], 8,300 tps implies a bank of 830 million customers.
That is 420GB of disk space and at least 80GB of
RAM. So, this is not a scaled implementation. But,
400GB disks exist, RAM prices are coming down, and
64bit addressing has arrived (even for laptops). Indeed,
the system shown in Figure 1.4 is equivalent to a $400
desktop system which could be expanded to enough
disk and RAM to hold a fully scaled 1K tps system.
But, an 80 GB server is likely a quad Opteron that can
do many more than 8k tps. So, to repeat the earlier
comments, the system will be disk and memory bound,
not CPU bound.

The TPC-A rules specified that each transaction has a
100 byte input message and a 100 byte output message.
Adding that logic would soak up some CPU and make
the TabletPC a few ktps system.

TPCC-A and DebitCredit require durability. The laptop
battery and Windows hibernation might pass the TPC
auditors durability test. But the auditor certainly would
want the log to be on a separate and duplexed device so
that it would mask single media failures; so that if the
database disk failed, or if one of the log disks failed,
the customer could recover all committed transactions
from the surviving disks and from the offline database
backup files. One could easily add those disks but…

TPC-A rules also specify that 90% of the transactions
should have less than 2 second response time. That rule
was designed to prevent the kinds of performance dips
shown in Figure 2. 90% of the transactions in these
runs did indeed have response time less than 2 seconds
– but the 20 and 30 second “blackouts” during the 900
second runs in Figure 2 are troublesome. In a properly
scaled and configured TPC-A run, we would have
830,000 terminals each submitting transactions every
100 seconds. The 20-30 second blackout would cause
~250,000 transactions to exceed the 2 second response
time and that would have ripple effects. But 250k
transactions is less than 4% of the 7M transactions run
in the 15 minute test window – so if the ripple effects
were minor, the blackout would just be embarrassing,
not disqualifying. One of the deficiencies of TPC-B
and of this work is that it doesn’t have terminals and so
it fails to properly model these effects.

4. Summary and Observations
The next article in this series, scheduled for April fools
day 2025, will show that a $1 wrist watch can run the
world economy as of 1990. Since cell-phones are already
at a gigabyte of storage and approach a GHz processor,
such an article may be possible – we hope we are around
to write it.

Moore’s law forces give approximately a 100x
price/performance improvement each decade. This pro-
gress is a combination of hardware improvements (proc-
essors, memory, disks, and networks) from software im-
provements (algorithms,) and from changes in business
models (commoditization). Figure 3 shows this trend for
the TPC benchmarks which have a wealth of audited
price-performance results. The graphs show a trend line
that has a 100x improvement per decade. That translates
to 58% per year tps/$ improvement and consequent
37%/year price reduction in $/tps over 15 years.

The first TPC-A/B systems were in the $100k/tpsA range.
By 1995 they were approximately $500/tpsA. The meas-
urements here seem to be below 1$/tpsA, even after you
factor in the correct scaling rules and the costs of deliver-
ing messages (excluding the cost of the terminals man-
dated by the TPC-A rules).

As a result of this trend, the impossible 1970 task became
a $10M 1990 task and the $10K task of 2005. The old
performance problems are easy to solve with today’s
computers.

The ability to do 8ktps on a laptop demonstrates that you
can use relational systems and simple algorithms if your
problem involves a few thousand transactions per second
per CPU and if your data fits in RAM.

��������

Figure 3. Price/performance trend lines for TPC-A and
TPC-C. The 15-year trend lines track Moore's Law
(100x per 10 years.) years.

1

1

10

100

1000

10000

1990 1992 1994 1996 1998 '2000 '2002 '2004

 $/tx

 TPC-C

TPC price/perf trend 1990-2005:
improved 58% per year

prices have declined 37%/y

TPC-C price/perf
trend 37% per year

TPC-A
price/perf
trend 37% per year

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 5

The results also indicate that CPU is not the problem –
if you can feed memory to the CPU, it delivers impres-
sive transaction rates. Most processors are stalled wait-
ing for RAM, network, or disk – even this laptop is
memory limited – the CPI of 1.9 suggests that it is wait-
ing for memory about half the time.

