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ABSTRACT
In recent years there has been considerable research on automated
selection of physical design in database systems. In current solu-
tions, candidate access paths are heuristically chosen based on the
structure of each input query, and a subsequent bottom-up search
is performed to identify the best overall configuration. To han-
dle large workloads and multiple kinds of physical structures, re-
cent techniques have become increasingly complex: they exhibit
many special cases, shortcuts, and heuristics that make it very dif-
ficult to analyze and extract properties. In this paper we criti-
cally examine the architecture of current solutions. We then de-
sign a new framework for the physical design problem that signifi-
cantly reduces the assumptions and heuristics used in previous ap-
proaches. While simplicity and uniformity are important contribu-
tions in themselves, we report extensive experimental results show-
ing that our approach could result in comparable (and, in many
cases, considerably better) recommendations than state-of-the-art
commercial alternatives.

1. INTRODUCTION
Database systems (DBMSs) have been widely deployed in recent

years and their applications have become increasingly complex and
varied. Physical design tuning has therefore become more relevant
than ever before, and presently database administrators spend con-
siderable time tuning a sub-optimal installation for performance.
As a consequence of this trend, automatic physical tuning became
an important research problem. Most vendors nowadays offer auto-
mated tools to tune the physical design of a database as part of their
products to reduce the DBMS’s total cost of ownership (e.g., [1, 7,
11]). Although each vendor provides specific features and tuning
options, all these tools address the following search problem.

Automatic Physical Design Problem:Given a workloadW of
representative queries and updates, and a space constraintB, find
the set of physical structures, orconfiguration, that fits inB and
results in the lowest estimated execution cost of the queries inW .

Current tools recommend physical structures such as indexes and
materialized views, among others. As noted in previous work [2,
12], automating the physical design of a database is complex be-
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cause (i) there is a combinatorial explosion of physical structures
to consider, and (ii) these structures (e.g., indexes and materialized
views) strongly interact with each other, making almost impossible
to stage the problem into simpler, independent, sub-goals.

Reference [4] presented the first industrial-strength tool to ad-
dress the automatic physical design problem when the structures
to consider are single- and multi-column indexes. This reference
introduced a number of techniques and assumptions that were in-
corporated in virtually all subsequent approaches. Specifically,

What-If API: Since it is not practical to materialize a candidate
configuration to evaluate its impact on the input workload, the data-
base server is extended to supporthypotheticalphysical structures.
These structures are not materialized, but instead are simulated in-
side the optimizer by adding meta-data and statistical information
to the system catalogs, which is done very efficiently [5].

Dependence on the optimizer:Candidate physical structures
are useful only if the optimizer exploits them (independently of
how good weknowthey are). Therefore, it is not advisable to keep
a separate cost model or set of assumptions while searching for
the best configuration. Instead, the optimizer, along with its cost
model, needs to be kept “in sync” with the tuning process.

Search Framework: Although new physical structures were
later handled by evolving the first generation of tools, the search
algorithm proposed in [4] stayed almost unchanged:

1. For each query in the workload, find a good set of candi-
date structures. This step guesses, from the query structure,
which columns might be useful as index keys, or which sub-
expressions can make a difference if they are materialized as
views. Some approaches extract this information from opti-
mized execution plans (e.g., [4]) and others in a preprocess-
ing step before optimizing the query (e.g., SAEFIS in [10]).
All these algorithms, however, use heuristics to identify can-
didate structures, such as choosing columns that participate
in equality or group-by predicates as index keys.

2. Augment the initial candidate set by “merging” two or more
candidates together. The idea is to generate new candidate
structures that, while not optimal for any given query, might
simultaneously help multiple queries requiring less space [6].
Some techniques (e.g., [10]) limit merging to structures that
are useful for a single query and others (e.g., [2, 12]) merge
candidates across queries.

3. Search this augmented space. Some techniques use a greedy
algorithm to incrementally augment valid configurations [4],
and others use a variation of knapsack and subsequent ran-
dom permutations [10]. All techniques are bottom-up, in
the sense that they start with a validemptyconfiguration and
incrementally add (or change) candidate structures until the
space constraint is violated.



In this paper we claim that while thewhat-if APIand thedepen-
dence on the optimizerare good design choices, the overall search
framework needs to be revised.

Consider the first step above (candidate selection). Since the
search for candidates is done either before or after optimizing the
query completely, we need to guess which structures are likely to be
used by the optimizer. The problem is that for complex queries, the
number of such structures can quickly grow to be very large. Con-
sider a query that joins a fact table with 20 dimension tables. Each
subset of dimension tables can result in a candidate view (there are
over one million of them). To avoid generating such a large set
of candidates, today’s tools set bounds on the maximum number
of structures to consider per query, and rank the candidates using
heuristics. These heuristics could be off-sync with those of the op-
timizer (which also prunes the search space in a specific way), and
therefore suboptimal choices are likely. Also, inferring candidate
structures separately from the actual optimization might miss some
alternatives that are visible while queries are being optimized.

Another problem with the search technique outlined above is that
the merging and enumeration steps are separate. Therefore, to en-
sure that good solutions are not missed, we need to eagerly generate
many alternatives during merging (which might clearly be useless
had we performed a bit of enumeration beforehand). For reason-
ably sized workloads, the number of merged structures can also
grow very large. Techniques make these steps scalable by imposing
some constraints over which structures are merged. For instance,
reference [2] restricts the merging step so that each structure in the
initial set is merged at most once.

As illustrated above, attempts to add new physical structures in a
scalable fashion –while maintaining the original algorithm design–
introduced several special cases, shortcuts, and general complex-
ity in the resulting algorithms. Current techniques additionally rely
on the concept of frequent column- and table-subsets to rank can-
didate indexes and views, atomic configurations (with interaction
patterns) to minimize optimization overhead, variations of greedy
and knapsack search frameworks to enumerate configurations, and
time-wise [1] or space-wise [11] staging to provide time-bounded
solutions or minimize interaction between structures, to name a
few. Our opinion is that we have reached a point in complexity
that makes very difficult to analyze, evolve, and add new features
to the algorithms without significant risks of regression.

In this paper we explore an alternative approach to the automatic
physical design problem that addresses the difficulties described
above. Our techniques are more integrated with the optimizer and
exploit additional knowledge about its cost model. We base our
solution on two orthogonal pillars:

- By instrumentingsmall portions of the optimizer, we elimi-
nate the trial and error procedures currently used to identify
candidates structures. Instead, we efficiently identify a small
superset of physical structures that areguaranteedto result
in an optimal configuration (usually taking too much space).

- We propose a different approach for searching the space of
physical structures. Instead of starting with an empty con-
figuration and progressively adding structures, we proceed
in the opposite direction. We start with a large configura-
tion that is time-wise optimal but too large to fit in the avail-
able storage, and progressively “shrink” it using transforma-
tions that aim to diminish the space consumed without signif-
icantly hurting the expected performance. We show that this
approach has some advantages frombothquality and perfor-
mance points of view, and might also return valuable infor-
mation to the database administrator about the distribution of
more efficient (but larger) configurations.

We thus obtain a conceptually simple algorithm that results in
recommendations that are either comparable or better than those
of state-of-the-art commercial tools. Our approach significantly re-
duces the complexity of an important set of techniques that was
becoming increasingly difficult to analyze and extend.

The rest of the paper is structured as follows. We next state the
assumptions on which we rely in the rest of the paper. In Section 2
we show how to instrument a typical optimizer to obtain thebest
configuration (without constraints) for a given query. Section 3 dis-
cusses how we traverse the search space from this best (too large)
configuration to a good configuration that fits in the available space.
In Section 3.6 we discuss how to extend our techniques to handle
workloads with update queries. Finally, Section 4 reports experi-
mental results on a prototype implementation of our approach.

