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ABSTRACT cause (i) there is a combinatorial explosion of physical structures
In recent years there has been considerable research on automatd@ consider, and (i) these structures (e.g., indexes and materialized
selection of physical design in database systems. In current solu-views) strongly interact with each other, making almost impossible
tions, candidate access paths are heuristically chosen based on tht® stage the problem into simpler, independent, sub-goals.
structure of each input query, and a subsequent bottom-up search Reference [4] presented the first industrial-strength tool to ad-
is performed to identify the best overall configuration. To han- dress the automatic physical design problem when the structures
dle large workloads and multiple kinds of physical structures, re- to consider are single- and multi-column indexes. This reference
cent techniques have become increasingly complex: they exhibitintroduced a number of techniques and assumptions that were in-
many special cases, shortcuts, and heuristics that make it very dif-corporated in virtually all subsequent approaches. Specifically,
ficult to analyze and extract properties. In this paper we criti-  What-If API: Since it is not practical to materialize a candidate
cally examine the architecture of current solutions. We then de- configuration to evaluate its impact on the input workload, the data-
sign a new framework for the physical design problem that signifi- base server is extended to supguompotheticalphysical structures.
cantly reduces the assumptions and heuristics used in previous apThese structures are not materialized, but instead are simulated in-
proaches. While simplicity and uniformity are important contribu-  side the optimizer by adding meta-data and statistical information

tions in themselves, we report extensive experimental results show-to the system catalogs, which is done very efficiently [5].
ing that our approach could result in comparable (and, in many  pependence on the optimizer:Candidate physical structures
cases, considerably better) recommendations than state-of-the-arfe seful only if the optimizer exploits them (independently of

commercial alternatives.

how good weknowthey are). Therefore, it is not advisable to keep

a separate cost model or set of assumptions while searching for

1. INTRODUCTION

the best configuration. Instead, the optimizer, along with its cost

Database systems (DBMSs) have been widely deployed in recentModel, needs to be kept “in sync” with the tuning process.
years and their applications have become increasingly complex and Search Framework: Although new physical structures were
varied. Physical design tuning has therefore become more relevantater handled by evolving the first generation of tools, the search
than ever before, and presently database administrators spend coralgorithm proposed in [4] stayed almost unchanged:

siderable time tuning a sub-optimal installation for performance.
As a consequence of this trend, automatic physical tuning became
an important research problem. Most vendors nowadays offer auto
mated tools to tune the physical design of a database as part of their
products to reduce the DBMS's total cost of ownership (e.g., [1, 7,
11]). Although each vendor provides specific features and tuning
options, all these tools address the following search problem.

Automatic Physical Design Problem:Given a workload4" of
representative queries and updates, and a space con&rdind
the set of physical structures, oonfiguration that fits in B and
results in the lowest estimated execution cost of the queriés.in

Current tools recommend physical structures such as indexes and
materialized views, among others. As noted in previous work [2,
12], automating the physical design of a database is complex be-
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1. For each query in the workload, find a good set of candi-

date structures. This step guesses, from the query structure,
which columns might be useful as index keys, or which sub-
expressions can make a difference if they are materialized as
views. Some approaches extract this information from opti-
mized execution plans (e.g., [4]) and others in a preprocess-
ing step before optimizing the query (e.g., SAEFIS in [10]).
All these algorithms, however, use heuristics to identify can-
didate structures, such as choosing columns that participate
in equality or group-by predicates as index keys.

. Augment the initial candidate set by “merging” two or more

candidates together. The idea is to generate new candidate
structures that, while not optimal for any given query, might
simultaneously help multiple queries requiring less space [6].
Some techniques (e.g., [10]) limit merging to structures that
are useful for a single query and others (e.g., [2, 12]) merge
candidates across queries.

. Search this augmented space. Some techniques use a greedy

algorithm to incrementally augment valid configurations [4],
and others use a variation of knapsack and subsequent ran-
dom permutations [10]. All techniques are bottom-up, in
the sense that they start with a vadichptyconfiguration and
incrementally add (or change) candidate structures until the
space constraint is violated.