The results also show that it is important to pay atten-
tion to massive main memory and checkpoint perform-
ance. Checkpoint IO should be spread across the whole
checkpoint interval, rather than rushing to do it all at
once. As Figure 2 shows, SQLServer 2000 keeps the
IO queue 100 requests deep until the checkpoint com-
pletes – this starves the other tasks – most systems
have a dedicated log disk and can service a 100-deep
IO queue, so this is not a problem. The next version of
SQLServer fixes this problem by reducing the out-
standing checkpoint IO if the IO response time in-
creases dramatically.

The main point, for anyone involved in the benchmark
wars of the 1980s and 1990s, is to marvel at the power
of modern systems. They solve the old performance
problems, leaving us free to focus on the many new
performance problems. If we IT folks had the luxury of
generals who fight the previous war, life would be bor-
ing. Although we do not have the DebitCredit problem
anymore, it is nonetheless marvelous that we can solve
it so easily.

5. References
[1Ktps] “One Thousand Transactions Per Second” J.

Gray, B. Good, P.W. Homan, D.E. Gawlick, H.
Sammer, IEEE COMPCON Proceedings, San Fran-
cisco, IEEE Press, 1985

[Datamation] “A Measure of Transaction Processing
Power ” anon. et. al., Datamation, V 31.7, April
1985, pp 112-118

[Gawlick] “High Performance Transaction Processing
Monitors: Do We Still Need to Develop Them?” D.
Gawlick, IEEE Data Engineering Bulletin, V17.1,
March 1994, pp. 16-21

[Levine] “TPC-C: The OLTP Benchmark”, C. Levine,
ACM SIGMOD, Tucson, AZ, May 29, 1997, slides
1-24 posted at http://www.tpc.org/informtion/
sessions/sigmod/ indexc.htm

[Scalability] Remarks by Bill Gates & Robert Barnes,
Scalability Day, May 20, 1997, New York, NY

[Serlin] “The History of DebitCredit and the TPC”, O.
Serlin, Chapter 2 of The Benchmark Handbook, for
Databases and Transaction Processing, 2nd edition,
Morgan Kauffman, 1997, San Francisco

[Tandem] “A Benchmark of Nonstop™ SQL on the
DebitCredit Transaction,” the Tandem Performance
Group, ACM SIGMOD 88, ACM Press, June, 1988,
pp 337-341 or see “NonStop SQL Benchmark White
Paper,” Jim Gray, Tandem Systems Review, Feb.
1988, V4.1, Feb.1988, http://research.Microsoft.com/
~gray/papers/NonStop_SQL_Performance.pdf

[TPC-C] TPC-C, http://www.tpc.org/tpcc/

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 6

Appendix 1: Debit Credit Sample Code

Create the database and define the database schema
--
-- create the database files and the database metadata. (365 seconds)
set nocount on
create database theBank
 ON (name = data, FILENAME = 'c:\TheBank\Data.mdf', SIZE = 1GB)
 LOG ON (name = log, FILENAME = 'c:\TheBank\log.ldf', SIZE = 5GB)
alter database theBank set recovery simple
exec sp_configure 'recovery interval', '10' -- recovery takes at most 10 minutes
exec sp_configure 'max server memory', '325' -- limit working set to 325 MB
reconfigure with override
go
--
-- after 130 seconds, connect to it.
use theBank
go

-- create the branch, teller, account, history tables.
-- they are not padded to the 100-bytes of tpcA
-- (so that they will fit in 1/2GB of ram on my tabletPC.)
-- 1000 branches is 10M customers and about 300 MB.
create table Branch(branchID int not null primary key,
 balance float not null)
create table Teller(branchID int not null
 foreign key references Branch(branchID),
 tellerID int not null primary key,
 till float not null)
create table Account(branchID int not null
 foreign key references Branch(branchID),
 accountID int not null primary key,
 balance float not null)
create table History(timestamp datetime not null default getdate(),
 branchID int not null,
 tellerID int not null,
 accountID int not null,
 amount float not null)
go