Assumptions
In this paper we focus on recommending indexes and materialized
views to minimize the estimated cost of an input workload. In par-
ticular, indexes consist of a sequence ofkey columns optionally
followed by a sequence ofsuffixcolumns1. Suffix columns are not
present at internal nodes in the index and thus cannot be exploited
for seeking (but can help queries that reference such columns in
non-sargable predicates). The view language is restricted toSPJG

queries (i.e., single blockSPJ queries withgroup-by clauses).
Predicates in the view definition are divided in conjuncts and as-
signed to one of three classes:join predicates,range predicates,
andotherpredicates, as illustrated in the example below:
SELECT R.a, S.b, T.c FROM R, S, T
WHERE R.x=S.y AND S.y=T.z –join predicates
AND R.a>5 AND R.a<50 AND R.b>5 –range predicates
AND (R.a<R.b OR R.c<8) AND R.a*R.b=5 –other predicates

We assume that the optimizer has a unique entry point for single-
relation access path selection (optimizers based on System-R [9] or
Cascades [8] frameworks are usually structured in this way). In
other words, there is one component responsible for finding phys-
ical index strategies (including index scans, id intersections and
lookups) for single table logical sub-plans. Similarly, there is a
view matching component that, once invoked with aSPJG sub-
query, returns zero or more equivalent rewritings of such query
using an available view in the system.

2. INSTRUMENTING THE OPTIMIZER
During the optimization of a single query, the optimizer issues

several access path requests for indexes and materialized views.
For an index request over a single-table sub-plan (see Figure 2), an
access path generation module first identifies the columns in sar-
gable predicates, required sort columns, and the columns that are
additionally referenced upwards in the query tree. Then, it analyzes
the available indexes and returns one or more alternative physical
plans that might be optimal for the input logical sub-query. In gen-
eral, each generated plan is an instance of a template tree that (i) has
one or more index seeks (or index scans) at the leaf nodes, (ii) com-
bines the leaf nodes by binary intersections or unions, (iii) applies
an optional rid lookup to retrieve missing columns, (iv) applies an
optional filter operator for non-sargable predicates, and (v) applies
an optional sort operator to enforce order. Consider an index re-
quest for the sub-query below (whereτ specifies order):

τD

�
ΠD,E

�
σA<10∧B<10∧A+C=8(R)

��
In this case, the optimizer identifies columnsA andB in sargable
predicates, columnD as a required order, and columnsE andC
1If the database system does not support suffix columns, we onlyconsider
keycolumns in indexes.



as additional columns that are referenced either by non-sargable
predicates or upwards in the tree. Suppose that indexes on columns
A andB are available. The optimizer can then generate the plan
in Figure 1(a). However, depending on selectivity values, the al-
ternative plan in Figure 1(b) (that avoids intersecting indexes but
performs more rid lookups) can be more attractive. Also, if a cover-
ing index on columnsD,A,B,C, andE is available, the alternative
plan in Figure 1(c) might be preferable because it avoids sorting an
intermediate result. A cost-based optimizer considers this space of
alternative plans for given available indexes and returns the most
efficient physical strategy. The same idea applies to view requests.
In this case, the optimizer matches existing views against the input
query and, if it is successful, returns an equivalent query that uses
the view (subsequently, the optimizer will issue index requests on
those materialized views, which are treated as base tables).

(a) (b) (c)
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Figure 1: Alternative index strategies.

Now suppose that we instrument the optimizer as follows (see
Figure 2 for the case of indexes). Each time the optimizer issues
an index or view request, we suspend optimization and analyze the
request2. That is, we consider all sargable and non-sargable predi-
cates, order, and additional columns in the index requests, and the
SPJG sub-queries in view requests. These requests (along with the
implicit knowledge of how indexes and views are exploited) im-
plicitly encode all possible physical structures that the optimizer
might exploit3. After analyzing the request, we obtain the physi-
cal structures that result in the most efficient plan for such request
(Section 2.1 shows how this step is achieved). We thensimulate
these hypothetical structures in the system catalogs and resume op-
timization. The optimizer will now consider the structures just cre-
ated and obtain the “optimal” execution plan for each request.

Access Path Generation Module

Available Indexes

Find best indexes

 for request

Single-table sub-plan Physical plan

What-if 

simulation

Instrumentation Original optimizer

Figure 2: Instrumenting the Query Optimizer.

Since we repeat this procedure for each index or view request,
the optimizer is always given the optimal set of physical structures
to implement logical plans. For that reason, the execution plan re-
turned by the optimizer would be the most efficient one over the
2This procedure is only active while intuningmode, and is disabled during
the normal execution of a production system.
3If no request can be answered using a candidateS, we can safely prune
S from the list of candidates. Conversely, ifS might be useful to answer
some request, the optimizer would eventually consider a plan that usesS.

space of all possible configurations4. The optimal configuration,
thus, is obtained by gathering all the simulated physical structures
that are generated during optimization. Table 1 shows the total
number of requests for a typical 22-query TPC-H workload. We
see that the number of requests (and thus the number of simulated
structures) is rather small for this complex workload.

From an engineering point of view, this procedure is appealing
since it is not very intrusive. In fact, the modifications required to
instrument the optimizer as we describe above are restricted to two
entry points within the optimizer (view matching and index strategy
generation). From an algorithmic point of view, this technique does
not rely on any guesswork to choose columns or subset of tables
to consider in indexes and views. Since requests are intercepted
during optimization, we do not miss candidates that might not be
apparent by looking at the final execution plan (like in [4]), nor we
propose many candidates that are syntactically valid but might not
be exploitable during optimization (like in [10]). We next explain
how to find the best physical structures for index or view requests.

2.1 Obtaining the Optimal Configuration
As explained above, the optimal configuration is obtained by

gathering all the simulated physical structures generated during op-
timization, which essentially correspond to the union of optimal
structures for each index or view request. Finding the optimal view
for a view request is trivial. Since the input of a view request is
anSPJG sub-query, the input sub-query itself is the most efficient
view to satisfy the request (specifically, the best possible plan is
a scan over any clustered index over such a view). For an index
request, the situation is more complex. Consider an index request
(S, N, O, A) whereS are columns in sargable predicates,N con-
tains subsets of columns in non-sargable predicates,O are columns
in order requests, andA are other referenced columns. If no order
is requested (i.e.,O = ∅), the following lemma restricts the space
of index sub-plans that we must consider.

LEMMA 1. For any plan that intersects rids from two index
seeks there is a more efficient plan that produces the same result
by seeking one (larger) index.

If, additionally,|S|=1 andN=∅ we have the following lemma:

LEMMA 2. For any plan that uses rid lookups over the result of
an index seek, there is a more efficient plan that produces the same
result by seeking one (larger) index.

When both lemmas can be applied, we can guarantee that the
optimal plan does not use index intersections nor rid lookups, and
therefore it must seek a covering index with key columnsS and
suffix columnsA. If several sargable predicates are present but
N=∅, we proceed as follows. Assuming independence between
predicates, it can be easily shown that the optimal plan consists
of a seek over a prefix of the columns inS sorted by selectivity,
followed by an (optional) fetch. The best index can be efficiently
identified by progressively including new columns fromS to the
index until no further benefit is obtained. In general, if the index
request contains non-sargable predicates (i.e.,N 6= ∅), the situation
is more complex since there can be interaction between columns
(i.e., a predicatea+b>10 can be evaluated when we consider an
index for other sargable predicates over columnsa andb). While
the main ideas remain the same (i.e., we obtain the index that results
in the best plan using seeks followed by optional fetches) we omit
the details for simplicity.
4This optimality claim assumes that no updates are present in the workload.
Section 3.6 describes how to deal with updates.



TPC-H query # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Total

Index Requests 4 20 11 4 14 2 13 6 8 5 3 4 4 3 3 6 8 4 6 17 8 5 158
View Requests 2 20 7 5 33 2 16 34 29 9 7 2 2 3 5 3 5 3 3 13 8 6 217

Table 1: Index and view requests for a typical TPC-H workload.

