
Parameterized Unit Tests with Unit Meister

Nikolai Tillmann
nikolait@microsoft.com

Wolfram Schulte
schulte@microsoft.com

Microsoft Research
One Microsoft Way, Redmond WA USA

ABSTRACT
Parameterized unit tests extend the current industry practice of us-
ing closed unit tests defined as parameterless methods. Traditional
closed unit tests are re-obtained by instantiating the parameterized
unit tests. We have developed the prototype toolUnit Meister,
which uses symbolic execution and constraint solving to automati-
cally compute a minimal set of inputs that exercise a parameterized
unit test given certain coverage criteria. In addition, the parameter-
ized unit tests can be used as symbolic summaries during symbolic
execution, which allows our approach to scale for arbitrary abstrac-
tion levels. Unit Meister has a command-line interface, and is also
integrated into Visual Studio 2005 Team System.

Categories and Subject Descriptors:D.2.1 [Software Engineer-
ing]: Requirements/Specifications —Methodologies; D.2.5 [Soft-
ware Engineering]: Testing and Debugging —Testing tools

General Terms: Design, Verification

Keywords: unit testing, algebraic data types, symbolic execution,
automatic test input generation, constraint solving

1. INTRODUCTION
Object-oriented unit tests are written as test classes with test meth-
ods. A test method is a method without input parameters. It repre-
sents a single test case and typically executes a method of a class-
under-test with fixed arguments and verifies that it returns the ex-
pected result.

Unit tests are a key component of software engineering. Being
of such importance, many companies now provide tools, frame-
works and services around unit tests. Tools range from specialized
test frameworks, as for example integrated in Visual Studio Team
System [15] (VSUnit), to automatic unit-test generation, e.g. as
provided by Parasoft’s JUnit Test Tool [18]. However these tools
don’t provide any guidance for:

• which tests should be written,

• how to come up with a minimal number of test cases and

• what guarantees the test cases provide.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05,September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

Parameterized unit tests(PUTs) is anewmethodology extending
the current industry practice of closed unit tests (i.e. test methods
without input parameters). Test methods are generalized by allow-
ing parameters. This serves two purposes. First, parameterized test
methods arespecificationsof the behavior of the methods-under-
test: they do not only provide exemplary arguments to the methods-
under-test, but ranges of such arguments. Second, parameterized
unit tests describe a set of traditional unit tests which can be ob-
tained byinstantiatingthe parameterized test methods with given
argument sets. Instantiations should be chosen so that they exercise
different code paths of the methods-under-test.

We instrument parameterized unit tests using symbolic execu-
tion techniques. To this end, we execute a PUT symbolically, as-
signing symbolic variables to its parameters. Each symbolic exe-
cution path results in apath condition, and finding solutions to that
condition results in instantiations of the parameters of the PUT. If
the methods-under-test have only finitely many paths and if a PUT
passes for the chosen instantiations, the PUT would pass for all pos-
sible instantiations; a result which goes back to [13]. For dealing
with PUTs with an unbounded number of paths, we impose bounds
on loops and recursion; even in that case, we can still obtain an
unbiased set of test cases with high code coverage.

PUTs can also be used as summaries of the behavior of the meth-
ods specified in them. During symbolic execution, we can use these
summaries of already tested methods instead of re-exploring them.
This increases the performance of symbolic execution, since when
testing a component using summaries of already tested classes,
fewer paths must be investigated, and thus fewer test cases are gen-
erated while still maintaining the same coverage of the currently
tested component.

Admittedly, writing open, parameterized unit tests is more chal-
lenging than writing closed, traditional unit tests. However, we
believe that the benefit of automatic and comprehensive test case
generation outweighs the additional effort.

We have developed the prototype tool Unit Meister, which uses
symbolic execution of .NET assemblies in the Exploring Runtime,
XRT[12], to instrument PUTs. Unit Meister’scontributionsare:

• It performs symbolic execution of object-oriented programs
with symbolic references.

• It can use summaries obtained from PUTs for symbolic rea-
soning to avoid re-execution of summarized methods.

• The automated case analysis scales by using such summaries.