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 7

Next it is time to populate the database with the 10M accounts.
-- ===
-- Fill bank database: each branch has 10 tellers, 10,000 accounts.
-- account numbers have branch encoded in "millions" part of account ID.
-- ===
-- create a store procedure to fill the Bank
create procedure spFillBank @branches int as
 begin
 begin transaction
 -- First empty the tables so we are starting fresh
 delete Account; delete History; delete Teller; delete Branch
 commit transaction

 declare @branchID int, @tellerID int, @accountID int
 declare @tellersPerBranch int, @accountsPerBranch int, @BranchRadix int
 set @tellersPerBranch = 10 -- 10 tellers per branch
 set @accountsPerBranch = 10000 -- 10 thousand accounts/branch
 set @BranchRadix = 1000000 -- 1m is radix for branch in acct/teller ID

 -- for each branch, start a transaction and make its accounts and tellers
 set @branchID = 0
 while (@branchID < @branches)
 begin
 begin transaction
 -- the branch record
 insert Branch values (@branchID, 0.0)
 set @tellerID = 0
 -- add branch's 10 teller records (teller ids have branch id at radix 1m)
 while (@tellerID < @tellersPerBranch)
 begin -- teller ID = | BranchID | TellerSeqenceNumber |
 insert Teller values(@branchID,@branchID*@BranchRadix+@tellerID, 0.0)
 set @tellerID = @tellerID + 1
 end
 set @accountID = 0
 -- add 10k account records (account ids have branch id at radix 1m)
 while (@accountID < @accountsPerBranch)
 begin -- account ID = | BranchID | AccountSeqenceNumber |
 insert Account values(@branchID,@branchID*@BranchRadix+@accountID,0.0)
 set @accountID = @accountID + 1
 end
 set @branchID = @branchID + 1
 commit transaction
 end
 end
go

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 8

-- The classic database part of TPC-A (and DebitCredit)
-- This is a single DebitCredit database transaction.
create procedure spDebitCredit @tellerID int, @accountID int, @amount float as
 begin
 declare @newBalance float,
 @branchID int,
 @BranchRadix int
 set @BranchRadix=1000000 -- 1m is branch radix in account/teller ID
 set @branchID = @tellerID / @BranchRadix
 begin transaction
 update Teller set till = till + @amount
 where tellerID = @tellerID
 update Account set @newBalance = balance = balance + @amount
 where accountID = @accountID
 insert History (branchID, tellerID, accountID, amount)
 values (@branchID, @tellerID, @accountID, @amount)
 update branch set balance = balance + @amount
 where branchID = @branchID
 commit transaction
 end
 go

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 9

-- Run N DebitCredit Transactions (picking random accounts).
create procedure spRunDebitCredit @transactions bigint as
 begin
 --
 -- Global varibles and constants.
 declare @branchID int, @tellerID int, @accountID int, @amount float
 declare @branches int
 declare @tellersPerBranch int,
 @accountsPerBranch int,
 @BranchRadix int
 select @Branches= count(*) from Branch with(nolock); -- 1,000 branches
 set @tellersPerBranch = 10 -- 10 tellers per branch
 set @accountsPerBranch = 10000 -- 10 thousand accounts/branch
 set @BranchRadix = 1000000 -- 1m is branch radix in acct/telr ID