Consider now the general case of an index request(S, N, O, A)
with O 6= ∅. If the optimal execution plan obtained earlier produces
rows in the desired order, this is the best plan overall. Otherwise,
we introduce a sort operator at the root of this plan and obtain the
best plan that uses a sort. However, there might be an alternative
plan that does not require sorting and is more efficient. To obtain
this alternative plan, we create an index withO as its key columns.
If O ⊆ S we add to the index the remaining columns inS as
key columns and columns inA as suffix columns. Otherwise, we
add all columns in bothA andS as suffix columns. Using similar
arguments as before, we can show that this is the most efficient
plan that does not use a sort operator. We finally compare the costs
of the two alternatives (i.e., with and without a sort operator) and
return the one with the minimal expected cost.

As explained earlier, if we gather the optimal set of physical
structures for each request, we obtain a configuration that cannot
be further improved for the given workload. The optimal config-
uration obtained in this way can be used in several ways. If the
space taken by this configuration is below the maximum allowed
and the workload contains no updates, we can return the configura-
tion without further processing. Otherwise, we can use it to bound
the benefit of the actual configuration. Consider Figure 3, which
incrementally shows the best configuration found in the first 70
minutes of the execution of a commercial database tuning tool for a
complex 30-query workload (the execution lasted over 3 hours, but
the best configuration did not improve beyond what it is shown in
the figure). If we had knowledge of the best possible configuration,
we could have made the informed decision of stopping the tuning
after 65 minutes, since the maximum additional improvement is
small enough. Without this knowledge we have no choice but con-
tinue tuning until the end (or until we are satisfied in absolute terms
with the current configuration).

10

100

1000

10000

0 10 20 30 40 50 60 70
Tuning Time (minutes)

E
st

im
at

ed
 E

xe
cu

tio
n 

T
im

e 
  . Best Configuration from

Commercial Tuning Tool

Optimal Configuration

Figure 3: Bounding the improvement of the final configuration.

As we discuss in the next section, however, the main benefit of
identifying the “best” configuration is that it allows us to rethink the
search strategy, and in particular, move towards arelaxation-based
approach, which, as we will see, has some additional advantages.

3. RELAXATION-BASED SEARCH
As stated earlier, all previous approaches for the automatic phys-

ical design problem tune a database and a workload by (i) identi-
fying a set of candidate structures that are likely to speed up each
workload query in isolation, (ii) extending this set by “merging”
structures, and (iii) searching this extended set for a subset of struc-
tures that satisfies the space constraint and results in the largest im-
provement in execution cost for the queries in the workload. In

all cases, steps (ii) and (iii) above are performed separately, and
(iii) follows a bottom-up strategy that starts with an empty config-
uration and progressively adds candidate structures to the current
configuration until the space constraint is no longer satisfied.

Our ability to identify the optimal configuration as described in
the previous section suggests a completely different approach to
search the space of configurations. Specifically, we start with an
optimal configuration that might be too large to fit in the avail-
able space and progressively transform it into new configurations
that consume less space (but are less efficient) than the previous
one. We continue in this way until some configuration satisfies the
space constraint5. Possible transformations to the current configu-
ration are not restricted to just removing structures but also incor-
porate the notion of merging (or more generally,relaxing) a subset
of structures. Conceptually, this approach has the following advan-
tages over the basic search strategy:

- The analogous ofmergingandenumerationsteps are inter-
leaved. It is not required to obtain all merged structures be-
fore starting enumeration, but instead these can be generated
lazily, on demand, when relaxing a specific configuration.

- Since a configuration is relaxed by replacing some physical
structures by smaller but less efficient ones, re-optimizing
a relaxed configuration to evaluate its cost is more efficient.
Consider configurationC={c1, . . . , cn} and suppose that we
relaxC into C′ by replacingc1 andc2 by c3 (e.g., an index
on (a,b) and an index on (a,d) by an index on (a,b,d)). Since
C′ is composed of less efficient structures thanC, we know
that any query that did not use indexesc1 or c2 in config-
urationC would remain unchanged inC′. In other words,
we only need to re-optimize queries that used some of the
relaxed structures inC. In contrast, in a bottom-up strategy,
adding a new index to an existing configuration requires that
we re-optimize all queries that reference the index table (or
resort to heuristic approximations, such as using atomic con-
figurations [4], which introduces additional inaccuracies).

- A relaxation-based approach provides more useful informa-
tion to the database administrator. Since we iteratively re-
lax good configurations so that they use less space while
performing slightly worse, at the end of the tuning process
we have many alternative configurations that are more effi-
cient than the final recommendation (using more resources).
This might provide hints about the distribution of more ef-
ficient configurations to the database administrator and help
taking decisions (e.g., increasing the disk storage in the cur-
rent database installation). Figure 4 shows a sample tuning
output of the algorithms described in this paper for a TPC-H
workload tuned for indexes. Using the initial configuration
(requiring 1.25GB) the workload is estimated to execute in
2,469 time-units. The optimal configuration can bring the
execution cost down to 540 time-units but requires over 6GB
of space. The best configuration under 1.75GB (the input
constraint) is estimated to result in 1,388 time-units (a 43%
improvement). The figure shows that adding up to 250MB
of additional disk space can result in an additional 10% im-
provement (a reasonable trade-off). It also shows that having

5See Section 3.6 for extensions that handle updates.



more than 4GB only improves the situation by a marginal 3%
and therefore is not advisable (see the steep slope in Figure 4
for configurations larger than 4GB). While this analysis can
also result from running existing tools repeatedly with vary-
ing storage constraints, our approach produces the distribu-
tion of more efficient configurations as a by-product of the
normal execution.
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Figure 4: Relaxation-based search for a TPC-H database.

In the next section we describe the space of relaxations for a
given configuration and then introduce our search algorithm.

3.1 Relaxing Configurations
As described earlier, relaxing a configuration is done by replac-

ing a subset of its indexes or views by another so that the resulting
configuration is smaller at the cost of being generally less efficient.
In this way, by progressively relaxing configurations we eventu-
ally obtain one that fits in the available space and is hopefully just
slightly less efficient than the initial, optimal configuration. In this
section we describe the set of relaxations that we can apply to a
given configuration. We designed the set of transformations by ex-
ploiting knowledge about the optimizer (such as, for instance, how
indexes and views are used in execution plans). Since the trans-
formations are transitive, we focus on those that replace one or at
most two structures (in general we can apply a given transforma-
tion multiple times). Some of the transformations (e.g., index and
view merging) are similar in spirit to previous work [6, 2] while
others are specifically designed for our problem.

3.1.1 Index Transformations
In this section we denote an indexI with a sequence of key

columnsK and a set of suffix columnsS asI = (K; S). Also,
we assume that ifS1 andS2 are sequences, the expressionS1 ∩S2

(similarly S1 − S2) returns the sequence that has elements in the
intersection (similarly, difference) ofS1 andS2 in the same order
that they appear inS1. We next introduce five transformations that
apply to indexes:

Merging: The concept of index merging has been proposed be-
fore [6]. In this work we define the (ordered) merging of two in-
dexesI1 = (K1; S1) andI2 = (K2; S2) as the best index that
can answer all requests that eitherI1 and I2 do, and can be ef-
ficiently sought in all cases thatI1 can (some requests that can
be answered by seekingI2 might need to scan the merged index,
though). Specifically, we define the merging ofI1 andI2 asI1,2 =
(K1; (S1 ∪ K2 ∪ S2) − K1). As a minor improvement, ifK1 is
a prefix ofK2, we defineI1,2 = (K2; (S1 ∪ S2) − K2). For in-
stance, mergingI1 = ([a, b, c]; {d, e, f}) andI2 = ([c, d, g]; {e})
results inI1,2 = ([a, b, c], {d, e, f, g}). A configurationC that
is relaxed by mergingI1 andI2 results in the new configuration
C′ = C − {I1, I2} ∪ {I1,2}.