In this paper we claim that while thehat-if APland thedepen- We thus obtain a conceptually simple algorithm that results in
dence on the optimizere good design choices, the overall search recommendations that are either comparable or better than those
framework needs to be revised. of state-of-the-art commercial tools. Our approach significantly re-

Consider the first step above (candidate selection). Since theduces the complexity of an important set of techniques that was
search for candidates is done either before or after optimizing the becoming increasingly difficult to analyze and extend.
qguery completely, we need to guess which structures are likelytobe The rest of the paper is structured as follows. We next state the
used by the optimizer. The problem is that for complex queries, the assumptions on which we rely in the rest of the paper. In Section 2
number of such structures can quickly grow to be very large. Con- we show how to instrument a typical optimizer to obtain Hest
sider a query that joins a fact table with 20 dimension tables. Each configuration (without constraints) for a given query. Section 3 dis-
subset of dimension tables can result in a candidate view (there arecusses how we traverse the search space from this best (too large)
over one million of them). To avoid generating such a large set configuration to a good configuration that fits in the available space.
of candidates, today’s tools set bounds on the maximum numberIn Section 3.6 we discuss how to extend our techniques to handle
of structures to consider per query, and rank the candidates usingworkloads with update queries. Finally, Section 4 reports experi-
heuristics. These heuristics could be off-sync with those of the op- mental results on a prototype implementation of our approach.
timizer (which also prunes the search space in a specific way), and .
therefore suboptimal choices are likely. Also, inferring candidate Assumptlons
structures separately from the actual optimization might miss some In this paper we focus on recommending indexes and materialized
alternatives that are visible while queries are being optimized. views to minimize the estimated cost of an input workload. In par-

Another problem with the search technique outlined above is that ticular, indexes consist of a sequencekef columns optionally
the merging and enumeration steps are separate. Therefore, to erfollowed by a sequence shffixcolumng. Suffix columns are not
sure that good solutions are not missed, we need to eagerly generatgresent at internal nodes in the index and thus cannot be exploited
many alternatives during merging (which might clearly be useless for seeking (but can help queries that reference such columns in
had we performed a bit of enumeration beforehand). For reason-non-sargable predicates). The view language is restrictsg e
ably sized workloads, the number of merged structures can alsoqueries (i.e., single blockPJ queries withgroup-by clauses).
grow very large. Techniques make these steps scalable by imposingPredicates in the view definition are divided in conjuncts and as-
some constraints over which structures are merged. For instancesigned to one of three classg@in predicatesyange predicates,
reference [2] restricts the merging step so that each structure in theandotherpredicates, as illustrated in the example below:

initial set is merged at most once. SELECT R.a, S.b, T.c FROM R, S, T
As illustrated above, attempts to add new physical structuresina WHERE R.x=S.y AND S.y=T.z —join predicates
scalable fashion —while maintaining the original algorithm design—  AND B.a>5 AND R.a<50 AND R.b>5 —range predicates

: . .a<R. .c< .a*xR.b=5 — i
introduced several special cases, shortcuts, and general complex AP (R-a<R.b OR R.c<8) AND R.a*R.b=5 -other predicates

ity in the resulting algorithms. Current techniques additionally rely e assume that the optimizer has a unique entry point for single-

on the concept of frequent column- and table-subsets to rank can-élation access path selection (optimizers based on System-R [9] or

didate indexes and views, atomic configurations (with interaction Cascades [8] frameworks are usually structured in this way). In

patterns) to minimize optimization overhead, variations of greedy Other words, there is one component responsible for finding phys-

and knapsack search frameworks to enumerate configurations, andcal index strategies (including index scans, id intersections and

time-wise [1] or space-wise [11] staging to provide time-bounded Io_okups) for_ single table logical sub-pl_ans. Slml_larly, there is a

solutions or minimize interaction between structures, to name a View matching component that, once invoked witlSRIG sub-

few. Our opinion is that we have reached a point in complexity dUery, returns zero or more equivalent rewritings of such query

that makes very difficult to analyze, evolve, and add new features USing an available view in the system.

to the algorithms without significant risks of regression.