• It automatically generates concrete inputs to exercise explored
code paths in many cases.

• Evaluations have shown Unit Meister’s ease-of-use and use-
fulness [20].

241

We plan to integrate the methodology of PUTs into the forth-
coming Visual Studio 2005 Team System product; Unit Meister is
currently integrated in Visual Studio as an Add-In.

In Section 2 we give an overview of the methodology of PUTs,
in Section 3 we describe how our prototype tool can be used, and
in Section 4 we present a brief overview of related work.

An extended version of the overview and the related work as well
as a short presentation of Unit Meister’s axiom analysis framework
and its evaluation on parts of the .NET base class library can be
found in [20].

2. OVERVIEW

2.1 Traditional Unit Tests
Using the conventions of NUnit[16, 17] and VSUnit[15], we define
unit tests as test methods contained in test classes. A parameterless
method decorated with a custom attribute like[TestMethod] is a
test method. Usually, each unit test explores a particular aspect of
the behavior of the class-under-test.

Here is a unit test method written in C# for VSUnit that adds
an element to a .NETArrayList instance. The test first creates a
new array list, where the parameter to the constructor is the initial
capacity, then adds a new object to the array list, and finally checks
that the addition was correctly performed by verifying that a sub-
sequent index lookup operation returns the new object. (We omit
visibility modifiers in all code fragments.)

[TestMethod]
void TestAdd() {

ArrayList a = new ArrayList(0);
object o = new object();
a.Add(o);
Assert.IsTrue(a[0] == o);

}

It is important to note that unit tests include a test oracle that
verifies the observed behavior with the expected result. By conven-
tion, the test oracle of a unit test is encoded using debug assertions.
The test fails if any assertion fails or an exception is thrown. Unit
test frameworks can also deal with expected exceptions, which in
VSUnit are specified by additional custom attributes.

2.2 Parameterized Unit Tests
The unit test given above specifies the behavior of the array list by
example. Strictly speaking, this unit test only says that adding a
particular object to an empty array list results in a list whose first
element is this particular object. What about other array lists and
other objects?

[TestAxiom]
void TestAdd(ArrayList a, object o) {

Assume.IsTrue(a!=null);
int i = a.Count;
a.Add(o);
Assert.IsTrue(a[i] == o);

}

By adding parameters we can turn a closed unit test case into
a universally quantified conditional axiom that must hold for all
inputs under specified assumptions. Intuitively, theTestAdd()
method asserts that for all array listsa and all objectso, the fol-
lowing holds:

∀ArrayList a, object o.
(a 6= null) → let i = a.Count in a.Add(o) ,̊ a[i] == o

where ‘̊,’ denotes sequential composition from left to right, i.e.
(f ,̊ g)(x) = g(f(x)).

2.3 Test Cases
Which actual parameters must be provided to ensure sufficient and
comprehensive testing? Which parameters can be chosen at all?

Consider again theArrayList example. TheAdd method in the
.NET Framework implementation distinguishes two cases. One oc-
curs when the array list has enough room to add another element.
(i.e. the array list’s capacity is greater than the current number of
elements in the array list). The other occurs when the internal ca-
pacity of the array list must be increased before adding the element.

If we assume that library methods invoked by theArrayList
implementation are themselves correctly implemented, we can de-
duce that running exactly two test cases is sufficient to guarantee
thatTestAdd(. . .) succeeds for all array lists and all objects. What
are such two test cases?

[TestMethod]
void TestAddNoOverflow() {

TestAdd(new ArrayList(1), new object());
}

[TestMethod]
void TestAddWithOverflow() {

TestAdd(new ArrayList(0), new object());
}

Splitting axioms and test cases in this way is aseparation of
concerns. First, we describe expected behavior as PUTs. Then we
study the case distinctions made by the code paths of the imple-
mentation to determine which inputs matter for testing.