Splitting: This transformation aims to introduce suboptimal in-
dex intersection plans by rearranging overlapping columns of ex-
isting (wider) indexes. ConsiderI1=(K1; S1) and I2=(K2; S2).
Splitting I1 andI2 produces a common indexIC and at most two
additional residual indexesIR1 andIR2. The idea is that we could
replace usages of indexI1 (respectively,I2) by a less efficient index
intersection betweenIC andIR1 (respectively,IR2), or rid lookups
over IC ’s result if IR1 (respectively,IR2) does not exist. Specif-
ically, we defineIC = (KC=K1 ∩ K2; SC=S1 ∩ S2) provided
that KC is non-empty (index splits are undefined ifK1 andK2

have no common columns). In turn, ifK1 andKC are different,
IR1 = (K1−KC , I1−IC), and ifK2 andKC are differentIR2 =
(K2 − KC , I2 − IC). ConsiderI1 = ([a, b, c]; {d, e, f}), I2 =
([c, a]; {e}), andI3 = ([a, b]; {d, g}). Splitting I1 andI2 results
in IC = ([a, c]; {e}), IR1 = ([b]; {d, f}) andIR2 = ([d]). Split-
ting I1 andI3 results inIC = ([a, b]; {d}) andIR1([c]; {e, f}). A
configurationC that is relaxed by splittingI1 andI2 results in the
new configurationC′ = C − {I1, I2} ∪ {IC , IR1, IR2}.

Prefixing: ConsiderI = (K; S). If we take any prefixK′

of K (including K′ = K if S is not empty) we obtain an index
IP = (K′, ∅) that can answer arbitrary requests thatI does by
optionally performing rid lookups to get the remaining columns
(K-K′) ∪ S. A configurationC relaxed by prefixing indexI with
IP results in the new configurationC′ = C − {I} ∪ {IP }.

Promotion to clustered: Any indexI over tableT in configura-
tion C can be promoted to a clustered index provided thatC does
not already have another clustered index over tableT .

Removal: Finally, any indexI in a configurationC can be re-
moved to obtain a new configurationC′ = C − {I}.

3.1.2 View Transformations
We denote a viewV as a 6-tupleV = (S, F, J, R, O, G), where

S is a set of base-table or aggregate columns,F is a set of tables,
J is a set of equi-join predicates,R is a set of range predicates,O
is a conjunction of predicates that are not inJ or R, andG is a set
of base-table columns (all components except forS andF can be
empty)6. The SQL equivalent forV is:

SELECT S

FROM F

WHERE J AND R AND O

GROUP BY G

Consider anSPJG query Q, and suppose that we want to try
matchingQ and viewV = (SV , FV , JV , RV , OV , GV ). We first
rewriteQ as a 6-tupleQ = (SQ, FQ, JQ, RQ, OQ, GQ) and then
apply a subsumption test to each pair of components. If all sub-
sumption tests are successful, we can rewriteQ using V . Sub-
sumption tests vary among specific systems balancing efficiency
and completeness. In this paper we assume that forQ andV to
match, it must be the case thatFQ = FV (the rationale is that if
FV ⊆ FQ, thenV would have already matched a sub-query ofQ
during optimization) andOV ’s conjunctions are included inOQ’s
(conjunct equality is structurally tested without complex rewritings,
so we simply check that the predicate trees are the same modulo
column equivalence). The remaining components are checked us-
ing simple inclusion tests modulo column equivalence. We next
introduce the two transformations that apply to materialized views:

Merging: Similarly to indexes, merging viewsV1 andV2 is ex-
pected to result in the most specific viewVM from which all in-
formation for bothV1 andV2 can be extracted. Specifically, we

6Classifying the query predicates in setsJ , R, andO is done to simplify
the view matching procedure.



require thatVM be matched whenever eitherV1 or V2 are. With
that property in mind, we define view merging as follows. Consider
V1=(S1, F1, J1, R1, O1, G1) andV2 = (S2, F2, J2, R2, O2, G2).
Due to the specific view matching procedure described earlier, we
require thatF1 = F2 as a prerequisite for merging. We then define
the merging ofV1 andV2 asVM =(SM , FM , JM , RM , OM , GM ),
whereFM =F1=F2, JM =J1 ∩ J2, RM =R1“merge”R2 (i.e., RM

combines same-column range predicates inR1 and R2), OM =
O1 ∩ O2 (where the intersection uses structural equality as in the
view matching algorithm),GM =G1 ∪ G2 if both G1 andG2 are
non-empty (if eitherG1 or G2 are empty,GM = ∅), andSM =
S1 ∪S2 if GM 6= ∅ (if GM = ∅, SM = S1 ∪S2 −SA ∪S′

A where
SA is the set of aggregated columns in eitherS1 or S2 andS′

A is
the set of base-table columns inSA). As a minor improvement, if
some range predicate inRM becomes unbounded (e.g., after merg-
ing R.a < 10 andR.a > 5) we eliminate it altogether fromRM

(if GM 6= ∅ we add the corresponding column to bothGM andSM

so that range predicates can still be evaluated withVM ). The fol-
lowing example illustrates the merging procedure. Consider views
V1 andV2 defined below:

V1= V2=
SELECT R.a, R.b SELECT R.a, sum(R.c)
FROM R,S FROM R,S
WHERE R.x=S.y WHERE R.x=S.y AND R.w=S.z
AND 10 ≤ R.a ≤ 20 AND 15 ≤ R.a ≤ 25
AND R.b*R.b < 10 AND 10 ≤ R.b

GROUP BY R.a

MergingV1 andV2 results in the following view:

VM= SELECT R.a, R.b, R.c
FROM R,S
WHERE R.x=S.y
AND 10 ≤ R.a ≤ 25
AND 10 ≤ R.b

After views V1 and V2 are merged intoVM , all indexes over
V1 andV2 are promoted toVM . In other words, for each index
I(K; S) overV1 (respectively,V2) we create and indexIM (K′; S′)
whereK′ andS′ consist of all columns inK andS mapped from
V1 (respectively,V2) to VM

7. A configurationC that is relaxed by
merging viewV1 andV2 into VM results in the new configuration
C′=C −{V1, V2}− IV1

− IV2
∪{VM}∪ IVM

, whereIV1
, IV2

and
IVM

are the indexes associated, respectively, withV1, V2 andVM .
Note that we do not include a “split” transformation for views. The
reason is that the analogous of index intersections in this case is
to join simpler views to obtain the original one, but this is already
handled by our model. In fact, if a viewV ′ that is simpler than
the original viewV (say,V ′ contains fewer joined tables) could be
used to answer a query, thenV ′ should have been already requested
during the initial optimization.

Removal: Any view V in a configurationC can be removed
to obtain a new configurationC′ = C − {V, I1, . . . , In}, where
I1, . . . , In are all indexes defined overV .

3.2 Search Algorithm
Having defined the set of transformations to relax a given con-

figuration into a new configuration that is smaller but generally less
efficient than the original one, we now design a generic search strat-
egy as follows (see Figure 5). While optimizing each queryq in the
input workloadW we intercept all index and view requests and
obtain an optimal initial configurationcbest following the ideas in
7A small number of additional columns is sometimes added toS′ to al-
low VM efficiently answer requests forV1 andV2 without performing rid
lookups. We omit those details for simplicity.

Section 2 (lines 1-2 in the figure). We then create a pool of con-
figurations (CP) that initially consists ofcbest (line 3) and initiate
the proper search until we run out of time (lines 4 to 9). In the
main search loop, we select some configurationc from the config-
uration poolCP (line 5) and apply some transformation to relaxc

into cnew (line 6). We add the new configurationcnew to the pool
CP and, ifcnew fits in the available spaceB and it is more efficient
than the current best configurationcbest we keepcnew as the best
configuration so far. When time is exceeded line 10 returnscbest.