In this paper we explore an alternative approach to the automatic 2. INSTRUMENTING THE OPTIMIZER

physical design problem that addresses the difficulties described During the optimization of a single query, the optimizer issues

above. Our techniques are more integrated with the optimizer andseveral access path requests for indexes and materialized views.

exploit additional knowledge about its cost model. We base our For an index request over a single-table sub-plan (see Figure 2), an

solution on two orthogonal pillars: access path generation module first identifies the columns in sar-

- By instrumentingsmall portions of the optimizer, we elimi-  gable predicates, required sort columns, and the columns that are
nate the trial and error procedures currently used to identify additionally referenced upwards in the query tree. Then, it analyzes
candidates structures. Instead, we efficiently identify a small the available indexes and returns one or more alternative physical
superset of physical structures that grearanteedo result plans that might be optimal for the input logical sub-query. In gen-
in an optimal configuration (usually taking too much space). eral, each generated plan is an instance of a template tree that (i) has
- We propose a different approach for searching the space of ON€ Or more index seeks (or index scans) at the leaf nodes, (i) com-

physical structures. Instead of starting with an empty con- Pines the leaf nodes by binary intersections or unions, (iii) applies
figuration and progressively adding structures, we proceed &N optional rid lookup to retrieve missing columns, () applies an
in the opposite direction. We start with a large configura- optional filter operator for non-sargable predicates, and (v) applies
tion that is time-wise optimal but too large to fit in the avail- &0 optional sort operator to enforce order. Consider an index re-
able storage, and progressively “shrink” it using transforma- duest for the sub-query below (wherespecifies order):
tions that aim to diminish the space consumed without signif-
icantly hurting the expected performance. We show that this . o 3 .
approach has some advantages flwthquality and perfor- In thl_s case, the optimizer |den_t|f|es columAsand B in sargable
mance points of view, and might also return valuable infor- Predicates, columi as a required order, and columfsand C'
mation to the database administrator about the distribution of 1jf the database system does not support suffix columns, weconlsider
more efficient (but larger) configurations. keycolumns in indexes.

7o (Ip,e(0a<i0nB<10na+0=8(R)))




as additional columns that are referenced either by non-sargablespace of all possible configuratidnsThe optimal configuration,
predicates or upwards in the tree. Suppose that indexes on columnshus, is obtained by gathering all the simulated physical structures
A and B are available. The optimizer can then generate the plan that are generated during optimization. Table 1 shows the total
in Figure 1(a). However, depending on selectivity values, the al- number of requests for a typical 22-query TPC-H workload. We
ternative plan in Figure 1(b) (that avoids intersecting indexes but see that the number of requests (and thus the number of simulated
performs more rid lookups) can be more attractive. Also, if a cover- structures) is rather small for this complex workload.
ing index on column®d, A,B,C, andE is available, the alternative From an engineering point of view, this procedure is appealing
plan in Figure 1(c) might be preferable because it avoids sorting an since it is not very intrusive. In fact, the modifications required to
intermediate result. A cost-based optimizer considers this space ofinstrument the optimizer as we describe above are restricted to two
alternative plans for given available indexes and returns the mostentry points within the optimizer (view matching and index strategy
efficient physical strategy. The same idea applies to view requests.generation). From an algorithmic point of view, this technique does
In this case, the optimizer matches existing views against the input not rely on any guesswork to choose columns or subset of tables
query and, if it is successful, returns an equivalent query that usesto consider in indexes and views. Since requests are intercepted
the view (subsequently, the optimizer will issue index requests on during optimization, we do not miss candidates that might not be
those materialized views, which are treated as base tables). apparent by looking at the final execution plan (like in [4]), nor we
propose many candidates that are syntactically valid but might not
(© be exploitable during optimization (like in [10]). We next explain
how to find the best physical structures for index or view requests.

2.1 Obtaining the Optimal Configuration

As explained above, the optimal configuration is obtained by

gathering all the simulated physical structures generated during op-
timization, which essentially correspond to the union of optimal
structures for each index or view request. Finding the optimal view

for a view request is trivial. Since the input of a view request is
an SPJG sub-query, the input sub-query itself is the most efficient
view to satisfy the request (specifically, the best possible plan is
a scan over any clustered index over such a view). For an index

an index or view request, we suspend optimization and analyze therequest, the situation is more com_plex. Consider an index request
request. That is, we consider all sargable and non-sargable predi- (S, N,0, A) whereS are columns in sargable predicatéscon-
cates, order, and additional columns in the index requests, and thefdins Subsets of columns in non-sargable predicatese columns
SPJG sub-queries in view requests. These requests (along with the!" Order requests, and are other referenced columns. If no order
implicit knowledge of how indexes and views are exploited) im- 1S requested (i.eQ) = 0), the following lemma restricts the space
plicitly encode all possible physical structures that the optimizer ©f index sub-plans that we must consider.
might exploif. After anal_yzing the requ_e_st, we obtain the physi- LEMMA 1. For any plan that intersects rids from two index
?giai:irgrcltgrissﬁlho?:/sre;gx Itr;litgestrgp())?; ZTﬁ;ECég)laugr ;‘iﬁ]léfgues'[ seeks there is a more efficient plan that produces the same result
T ; : by seeking one (larger) index.
these hypothetical structures in the system catalogs and resume op-y 9 (larger)
timization. The optimizer will now consider the structures justcre-  |f, additionally, | S|=1 and N'=() we have the following lemma:
ated and obtain the “optimal” execution plan for each request.