 --
 -- do @transactions transactions picking a random account.
 -- Pick a random teller at a random branch (15%/85%) remote/local
 while @transactions > 0
 begin
 set @branchID = rand()*@branches -- random branch with rand teller
 set @tellerID = @branchID*@BranchRadix + rand()*@tellersPerBranch
 if (rand() >= .15) -- 85% account is local to branch
 set @accountID = @branchID*@BranchRadix
 + (rand()*@accountsPerBranch)
 else -- 15% non local accounts
 set @accountID = floor((rand()*@branches))*@BranchRadix
 + (rand()*@accountsPerBranch)
 set @amount = rand()*1000 - 500 -- deposit between -500$ nd 500$
 -- parameters computed, now do DebitCredit.
 exec spDebitCredit @tellerID, @accountID, @amount -- do it
 set @transactions = @transactions - 1 -- decrement tran count
 end -- bottom of transaction loop
 end
 return
go

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 10

--
-- do the single-threaded benchmark and time 2m transactions
--
-- Create a database of 1000 branches
exec spFillBank 1000
checkpoint
-- takes 173 seconds and produces a 250 MB database on SQL2K
go
--
-- now do the benchmark (note the db creating primed the cache).
declare @transactions bigint
--
-- prime the cache, so a warm start.
select count(*)from Account; select count(*)from Teller;
truncate table history
checkpoint
go

--
-- initial clocks: used as basis for timing
declare @clock datetime, @cpu bigint, @physical_io bigint, @elapsed bigint
select @clock = getdate(), -- read current time, and IO
 @cpu = @@CPU_BUSY ,
 @physical_io = @@TOTAL_READ + @@TOTAL_WRITE

--
-- run the test for a 2m transactions
set @transactions = 2000000
exec spRunDebitCredit @transactions

-- gather performance at the end
Select @elapsed = datediff(ms, @clock, getdate()),
 @cpu = (@@CPU_BUSY - @cpu) * @@TIMETICKS,-- scale ticks/ microsecond
 @physical_io = (@@TOTAL_READ + @@TOTAL_WRITE) - @physical_io
-- treat wraparound of counters as a zero value
if @cpu < 0 set @cpu = 0; if @physical_io < 0 set @physical_io = 0
-- printout
print ' ran ' + cast (@transactions as varchar(30)) + ' transactions '
 + ' cpu: ' + str(@cpu/1000000.0, 8,0)
 + ' sec, elapsed: ' + str(@elapsed/1000.0,8,0)
 + ' sec, physical_io: ' + str(@physical_io,8,0)
 + ' tps: ' + str(@transactions/(@elapsed/1000.0), 8,0)

Microsoft Research Technical Report: MSR-TR-2005-39, 1 April 2005 11

Appendix 2: ParallelBatch.bat script to run N DebitCredit Threads in Parallel

The following is the script used to evaluate the “staged” increase in threads in Figure 2A. Figure
2.C was generated by removing the sleep commands. The commands launch a SQL command to
run the spRunDebitCredit stored procedure with a parameter of 2 million on the TheBank da-
tabase with windows security (-E requests windows security).

start isql -E -d TheBank -Q "EXIT(exec spRunDebitCredit 2000000)" > c:\sqllog01.txt
sleep 360
start isql -E -d TheBank -Q "EXIT(exec spRunDebitCredit 2000000)" > c:\sqllog02.txt
sleep 100
start isql -E -d TheBank -Q "EXIT(exec spRunDebitCredit 2000000)" > c:\sqllog03.txt
sleep 100
start isql -E -d TheBank -Q "EXIT(exec spRunDebitCredit 2000000)" > c:\sqllog04.txt
sleep 100
start isql -E -d TheBank -Q "EXIT(exec spRunDebitCredit 2000000)" > c:\sqllog05.txt
sleep 100
start isql -E -d TheBank -Q "EXIT(exec spRunDebitCredit 2000000)" > c:\sqllog06.txt
sleep 100
start isql -E -d TheBank -Q "EXIT(exec spRunDebitCredit 2000000)" > c:\sqllog07.txt
sleep 100
start isql -E -d TheBank -Q "EXIT(exec spRunDebitCredit 2000000)" > c:\sqllog08.txt