SearchStrategy (W:workload, B:space constraint)
01 Get optimal configurations for each q ∈ W // Section 2
02 Cbest = ∪q∈W optimal configuration for q

03 CP = { cbest }; cbest=NULL; // cost(NULL)=∞
04 while (time is not exceeded)
05 Pick c ∈ CP that can be relaxed // template
06 Relax c into cnew // template
07 CP = CP ∪ { cnew }
08 if ( size(cnew) ≤ B ∧ cost(cnew)<cost(cbest) )
09 cbest=cnew

10 return cbest

Figure 5: Generic physical-design search algorithm.

Figure 5 is a template algorithm because lines 5 and 6 are not
fully specified. When we instantiate specific procedures to choose
the next configuration (line 5) and transformation (line 6) to apply
to it, we obtain a concrete search procedure. Since we keep relaxing
configurations, we implicitly prune the search space of configura-
tions. In fact, this space is not the power set of all possible physi-
cal structures, but a much more reduced one that is traversed only
by transforming (e.g., merging) structures that are useful in some
other configuration. Figure 6, however, illustrates that in general
the search space is still extremely large. In the figure we instan-
tiated line 5 by selecting the last relaxed configuration, and line 6
by picking an arbitrary new transformation for such configuration.
The figure shows the total number of transformations that can be
chosen in lines 5-6 at each iteration of the search algorithm for a 22-
query TPC-H workload. We observe that each iteration introduces
hundreds of new transformations (which in turn result in hundreds
of new configurations). Clearly, an exhaustive search algorithm is
not feasible even for small to medium workloads.

0

2000

4000

6000

1 2 3 4 5 6 7 8 9 10 11

Iterations

C
an

di
da

te
 T

ra
ns

fo
rm

at
io

ns
   

.

Indexes only

Indexes and views

Figure 6: Candidate transformations for a TPC-H workload.

For that reason, it is crucial to develop good heuristics to guide
the search strategy so that good configurations are quickly identi-
fied. In the next section we show how to estimate some useful prop-
erties of candidate transformations, and then we introduce heuris-
tics that rely on those properties to instantiate lines 5 and 6 in the
algorithm of Figure 5.

3.3 Estimating Configuration Properties
In the physical design problem, the two critical properties of

any given configurationC are (i) the spaceC consumes, and (ii)
the expected execution cost of the workload whenC is available.



Clearly, any heuristic used to choose a transformation to relax the
current configuration (line 6 in Figure 5) might greatly benefit from
knowledge about space consumption and expected execution cost
of the resulting configuration. In fact, if we knew how much would
the space consumption decrease or the expected execution cost in-
crease after applying a given transformation, we could make a more
informed decision in choosing the best alternative.

Unfortunately, there is no efficient way to precisely calculate
such values in general. In fact, to calculate the space consumed by
an arbitrary configuration (especially if the configuration contains
materialized views) we first need to materialize all of its physical
structures in the database. In turn, to obtain the expected execu-
tion cost of a given workload we need to re-optimize all queries in
the workload after materializing (or simulating) the physical struc-
tures in the database. These procedures are obviously not scalable
to help decide which transformation to apply for relaxing the cur-
rent configuration. In the example of Figure 4, we would need to
re-optimize the workload hundreds of times per iteration to obtain
the expected execution cost of each relaxed configuration.

Since it is unfeasible to obtain exact quantities, in this section we
show how to obtain approximate values for space consumption and
expected cost. These approximations are not exact, but adequate to
guide the search. Specifically, in the next section we review how
to estimate the size of a given configuration without materializing
it, and then we propose a technique to obtain a (tight) upper bound
of the expected execution cost of a relaxed configuration without
calling the optimizer.

3.3.1 Space Consumption
The space consumed by a configuration is the sum of sizes of all

its physical structures. In this section we briefly describe how we
estimate the space consumed by indexes and materialized views.

Consider first indexI = (K; S) over tableT . To estimate
its size we first calculate the width of an entry in any ofI ’s leaf
nodes asWL =

P
c∈K∪S

width(c), wherewidth(c) is a system-
dependant constant ifc is a fixed-length column (e.g., integers are
four bytes long), or is the average length of values ofc in the data-
base ifc is a variable-length column (we approximatec’s average
length using sampling). Similarly, we calculate the width of an en-
try in an internal node of the B-Tree asWI =

P
c∈K

width(c).
Using WL and WI we then calculate the number of entries per
page in leaf (PL) and internal (PI ) nodes of the B-Tree. Finally,
we calculate the total number of pages used byI as the sum of
pages per level in the B-Tree. Specifically, leaf nodes in the B-Tree
fit in S0 = ⌈|T |/PL⌉ pages and leveli (i ≥ 1) nodes in the B-Tree
fit in Si = ⌈Si−1/PI⌉ pages8.

Since materialized views are defined as regular views for which a
clustered index has been implemented, obtaining the size of a mate-
rialized view is almost equivalent to the case described above. That
is, the space consumed by a materialized viewV is estimated as the
sum of sizes of each index (including the clustered index) defined
overV . We can apply the same procedure as before, with the only
caveat that we do not know the value|V | (while cardinality val-
ues for base tables are typically stored in the database catalogs, the
cardinality of arbitrary views is not known in advance). To approx-
imate|V |, we use the cardinality module of the optimizer itself to
estimate the number of tuples returned by the view definition. We
note that more accurate procedures can be used (e.g., using sam-
pling for single-table views, or views that use foreign-key joins),
but those procedures are not general (e.g., see [3]).

8The analysis is slightly more complex due to factors such as index fill
factors, hidden rid columns in secondary indexes, and page overhead due to
fixed- and variable-length columns, but we omit those details for simplicity.

3.3.2 Expected Execution Cost
Consider a configurationC that is relaxed toC′, and suppose

we want to estimate the increase in expected execution cost for the
input workload when usingC′ instead ofC. An expensive alterna-
tive consists of re-optimizing all queries in the workload usingC′

and calculate the difference with complete information. Due to the
specific transformations that we consider (see Section 3.1), there
is a more effective method that we can use. As we explained in
Section 3, if some queryq in the workload does not use any of the
replaced structures fromC, the execution plan forq under config-
urationC′ would not change. For that reason, we only need to re-
optimize the subset of queries in the workload that originally used
some of the physical structures that belong toC but do not appear
in C′. This technique is expected to be much more efficient, since
in general there are just a few queries that use each physical struc-
ture in a configuration, and therefore the fraction of re-optimized
queries is rather small.

Unfortunately, even when considering the optimization described
above, this approach remains too costly. As shown in Figure 4, for
a small 22-query workload there are hundreds of candidate trans-
formations per iteration. If we were to estimate the increase in
execution cost of each resulting configuration, and assuming that
there is only one query per configuration to re-optimize, we would
require hundreds of optimizer’s calls per iteration, which becomes
prohibitively expensive. In this section we take a different approach
and develop techniques that allow us to (tightly) upper-bound the
increase in cost for a candidate relaxed configuration without mak-
ing a call to the optimizer9. We will then use these upper bounds as
a measure of how costly a relaxed configuration might become.

Consider the execution planP at the left of Figure 7. Index
I = ([a]; {b, c}) is used to seek tuples that satisfya < 10 and also
to retrieve additional columnsb andc, which would eventually be
needed at higher levels in the execution plan. Suppose that we are
evaluating aprefixingtransformation that replacesI in the current
configurationC with the alternativeI ′ = ([a]; {b}) in the relaxed
configurationC′. In general, the optimal execution plan underC′

might be arbitrarily different from the original execution plan inC,
and the only way to find the new plan would be to re-optimize the
query. However, because of the way we defined transformations,
we know thatI ′ can answer any request that the originalI did, al-
beit less efficiently (e.g., by introducing an additional rid lookup
or sort operator, or by having to scan the whole index instead of
performing a few index seeks). We can then replace the small por-
tion of the execution plan that usesI with a small compensating
plan that usesI ′. This plan would be valid and therefore as least
as efficient as the best plan found by the optimizer. Specifically,
the alternative plan at the right of Figure 7 usesI ′ and additionally
performs rid lookups to obtain the remaining requiredc column.