Single-table sub-plan

Figure 1: Alternative index strategies.

Now suppose that we instrument the optimizer as follows (see
Figure 2 for the case of indexes). Each time the optimizer issues

LEMMA 2. For any plan that uses rid lookups over the result of
an index seek, there is a more efficient plan that produces the same
result by seeking one (larger) index.

Physical plan

When both lemmas can be applied, we can guarantee that the
! optimal plan does not use index intersections nor rid lookups, and

A,
Access Path Generation Module

Find best indexes | | A therefore it must seek a covering index with key colunshand

¥

forreauest suffix columnsA. If several sargable predicates are present but
N=(), we proceed as follows. Assuming independence between
predicates, it can be easily shown that the optimal plan consists
of a seek over a prefix of the columns $hsorted by selectivity,
Instrumentation | Original optimizer followed by an (optional) fetch. The best index can be efficiently
Figure 2: Instruménting the Query Optimizer. !dentlfled.by progressively [nc':ludlng. new columns fr(ﬁrto the
index until no further benefit is obtained. In general, if the index
Since we repeat this procedure for each index or view request, '€duest contains non-sargable predicates (Ve (), the situation
the optimizer is always given the optimal set of physical structures 1S more complex since there can be interaction between columns
to implement logical plans. For that reason, the execution plan re- (i-€., @ predicate+b>10 can be evaluated when we consider an

turned by the optimizer would be the most efficient one over the index for other sargable predicates over colurardb). While
-~ . . _ _ o _ the main ideas remain the same (i.e., we obtain the index that results
This procedure is only active while tmningmode, and is disabled during i the best plan using seeks followed by optional fetches) we omit
tshe normal execution of a productlor.m system. . the details for simplicity.
If no request can be answered using a candidatere can safely prune
S from the list of candidates. Conversely,Sfmight be useful to answer “This optimality claim assumes that no updates are preserg inahkload.
some request, the optimizer would eventually consider a planisesS. Section 3.6 describes how to deal with updates.

| What-if

i _simulation Available Indexes




[TPC-Hquery#] 1] 2] 3[4[ 5]6] 7[ 8] 9[10[11[12[13[14[15[16[17[18[19]20] 21 [ 22 Total |
Index Requesty 4 | 20 | 11 | 4| 14| 2 | 13 6 8 5 3 4 4 3 3 6 8 4 6| 17 8 5 158
ViewRequests| 2 | 20| 7|5|33|2|16 (34|29 9| 7| 2| 2| 3| 5| 3| 5| 3| 3|13| 8| 6 217

Table 1: Index and view requests for a typical TPC-H workload.

Consider now the general case of an index requgs, O, A)

all cases, steps (ii) and (iii) above are performed separately, and

with O # (. Ifthe optimal execution plan obtained earlier produces (iii) follows a bottom-up strategy that starts with an empty config-
rows in the desired order, this is the best plan overall. Otherwise, uration and progressively adds candidate structures to the current
we introduce a sort operator at the root of this plan and obtain the configuration until the space constraint is no longer satisfied.

best plan that uses a sort. However, there might be an alternative Our ability to identify the optimal configuration as described in
plan that does not require sorting and is more efficient. To obtain the previous section suggests a completely different approach to

this alternative plan, we create an index withas its key columns.
If O C S we add to the index the remaining columnsSnas
key columns and columns iA as suffix columns. Otherwise, we
add all columns in botd and S as suffix columns. Using similar

search the space of configurations. Specifically, we start with an
optimal configuration that might be too large to fit in the avail-
able space and progressively transform it into new configurations
that consume less space (but are less efficient) than the previous

arguments as before, we can show that this is the most efficientone. We continue in this way until some configuration satisfies the
plan that does not use a sort operator. We finally compare the costsspace constraifit Possible transformations to the current configu-
of the two alternatives (i.e., with and without a sort operator) and ration are not restricted to just removing structures but also incor-

return the one with the minimal expected cost.