2.4 Test Case Generation
We use symbolic execution to automatically and systematically pro-
duce the minimal set of actual parameters needed to execute a finite
number of finite paths. Symbolic execution works as follows: For
each formal parameter a symbolic variable is introduced. When
a program variable is updated to a new value during program ex-
ecution, then this new value is often expressed as an expression
over symbolic variables. For each code path explored by symbolic
execution. apath conditionis built over symbolic variables. For
example, theAdd-method of theArrayList implementation con-
tains anif -statement whose condition isthis. items.Length
== this. size (where the fielditems denotes the array holding
the array list’s elements andsize denotes the number of elements
currently contained in the array list). The symbolic execution con-
joins this condition to the path condition for thethen-path and the
negated condition to the path condition of theelse-path. In this
manner all constraints are collected, which are needed to deduce
what inputs cause a code path to be taken.

Analysis of all paths can’t always be achieved in practice. When
loops and recursion are present, an unbounded number of code
paths may exist. In this case we approximate by analyzing loops
and recursion up to a specified number of unfoldings, similar to the
heuristics used in [5]. Even if the number of paths is finite, solv-
ing the resulting constraint systems is sometimes computationally
infeasible. Our ability to generate inputs based on path analysis
depends upon the abilities of the constraint solver used; in our case
we can use either Zap[19] or Simplify[8].

After collecting constraints for each code path, we use an auto-
mated solver to reduce the constraints collected in the previous step
into concrete test cases.

When a constraint system cannot be solved automatically, the
programmer must supply additional inputs. For example, when
constructing suitableArrayList values, which capacity should be
picked and what elements should the array list contain?

242

There are two ways in which this information can be provided.
The first is for the user to provide a set of candidate values for the
formal parameters. In our running scenario let us assume that a
user has provided the values

[TestValues(For="TestAdd", Parameter="a")]
ArrayList[] a = {new ArrayList(0),

new ArrayList(1)};

[TestValues(For="TestAdd", Parameter="o")]
object[] o = {new object()};

Now the constraint solver can choose one ofa[0] , a[1] and
o[0] to obtain a solution that fulfills the constraints. The generated
tests are:

TestAdd(a[0], o[0]);
TestAdd(a[1], o[0]);

The second way is to provide an invariant for a class that makes
it possible to construct suitable instances using .NET reflection.
The invariant is a Boolean predicate with the custom attribute[In-
variant] attached to it. For array lists the invariant is

this._items != null && this._size>=0 &&
this._items.Length >= this._size

For theTestAdd() method, this invariant is instantiated with
the symbolic variablea and serves as the initial path condition.
This allows the constraint solver to give example input values for
each symbolic variable encountered on each path. For the path
with the conditiona. items.Length==a. size the solver could
choose the binding:a. items.Length==0 anda. size==0 . Us-
ing .NET reflection the tool can now produce an array list that cor-
responds exactly toa[0] .

In case no solution is found, the tool prints the path condition.

3. TOOL USAGE
We have developed the prototype tool Unit Meister which gener-
ates test cases from PUTs using symbolic execution and constraint
solving [12].

Unit Meister’s input is a .NET assembly containing PUTs in the
form of test classes with axiom methods. If the number of code
paths of the axiom methods and the called methods-under-test is
infinite, bounds must also be given by the user, e.g. a time limit,
or a bound on the number of loop and recursion unfoldings. Unit
Meister then explores the code paths of a single specified axiom
method or of all axiom methods. For each explored path, the output
is either a test case if a solution of the path condition is found, or a
representation of the path condition. Test cases can be represented
as traditional closed unit tests in C#, or the generated concrete input
data can be persisted in a table in a database, such that one row is
created per explored code path and the entries of the row are the
generated inputs.

Unit Meister can be invoked from the command line. We also
provide an Add-In for Visual Studio 2005 Team System. In VSUnit,
PUTs are written as “data driven” test methods. Such a test method
is associated with a table in a database by means of a custom at-
tribute. There are two modes of execution for such a test method:

• Symbolic execution with Unit Meister. All code paths within
specified bounds are explored; when in any code path an
unexpected exception is thrown or an assertion is violated,
an error in the implementation (or the test method) has been
found. For each code path, a test case is generated and per-
sisted in the database if concrete inputs fulfilling the path

condition can be obtained. The tree of symbolically explored
paths can be visualized and inspected. Each leaf of the tree,
which identifies a completed code path, is either decorated
with concrete inputs representing a test case, or it is indicated
that no concrete inputs were found for the path condition.