The example above illustrates the principle that we follow to ob-
tain an upper-bound on the cost of executing a given query under a
relaxed configuration. In short, we isolate the usage of each physi-
cal structure that is removed from the original configuration and es-
timate (without re-optimizing) how expensive would be to evaluate
those sub-expressions using the physical structures available in the
relaxed configuration. Clearly, there is a spectrum of alternatives
to obtain these costs, ranging from simple estimators to complex
procedures that almost mimic the optimizer itself. In this work we
use a simple non-intrusive approach that can be implemented by
simply analyzing information exposed by current optimizers.

9Note that we do not completely eliminate optimizer’s calls. After a trans-
formation is chosen and the current configuration is relaxed,we re-optimize
the queries in the workload that use some of the deleted physical structures
to obtain the actual configuration cost in line 8 of Figure 5.
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Figure 7: Estimating execution-cost upper-bounds.

Specifically, the source of information we use to obtain execution
cost upper-bounds is the optimized execution plans of each query
in the workload under the original configuration. We assume that
we can extract from a query’s execution plan the following infor-
mation for each used index over a base table or materialized view:
estimated I/O and CPU cost, estimated number of rows returned,
type of usage (i.e., whether the index is used to seek a fraction of
the rows or to scan all rows), the optional required order that is
enforced on the returned rows, the optional set of columns sought
or used for ordering, and the set of additional columns that are re-
quired upwards in the tree. We note that current optimizers expose
this minimal information via special “explain” interfaces.

Index Transformations
Consider a transformation that removes an indexI = (K; S) that
is used to evaluate some query under the original configuration.
Suppose that we want to bound the increase in execution cost of
such a plan when we replaceI with a suitable use of an available
index IR = (KR; SR) (e.g.,IR can be the merged index in the
case of a merge transformation). We now describe such procedure.

First suppose that indexI was completely scanned in the original
execution plan. We then estimate the cost of scanning the alterna-
tive IR ascost(I) · size(IR)/size(I) (i.e., we linearly scale the
cost based on the number of pages accessed in each scan). Then,
we check whether all columns provided byI in the original execu-
tion plan can be provided byIR. If that is not the case, we add the
cost of performingrows(I) rid lookups, whererows(I) is the esti-
mated number of rows returned byI. Finally, if the result produced
by I was required to be sorted and the order columns are not com-
patible with those inIR (i.e., key columnsK andKR do not share
the same prefix) we add the cost of an intermediate sort operator.
In that way, we obtain the cost of an alternative plan that usesIR to
return the same result thatI did under the original configuration.

If, instead,I was sought in the execution plan under the original
configuration, we proceed as follows. We first identify the columns
in K that were used to seekI (usually just one column) and the
selectivitysI of the predicates that were used in the seek. Then, we
identify the longest column prefix inKR that has the same columns
as the corresponding prefix inK and obtain the selectivitysIR

of
the corresponding sargable predicates (if no columns are shared,
the selectivity is one andIR has to be scanned completely). Using
a similar argument as in the previous case, we first estimate the cost
of usingIR ascost(I) · (sIR

· size(IR))/(sI · size(I)) and then
perform the tests for rid lookups and sort operators to obtain the
total cost of usingIR in the relaxed configuration.

In the case of split transformations, we independently apply the
previous procedure to the common and residual indexes and then
include the cost of intersecting rids. We omit the details of this
case for brevity, but the main ideas remain the same.

View Transformations
When we merge viewsV1 andV2 intoVM , we additionally promote
all indexes overV1 andV2 to VM (see Section 3.1). Also, the view
merging transformation has the property that the optimizer would
matchVM whenever it matches eitherV1 or V2 (optionally using
additional filters or group-by operators). We therefore bound the
increase in cost due to a view-merge transformation in two steps.
First we calculate, using the techniques in the previous section, the
increase in cost for each index onV1 or V2 that is used to answer
some query under the original configuration. Then, we estimate the
cost of any compensating operation (e.g., group-by operators) that
need to be inserted on top ofVM to obtain the results that eitherV1

or V2 produce. Finally, we obtain an upper-bound of the cost of the
query under the new configuration as the sum of all these partial
quantities. While the main concepts are clear, there are a number
of subtleties that need to be taken into account. We illustrate some
of these below, but we omit the full details for simplicity. Consider
the following views:

V1= SELECT R.a, R.b V2= SELECT R.a, sum(R.c)
FROM R FROM R
WHERE R.a<10 WHERE R.a<20 AND R.b<20

GROUP BY R.a

which are merged intoVM =
SELECT R.a, R.b, R.c
FROM R
WHERE R.a<20

and suppose that queryQ seeks an indexI1=([b, a]) onV1 for some
range predicate on columnb. The corresponding index onVM addi-
tionally contains tuples that satisfy10 ≤ R.a < 20. When bound-
ing the cost of evaluating the same sub-plan with the promoted in-
dex onVM , the expected fraction of tuples retrieved from the index
does not change since we assume independence, but we need to
add the cost of a compensating filter for predicateR.a < 10. On
the other hand, if the index sought is originallyI2=([a, b]) on V1,
the total number of tuples touched in the corresponding index on
VM stays the same (and therefore the fraction of tuples changes)
since the leading key-column in the index is preciselyR.a. Finally,
queries that use some index onV2 need to add the cost of a fi-
nal group-by operator after the index sub-plan because the merged
view VM removed the grouping clause on columnR.a. We note
that we reuse components in the optimizer (e.g., costing or cardi-
nality estimation modules) to implement these steps, so we do not
keep the optimizer out of the loop by creating our own parallel es-
timators.

For transformations that delete views, the situation is more com-
plex. The problem is that we do not know how to replace a sub-plan
that uses the removed view without calling the optimizer. An inex-
pensive approach to address this problem is as follows. Each time
we consider a new viewV , we optimizeV with respect to the base
configuration (i.e., the configuration that contains only indexes that
enforce constraints and must be present in any configuration) and
obtainCBV , the cost to obtainV in the base configuration. To es-
timate an upper bound of the cost of each query that usedV in the
original configuration we first calculate, for each index onV used
in the query, the increase in cost when the replacement index is a
heap. Then, we addCBV to this partial cost and obtain the final up-
per bound. In other words, the implied plan is one that first obtains
V (in no particular order) and then replaces each index usage by a
scan overV . We can use a more accurate procedure than estimating
simply CBV values. Every time we obtain a new configurationC,
we estimate the cost to obtain each viewV that is used inC with
respect to the smaller configurationC − {V }. We apply the same



ideas discussed earlier to avoid unnecessary optimization calls: if
V was optimized in the configuration that was relaxed to obtain
C andV ’s plan contains all indexes that are still present inC, we
can assume that the optimizer would find the same plan forV and
avoid re-optimizing it. Since the number of views per configuration
is not very large, we obtain more accurate estimates thanCBV with
a small overhead.

3.4 Heuristics for Guiding the Search
In this section we propose specific implementations of lines 5

and 6 of Figure 5 and therefore fully specify our algorithm to auto-
matically tune the physical design of a database system.