porate the notion of merging (or more generaiglaxing a subset

As explained earlier, if we gather the optimal set of physical of structures. Conceptually, this approach has the following advan-
structures for each request, we obtain a configuration that cannottages over the basic search strategy:

be further improved for the given workload. The optimal config-
uration obtained in this way can be used in several ways. If the
space taken by this configuration is below the maximum allowed
and the workload contains no updates, we can return the configura-
tion without further processing. Otherwise, we can use it to bound
the benefit of the actual configuration. Consider Figure 3, which
incrementally shows the best configuration found in the first 70
minutes of the execution of a commercial database tuning tool for a
complex 30-query workload (the execution lasted over 3 hours, but
the best configuration did not improve beyond what it is shown in
the figure). If we had knowledge of the best possible configuration,
we could have made the informed decision of stopping the tuning
after 65 minutes, since the maximum additional improvement is
small enough. Without this knowledge we have no choice but con-
tinue tuning until the end (or until we are satisfied in absolute terms
with the current configuration).

10000

—— Best Configuration from
Commercial Tuning Tool

—+— Optimal Configuration

1000 §

=
1<)
=}

Estimated Execution Time .

N
15}

0 10 20 . 30 40 50 60 70
Tuning Time (minutes)

Figure 3: Bounding the improvement of the final configuration.

As we discuss in the next section, however, the main benefit of
identifying the “best” configuration is that it allows us to rethink the
search strategy, and in particular, move towardsaxation-based
approach, which, as we will see, has some additional advantages.

3. RELAXATION-BASED SEARCH

As stated earlier, all previous approaches for the automatic phys-
ical design problem tune a database and a workload by (i) identi-
fying a set of candidate structures that are likely to speed up each
workload query in isolation, (ii) extending this set by “merging”
structures, and (iii) searching this extended set for a subset of struc-
tures that satisfies the space constraint and results in the largest im-

- The analogous ofnergingand enumeratiorsteps are inter-

leaved. It is not required to obtain all merged structures be-
fore starting enumeration, but instead these can be generated
lazily, on demand, when relaxing a specific configuration.

Since a configuration is relaxed by replacing some physical
structures by smaller but less efficient ones, re-optimizing
a relaxed configuration to evaluate its cost is more efficient.
Consider configuratio’={c1, . . ., ¢, } and suppose that we
relax C into C’ by replacinge; andez by cs (e.g., an index

on (a,b) and an index ond,d) by an index ond,b,d)). Since

C' is composed of less efficient structures tifanwe know
that any query that did not use index@sor c; in config-
uration C would remain unchanged i@’. In other words,

we only need to re-optimize queries that used some of the
relaxed structures ift'. In contrast, in a bottom-up strategy,
adding a new index to an existing configuration requires that
we re-optimize all queries that reference the index table (or
resort to heuristic approximations, such as using atomic con-
figurations [4], which introduces additional inaccuracies).

A relaxation-based approach provides more useful informa-
tion to the database administrator. Since we iteratively re-
lax good configurations so that they use less space while
performing slightly worse, at the end of the tuning process
we have many alternative configurations that are more effi-
cient than the final recommendation (using more resources).
This might provide hints about the distribution of more ef-
ficient configurations to the database administrator and help
taking decisions (e.g., increasing the disk storage in the cur-
rent database installation). Figure 4 shows a sample tuning
output of the algorithms described in this paper for a TPC-H
workload tuned for indexes. Using the initial configuration
(requiring 1.25GB) the workload is estimated to execute in
2,469 time-units. The optimal configuration can bring the
execution cost down to 540 time-units but requires over 6GB
of space. The best configuration under 1.75GB (the input
constraint) is estimated to result in 1,388 time-units (a 43%
improvement). The figure shows that adding up to 250MB
of additional disk space can result in an additional 10% im-
provement (a reasonable trade-off). It also shows that having

provement in execution cost for the queries in the workload. In ®See Section 3.6 for extensions that handle updates.