• Execution with VSUnit. After the test method has been ex-
plored by symbolic execution with Unit Meister as described
above, the generated concrete test cases can be re-executed
using VSUnit’s test manager. Re-execution in this fashion
uses the standard .NET runtime. VSUnit will invoke each
test method once for each row of the database table, and the
row’s entries are used to instantiate the test method’s para-
meters.

These two modes of execution can be seen as “record” and “re-
play” modes. When test cases are generated with Unit Meister,
all possible code paths within the given bounds are exercised and
checked for errors. At this point, re-executing the generated test
cases with VSUnit will yield exactly the same results. When the
implementation-under-test changes, the persisted test cases may no
longer provide the same code coverage, since they were generated
to cover a different implementation. New errors might not be dis-
covered until Unit Meister explores the test method for the changed
implementation again. However, generating test cases with sym-
bolic execution is expensive; on the other hand, re-running previ-
ously persisted concrete test cases with VSUnit is an inexpensive
way to quickly detect breaking changes.

4. RELATED WORK
The automatic generation of tests has recently received a lot of at-
tention. Here we only try to cover those strands of research and
tools that use symbolic evaluation for test case generation and which
has influenced our work on parameterized unit testing.

Most work in the formal methods community concentrated on
using models to generate black box tests for an implementation un-
der test (IUT). Models can be property oriented, i.e. described by
pre-/post conditions or functional programs, stateful i.e. described
by some form of state machines, or intensional, i.e. described by
axioms. In any case the goal of model-based test case generation is
to derive test cases from the model until a certain model coverage
is reached.

If the models are property oriented the models are typically ana-
lyzed symbolically to derive disjunctive normal forms. If the mod-
els contain recursion, then some kind of regularity or uniformity
hypothesis is used that limits the number of unfoldings used to stop
the test case generation process. A solution for the resulting for-
mulas is then the test input for the IUT. This work goes back to [9],
which proposed it for testing implementations described by VDM
programs. It was recently reworked by [4], which uses Isabelle to
formalize the test case generation process. In any case only one
function at a time is tested.

Some recent frameworks also support symbolic generation of
non-isomorphic complex object graphs, most notably TestEra[14]
and Java PathFinder[21]. TestEra generates inputs from constraints
given in Alloy, a first-order declarative language based on relations.
The TestEra approach is still black-box testing, since the tests are
not generated on the basis of the methods of the implementation.
In the spirit of Korat[3], Java PathFinder constructs input object
graphs lazily, observing a data structure invariant which must be
written in Java in a special way to deal with partially initialized in-
put. Only primitive field values can be symbolic, whereas object
references are always concrete.

243

In parameterized unit testing we also use symbolic computation
to derive test inputs, but we do not split conditions into their dis-
junctive normal forms, instead we simply use the path conditions as
they are and we find covering inputs for the implementation meth-
ods and not the model. By working on the level of the implemen-
tation we find all (corner) cases. Further, if in our framework the
user provides a data structure invariant as required for TestEra or
Java PathFinder, then we can also use them to manufacture objects.
If no or only a weak data invariant is given, we can still use it to
bound the search space. In this case a set of representative objects
must be given.

The purpose of test case generation from state based or prop-
erty oriented formalisms is to generate sequences of method calls.
Given a start and a final state, the BZ-TT tool uses constraint solv-
ing to derive start and final state covering method sequences from
B specifications [1]. Closer in spirit to our work is the work done
in testing from algebraic specifications. This work was started by
Gaudel et al. [2]. They use axioms in various ways: to describe
the test purpose; to obtain concrete data, which is necessary for the
instantiations of the axioms; and to derive new theorems, which
when tested should uncover errors in hidden state, i.e. state that is
not represented by the model. For deriving those theorems they
introduced regularity assumptions.

Another test goal is to test for robustness of individual methods.
Usually this is done by random input data generation [6]. Recently
[7] combined random input generation with constraint solving to
test the robustness of individual methods, where ESC/Java [10] re-
ports give constraint systems indicating necessary conditions for
potential errors. These reports are often false positives, i.e. the con-
straints are unsatisfiable.