Consider first line 6, which chooses some transformation to ap-
ply to the current configurationC. Using the techniques in the pre-
vious sections, we can efficiently estimate, for each valid transfor-
mationtr that relaxesC into Ctr, the expected decrease in storage
space (denoted∆Str = Space(C)-Space(Ctr)) and the maximum
increase in cost (denoted∆Ttr = CostBound(Ctr) - Cost(C)). The
value penaltytr=∆Ttr/∆Str estimates the increase in execution
cost per unit of storage that each transformation is expected to re-
turn. Increasingpenaltytr values seems a reasonable heuristic to
rank possible transformations, since we are interested in relaxed
configurations that are significantly smaller in space without in-
creasing the expected cost too much (this heuristic is also used in
greedy approximations to the knapsack problem). We introduce
a small variation on the definition ofpenaltytr values as follows.
Suppose that the space constraint isB (i.e., we are interested in the
best configuration that fits inB). Any decrease in space beyondB
is not strictly useful but we might artificially decrease thepenaltytr
value of transformations that significantly decrease the space below
B. For that reason, we refine the penalty function as follows:

penaltytr =
∆Ttr

min(Space(C) − B, ∆Str)

Line 6 in Figure 5 becomes:

06 Relax c into cnew using the transformation tr

that minimizes penaltytr

We note that in this step we need to evaluate the penalty of each
transformation in the current configuration. While at first this might
seem expensive, we do not need to re-optimize queries to evaluate
penalty values, and we can also cache results from one iteration to
the next, so the amortized number of transformations that we eval-
uate per iteration is rather small and can be done very efficiently.

The only missing piece in the algorithm is a procedure to choose
which configuration to relax at each iteration (line 5 in Figure 5).
A reasonable alternative is to choose, at each iteration, the configu-
ration with the minimal estimated cost. This way, we always work
on the current most efficient configuration. While this alternative
is interesting, it is also impractical. Usually, the most efficient con-
figurations are the ones that require the largest amount of storage,
and therefore the time to converge to a configuration that is under
the required space constraint is too long. Instead, we select the next
configuration to relax as follows:

1. If the last relaxed configuration does not fit in the available
space, we choose and further relax it. In this way, we keep re-
laxing the same configuration until we reach one that is under
the space constraint. Using the greedy approach, we usually
find a good-quality configuration quickly, but we might miss
better alternatives. If there is more time available after we
reach a valid configuration, we use the next heuristic.

2. We obtain the chain of relaxed configurations from the last
one (that fits in the available space) to the initial (optimal)

configuration. We then pick the configuration that resulted
in the actual largest penalty when relaxed (with the aim of
“correcting” what went wrong in the previous iteration).

3. If there is no candidate in the current chain of configurations
with at least one valid transformation, we choose the config-
uration with the minimum expected cost that additionally has
at least one available transformation.

As we show experimentally in Section 4, applying these heuris-
tics to the physical design problem results in high-quality recom-
mendations in relatively short amounts of time.

3.5 Variations and Optimizations
In this section we briefly mention some minor optimizations and

variations to the main algorithm described earlier.

Shortcut evaluation: When evaluating the cost of a relaxed con-
figurationCtr, we might reach a point in which the cost of
a subset of queries inCtr is larger than the total cost of the
current best configurationCbest. In this case, we know that
neitherCtr nor any configuration that is further relaxed from
Ctr would be more efficient thanCbest. Therefore, we can
(i) stop evaluatingCtr (thus saving optimization calls), and
(ii) removeCtr from the pool of candidate transformations
CP (thus pruning the search space).

Multiple transformations per iteration: In our current algorithm
we apply a single transformation to relax the current configu-
ration. In general, we might apply more than one transforma-
tion. We need to be careful that we do not select conflicting
transformations (such as mergingI1 andI2 after removing
I1). This alternative might reduce the overall time to arrive
to a valid transformation, but introduces additional inaccu-
racies because often transformations strongly interact with
each other.

Shrinking configurations: Another variation consists of remov-
ing, at each iteration, all indexes and views from the cur-
rent configuration that are not used to evaluate any query in
the workload. While this approach would reduce the search
space because fewer transformations are available, it might
also decrease the quality of the final recommendation, since
some structures that are not used in the current configuration
might become useful after applying some transformation.

3.6 Handling Updates
So far we have exclusively focused on workloads that only query

the database without updating it (i.e., we assume that noUPDATE,
INSERT, or DELETE queries are present in the workload). In reality,
most workloads are composed of a mixture of “select” and “up-
date” queries, and any physical design tool must take into consid-
eration both classes to be useful. The main impact of an update
query is that some (of all) indexes defined over the query’s updated
table must also be updated as a side effect. Therefore, it is not true
anymore that adding more indexes would always reduce the ex-
pected cost of a workload. In the rest of this section we explain how
the different components in our approach change when updates are
present in the workload. (While the core concepts stay the same,
we chose to stage the presentation in this way for simplicity.)

Evaluating Configurations
An important goal in our techniques is to minimize the number of
optimization calls, which are the most expensive component of our
algorithms. The main approach we use for that purpose is based



on the optimality principle of the optimizer. Since we always relax
a configurationC into a less efficientC′, a query underC that
uses indexes which are not removed inC′ does not need to be re-
optimized underC′. This approach, while still correct, can become
inefficient when update queries are present. The reason is that each
update query implicitly references all indexes (or some of them, in
the case ofupdate queries) over its referenced table. Therefore,
it is more likely that any transformation affect some index used
in an update query, and many more re-optimizations are likely to
occur. To mitigate this effect, we separate each update query into
two components: a pure select query, and a small update shell. For
instance, the following query:

UPDATE R SET a=b+1, c=c*c+5 WHERE a<10 AND d<20

is separated into (i) a pure select query and (ii) an update shell:

(i) SELECT b+1, c*c+5 FROM R WHERE a<10 and d<20

(ii) UPDATE TOP(k) R SET a=0, c=0

wherek is the estimated cardinality of the corresponding select
query. We now can optimize each component separately. Specif-
ically, we calculate, for each indexI and update-queryq in the
workload, the cost of updatingI for the update shell ofq. Later,
when evaluating a configuration, we use the select portion of update
queries (therefore avoiding many additional optimization calls) and
then add to the resulting partial cost the update cost of all indexes
in the configuration over the table referenced by the update query.

Optimal Configuration
In section 2.1 we showed how to obtain a configuration that cannot
be improved, which was then the starting point of our relaxation-
based approach. Such configuration gives the database user more
information about an ongoing tuning session, since it bounds how
efficient a configuration can get. When updates are present, the
configuration obtained in this way is not optimal anymore because
indexes also need to be updated, raising the overall cost of the
workload. However, the resulting configuration is still optimal for
the select component of each update query, and we can use this fact
to obtain a lower bound. Specifically, the execution cost for the se-
lect portion of the queries in the workload (see above) is added to
the cost of all the update shells under the base configuration (which
contains all the indexes that must be present in any configuration).
We then obtain a cost that cannot be improved by any configura-
tion. The main difference is that this bound is not tight (i.e., there
might be no configuration that meets the lower bound) but can any-
way offer valuable additional information to the user while tuning a
complex workload. We implicitly consider update costs as another
variable in the optimization problem that moves in the opposite di-
rection of select costs (like configuration sizes).

Choosing configurations
In Section 3.4 we showed how we pick the next configuration to re-
lax. Specifically, we keep relaxing the current configuration until it
fits in the available space. If the workload contains updates, it is ad-
visable to continue relaxing the current configuration even beyond
that point, because removing indexes that result in expensive up-
dates might further decrease the cost of the relaxed configuration.
We therefore change the first heuristic of Section 3.4 as follows:

1. If the last relaxed configuration does not fit in the available
spaceor its cost is smaller than the configuration it was re-
laxed from, we choose and further relax it.

Transformation Penalty
For workloads with update queries, the cost upper-bound of a re-
laxed configuration can be negative (sometimes the cost of remov-

Average # Workloads;
Name Size Tables cols/table min/max size

TPC-H (Synthetic) 1.25 GB 8 7.6 26 (1/24)
DR1 (Real) 2.9 GB 116 6.9 30 (1/30)
DR2 (Real) 13.4 GB 34 8.5 11 (1/10)
DS1 (Synthetic) 700 MB 26 58.2 57 (1/96)
Bench (Synthetic) 530 MB 6 21.0 163 (1/144)
DS2 (Synthetic) 170 MB 16 19.1 259 (1/160)

Table 2: Databases and workloads used in the experiments.

ing some index can be outweighed by the benefit of not having to
update it). In those cases the penalty function correctly chooses
transformations with negative over positive cost upper-bounds, but
sometimes makes poor decisions comparing two transformations
with negative costs. If∆Tt1 = −10, ∆St1 = 10, ∆Tt2 = −20,
and∆St2 = 30, the penalty fort1 (i.e., -1), would be smaller than
the penalty fort2 (i.e., -2/3). However, the configuration relaxed
usingt2 is clearly better than the one relaxed fromt1 both in terms
of space and cost (we say thatt2 dominatest1). To remedy those
situations, we first obtain the skyline of transformations (i.e., we
consider only transformations that are not dominated by any other
transformation) and then use the originalpenaltydefinition over
this restricted subset.