more than 4GB only improves the situation by a marginal 3%  Splitting: This transformation aims to introduce suboptimal in-
and therefore is not advisable (see the steep slope in Figure 4dex intersection plans by rearranging overlapping columns of ex-
for configurations larger than 4GB). While this analysis can isting (wider) indexes. Considdh=(K1;51) and Io=(K2; S2).
also result from running existing tools repeatedly with vary- Splitting I; and > produces a common inddx: and at most two
ing storage constraints, our approach produces the distribu- additional residual indexek&::1 andr-2. The idea is that we could
tion of more efficient configurations as a by-product of the replace usages of indéx (respectively/>) by aless efficient index
normal execution. intersection betweef: andig: (respectively/r2), or rid lookups
over Ic's result if Iry (respectively,lr2) does not exist. Specif-
ically, we definelc = (Kc=K1 N K2;Sc=S1 N S2) provided
that K¢ is non-empty (index splits are undefinedAf; and K
have no common columns). In turn, i, and K¢ are different,
Ipi = (Ki—Ke,I1 —I¢),and if K, and K¢ are differentigz =
(K2 — K¢, Iz — I¢). Considerl; = ([a,b,c];{d,e, f}), I =
([e,al;{e}), andI3 = ([a,b];{d, g}). Splitting I, and I, results

B in Ic = ([a. cl; {e}), Imx = ([t]; {d. f}) andI> = ([d]). Split-
2000 | . ting I; and; results inlc = ([a, b]; {d}) andIg:i([c];{e, f}). A

. configurationC' that is relaxed by splittind, and /> results in the
new configuratiorC’ = C — {I1, L} U {Ic,Ir1,Ir2}.

0 1000 2000 3000 Prefixing: ConsiderI = (K;S). If we take any prefixkK’
Estimated Execution Time of K (including K’ = K if S is not empty) we obtain an index
Figure 4: Relaxation-based search for a TPC-H database. Ip = (K’,0) that can answer arbitrary requests tifiadoes by
optionally performing rid lookups to get the remaining columns
In the next section we describe the space of relaxations for a (K-K') U S. A configurationC' relaxed by prefixing index with
given configuration and then introduce our search algorithm. Ip results in the new configuratiadl’ = C — {I} U {Ip}.
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3.1 Relaxing Configurations Promotion to clustered: Any indexI over tableT” in configura-

) . . i o tion C can be promoted to a clustered index provided Giatoes
_ As descrlbed_ ea_rller, relaxmg a configuration is done by replqc— not already have another clustered index over tdble
ing a subset of its indexes or views by another so that the resulting

configuration is smaller at the cost of being generally less efficient.
In this way, by progressively relaxing configurations we eventu-
aI_Iy obtain one_that fits in the _a\_/e_ulable space an_d is hppefully j_ust 3.1.2 View Transformations
slightly less efficient than the initial, optimal configuration. In this
section we describe the set of relaxations that we can apply to a
given configuration. We designed the set of transformations by ex- * il i 4 )
ploiting knowledge about the optimizer (such as, for instance, how */ IS @ St of equi-join predicate is a set of range predicates,
is a conjunction of predicates that are notiior R, andG is a set

indexes and views are used in execution plans). Since the trans- ‘b bl | I idamd b
formations are transitive, we focus on those that replace one or at®f base-table columns (all components exceptfand £’ can be

most two structures (in general we can apply a given transforma- emptyf. The SQL equivalent foV is:

Removal: Finally, any indexI in a configurationC' can be re-
moved to obtain a new configuratiéll = C — {I}.

We denote a view as a 6-tupld” = (S, F, J, R, O, G), where
S is a set of base-table or aggregate colunings a set of tables,

tion multiple times). Some of the transformations (e.g., index and SELECT S

view merging) are similar in spirit to previous work [6, 2] while FROM F

others are specifically designed for our problem. WHERE J AND R AND O
GROUP BY G

3.1.1 Index Transformations

In this section we denote an indgxwith a sequence of key
columnsK and a set of suffix columnS asI = (K;.S). Also,
we assume that if; and.S; are sequences, the expresstam Sa
(similarly S1 — S2) returns the sequence that has elements in the
intersection (similarly, difference) &, and.S> in the same order
that they appear i§;. We next introduce five transformations that
apply to indexes:

Consider ansPJG query 0, and suppose that we want to try
matching@ and viewV = (Sv, Fy, Jv, Ry, Ov, Gy ). We first
rewrite Q as a 6-tuple) = (So, Fg, Jg, Rg,0qg,Gg) and then
apply a subsumption test to each pair of components. If all sub-
sumption tests are successful, we can rewgteising V. Sub-
sumption tests vary among specific systems balancing efficiency
and completeness. In this paper we assume thaffand V' to
i ) ) match, it must be the case thBy = Fy (the rationale is that if