DART[11] also aims at testing methods of a program automati-
cally for robustness, using a variation of symbolic execution where
the program is explored exhaustively as long as the arising path
conditions are in the realm of the used constraint solver; in all
other cases, DART falls back on random input generation. The
advantage is that no false-positives are generated, but in general no
exhaustive testing within certain structural bounds can be achieved.
In our framework, we test robustness all the time; we do however
need parameter domain annotations to generate inputs and to avoid
false-positives.

Acknowledgements
We thank Wolfgang Grieskamp for his contributions to the Explor-
ing Runtime, XRT, and Thorsten Schütt for his work on a pro-
totype symbolic execution framework. We thank Ward Cunning-
ham, Brian Crawford, Mike Barnett, Colin Campbell, and Margus
Veanes for many useful discussions. We are especially grateful to
Tom Ball, Madan Musuvathi, and Shuvendu Lahiri, with whom we
had many discussions that helped shape this work.

5. REFERENCES
[1] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard,

F. Peureux, N. Vacelet, and M. Utting. BZ-TT: A tool-set for
test generation from Z and B using contraint logic
programming. In R. Hierons and T. Jerron, editors,Formal
Approaches to Testing of Software, FATES 2002 workshop of
CONCUR’02, pages 105–120. INRIA Report, August 2002.

[2] G. Bernot, M. C. Gaudel, and B. Marre. Software testing
based on formal specifications: a theory and a tool.Softw.
Eng. J., 6(6):387–405, 1991.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. InProc. International

Symposium on Software Testing and Analysis, pages
123–133, 2002.

[4] A. D. Brucker and B. Wolff. Symbolic test case generation
for primitive recursive functions. In J. Grabowski and
B. Nielsen, editors,FATES, volume 3395 ofLecture Notes in
Computer Science, pages 16–32. Springer, 2004.

[5] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors.Softw. Pract.
Exper., 30(7):775–802, 2000.

[6] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java.Software: Practice and
Experience, 34:1025–1050, 2004.

[7] C. Csallner and Y. Smaragdakis. Check ’n’ Crash:
Combining static checking and testing. In27th International
Conference on Software Engineering, May 2005. To appear.

[8] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem
prover for program checking. Technical Report
HPL-2003-148, HP Labs, Palo Alto, CA, USA, 2003.

[9] J. Dick and A. Faivre. Automating the generation and
sequencing of test cases from model-based specifications. In
Industrial Strength Formal Methods, Formal Methods
Europe (FME’93), Proceedings, volume 670 ofLNCS, pages
268–284. Springer, 1993.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
Proc. the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 234–245. ACM
Press, 2002.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing.SIGPLAN Notices,
40(6):213–223, 2005.

[12] W. Grieskamp, N. Tillmann, and W. Schulte. XRT —
Exploring Runtime for .NET — Architecture and
Applications. InProc. 3rd SoftMC, 2005. To appear.

[13] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, 1976.

[14] D. Marinov and S. Khurshid. TestEra: A novel framework
for automated testing of Java programs. InProc. 16th IEEE
International Conference on Automated Software
Engineering, pages 22–31, 2001.

[15] Microsoft. Visual Studio 2005 Team System.
http://lab.msdn.microsoft.com/teamsystem/.

[16] J. W. Newkirk and A. A. Vorontsov.Test-Driven
Development in Microsoft .NET. Microsoft Press, Apr. 2004.

[17] NUnit development team. NUnit. http://www.nunit.org/.
[18] Parasoft. Jtest manuals version 5.1. Online manual, July

2004. http://www.parasoft.com/.
[19] Testing, Verification and Measurement, Microsoft Research.

Zap theorem prover. http://research.microsoft.com/tvm/.
[20] N. Tillmann and W. Schulte. Parameterized unit tests. In

Proc. 13th International Symposium on Foundations of
Software Engineering, 2005. To appear.

[21] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. InProc. 2004 ACM
SIGSOFT International Symposium on Software Testing and
Analysis, pages 97–107, 2004.

244