Additionally, the denominator in the definition ofpenaltyis given
by min(Space(C)−B, ∆S). Since now we can relax a configura-
tion that requires less thanB storage (see above), the denominator
might become negative, which is undesirable. However, in those
situations space is not relevant since the configuration already fits
in B. Therefore, when the current configuration requires less than
B storage, we simply use∆Ttr as the penalty associated withtr.

4. EXPERIMENTAL EVALUATION
In this section we report an extensive experimental evaluation

of our proposed technique over both synthetic and real databases,
with respect to hundreds of different workloads (see Table 2 for a
summary of the experimental setting). We implemented the client
component of our prototype in C++ and modified Microsoft SQL
Server to support our extensions of Section 2. We note that the
complete implementation of our prototype was finished in less than
two months by a single developer, and the resulting prototype was
robust enough to handle virtually all input workloads. The aim of
this section is to show that our approach, which is based on sound
principles and relies on few assumptions, results in high-quality
recommendations and often even outperforms state-of-the-art tools
available in commercial database systems.

In the rest of this section we use PTT (Prototype Tuning Tool) to
denote our prototype implementation, and CTT (Commercial Tun-
ing Tool) to denote the commercial state-of-the-art alternative in
Microsoft SQL Server we compare PTT against. The metric to
evaluate a physical recommendation isimprovement, defined as:

improvement(CI , CR, W ) = 100% ·

�
1 −

cost(W, CR)

cost(W, CI)

�
whereCI is the initial configuration,CR is the recommended con-
figuration, andcost(W, C) is the expected cost of evaluating all
queries in the input workloadW under configurationC. Improve-
ment values can be negative (when the recommended configuration
is less efficient than the initial one due to stricter space constraints),
but always are smaller than 100%.

4.1 No Constraints
We first validate the approach of Section 2 (i.e., the ability to

intercept index and view requests during optimization and generate



optimal configurations for workloads without updates). For that
purpose, we obtained physical recommendations for each available
SELECT-only workload using PTT and CTT (we did not impose any
time or space constraint on CTT to obtain the best alternative). We
report experimental results in Figure 8. Specifically, each bar in the
figures represents one tuned workload and its magnitude measures
∆Improvement = ImprovementPTT - ImprovementCTT. (Values
of ∆Improvementgreater than zero represent cases in which PTT
obtained better recommendations than CTT.) We observe that:

1. There is a large number of cases (around 64%) for which
both PTT and CTT return the same recommendation (or rec-
ommendations within 1% of quality, which is attributed to
small inaccuracies in the various cost models used by both
the server and the tools, or small statistical fluctuations when
creating histograms using sampling).

2. There is a important number of cases (around 34%) for which
PTT returns better-quality recommendations than CTT (up to
60% additional improvement when recommending indexes
and even above 95% when also recommending views). It is
interesting to note that a small fraction of these cases helped
uncover design and implementation problems in CTT that
were not found during regular testing.

3. There is a very small number of cases (less than 2%) for
which PTT returns a configuration that is worse than that of
CTT. We examined these workloads in detail, and found that
they belong in two classes. On one hand, there were several
instances for which the optimizer made suboptimal choices
(for instance, returning a worse plan when additional indexes
or views were added to a configuration) and therefore were
violations of our assumptions. On the other hand, there were
a small number of cases (around 5 globally) that required
special handling by our techniques. This is expected as the
complexity of data sets and workloads is very high, but we
chose not to implement any special case in our prototype to
evaluate a clean and minimalist approach.

4. In general, the largest differences appear when recommend-
ing views in addition to indexes. The reason is, in addition to
view recommendation being inherently more complex, that
CTT has more shortcuts and special cases to handle views.

Table 3 shows the top-10 workloads that required the most time
to be tuned with CTT along with the time it took PTT to obtain the
optimal configuration and the improvements of the respective rec-
ommendations (we included at most two workloads per database).
Clearly, when no space constraints are present our techniques are
very efficient, since the starting point is already the desired goal. In
contrast, CTT spends considerable time in the merge and enumer-
ation phases. In the next section, we show that a relaxation-based
approach is also a better alternative in presence of updates or when
space constraints are reasonably loose.

Workload TimeCTT TimePTT ImprCTT ImprPTT
Bench-1-IV 774’39” 43’02” 99.12% 99.49%
DR2-1-IV 552’25” 14’12” 79.82% 98.44%
DR2-2-I 73’13” 5’15” 79.96% 80.06%
DR1-1-IV 67’19” 1’21” 42.83% 54.36%
DR1-2-IV 66’49” 1’13” 67.64% 81.99%
TPCH-1-IV 57’43” 9’27” 84.46% 97.04%
Bench-2-IV 34’03” 2’03” 79.46% 80.00%
TPCH-1-I 15’30” 2’14” 79.10% 79.27%
DS2-1-IV 13’24” 1’43” 93.77% 94.28%
DS1-2-IV 7’48” 2’11” 98.49% 99.87%

Table 3: Tuning time for the most expensive workloads.
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Figure 8: Quality of recommendations when using PTT and
CTT for varying databases and workloads.



4.2 Space and Update Constraints
In this section we report experimental results for constrained

versions of the problem. Specifically, we consider input work-
loads withUPDATE queries (which impose overheads to each rec-
ommended index or view), and tuning sessions with storage con-
straints. Figures 9(a-b) show∆Improvementvalues for all these
workloads (we used both real workloads with updates and syntheti-
cally generated ones, such as those obtained withdbgen for TPC-H
databases). While we imposed no time-bounds for CTT, we gave
PTT 15 and 30 minutes, respectively, for index-only and indexes-
and-views recommendations. As we can see (specially when rec-
ommending indexes and views), a large percentage of workloads
(83%) resulted in equal or better recommendations when using
PTT. In the remaining 17% of the cases, either the optimizer vi-
olated our assumptions (see previous section) or the search strategy
in PTT failed to obtain the better recommendation in the allotted
time. We note, however, that with only one exception, PTT resulted
in at most 5% degradation with respect to CTT for these workloads.
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Figure 9: Quality of recommendations forUPDATE workloads.

Figure 10 shows the quality of recommendations when varying
the storage constraints. For these experiments, we first used PTT to
obtain the optimal, largest, configuration (in our experiments, the
sizes of the optimal configurations were between 1.8 and 6 times
the sizes of the databases themselves). We then defined the space
taken by such configuration as 100% and the space taken by the
minimum configuration (even smaller than the existing configura-
tion) as 0%. Finally, we varied the space constraint between these
two extreme values and tuned each workload using PTT and CTT.
We can see that even when we do not impose a time bound to CTT,
the recommendations obtained by PTT are of better quality. Also,
our search strategy guarantees that the more space is available, the
better the quality of the recommendations. Due to multiple heuris-
tics and greedy approximation, CTT might recommend worse con-
figurations when slightly more space is available.

5. SUMMARY
Motivated by the increasing complexity of current physical de-

sign tools, we proposed a new architecture for the physical de-
sign problem that is based on sound principles and geared towards
avoiding guesswork. Our technique is conceptually simpler than
the current alternatives and our preliminary experiments indicate
its potential to improve the quality of recommendations and the
time needed to arrive to such recommendations compared to state-
of-the-art techniques.
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