Merging: The concept of index merging has been proposed be- g, Fg, thenV would have already matched a sub-queryof
fore [6]. In this work we define the (ordered) merging of two in-  gyring optimization) andy’s conjunctions are included i0q's
dexesli = (Ki;51) andl> = (K»;S2) as the best index that conjunct equality is structurally tested without complex rewritings,
can answer all requests that eithierand I> do, and can be ef- 4 e simply check that the predicate trees are the same modulo
ficiently sought in all cases thdy can (some requests that can  ¢olumn equivalence). The remaining components are checked us-
be answered by seekinfg might need to scan the merged index, ing simple inclusion tests modulo column equivalence. We next

though). Specifically, we define the merginglefand/; asli,» = introduce the two transformations that apply to materialized views:
(K1;(S1 U K2 U S2) — K1). As a minor improvement, if(; is

a prefix of Ko, we definel; » = (K2; (S1 U S2) — K2). For in-
stance, mergind, = ([a, b, c};{d, e, f}) andl> = ([c,d, g]; {e})
results inl12 = ([a,b,c],{d,e, f,g}). A configurationC' that

is relaxed by mergind; and I results in the new configuration  8cjassifying the query predicates in setsR, andO is done to simplify
C'=C—{L,L}U{lLz}. the view matching procedure.

Merging: Similarly to indexes, merging views; andV; is ex-
pected to result in the most specific viéviy; from which all in-
formation for bothV; and V> can be extracted. Specifically, we




require thatVa, be matched whenever eith&i or V> are. With Section 2 (lines 1-2 in the figure). We then create a pool of con-
that property in mind, we define view merging as follows. Consider figurations ¢P) that initially consists of;.s: (line 3) and initiate
Vi=(51, F1, J1, R1,01,G1) andVa = (Sa, Fs, J2, R2, 02, G2). the proper search until we run out of time (lines 4 to 9). In the
Due to the specific view matching procedure described earlier, we main search loop, we select some configuratidrom the config-
require thatFy = F; as a prerequisite for merging. We then define uration poolcCP (line 5) and apply some transformation to rekax

the merging ofV; andVz asVar=(Sar, Far, Jar, R, On, G, into ¢, (line 6). We add the new configuratian.., to the pool
where Fy=F1=F5, Jy=J1 N J2, Ry=R1“merge” Rz (i.e., Ry CP and, ifcnew fits in the available spadeand it is more efficient
combines same-column range predicateRinand Rz), O = than the current best configuration..; we keepcnh.., as the best

01 N Oz (where the intersection uses structural equality as in the configuration so far. When time is exceeded line 10 retugns.
view matching algorithm)G,,=G1 U G2 if both G1 and G, are

non-empty (if eitheiG; or G2 are emptyGy = 0), and Sy = SearchStrategy (W :workload, B:space constraint)
S1USif Grr £ 0 (f Gar =0, Sy = S1US2 — SaUS’ where 01 Get optimal configurations for each ¢ € W // Section 2
S4 is the set of aggregated columns in eitisgror S> and S’ is 02 Cpest = Ugew optimal configuration for g

) . B . 03 CP = { Cpest }; Chest=NULL; /I cost (NULL)=co
the set of base-table columns$h). As a minor improvement, if 04 while (time is not exceeded)

some range predicate ffiy; becomes unbounded (e.g., aftermerg- | o5 pick ¢ € CP that can be relaxed //template

ing R.a < 10 andR.a > 5) we eliminate it altogether froni s 06 Relax ¢ into Crew I template

(if Gar # O we add the corresponding column to b6th; andSa, 07 CP = CP U { cnew }

so that range predicates can still be evaluated With. The fol- 08  if ( size(cpew) < B A cost(cnew)<cost(Cpest) )
lowing example illustrates the merging procedure. Consider views | %2 Cbest=Cnew

10 return cpegt

V1 andV; defined below:

Figure 5: Generic physical-design search algorithm.

Vi= Vo=
SELECT R.a, R.b SELECT R.a, sum(R.c) ) . . .

FROM R,S FROM R,S Figure 5 is a template algorithm because lines 5 and 6 are not
WHERE R.x=S.y WHERE R.x=S.y AND R.w=S.z fully specified. When we instantiate specific procedures to choose
AND 10 < R.a < 20 AND 15 < R.a < 25 the next configuration (line 5) and transformation (line 6) to apply
AND R.b*R.b < 10 GgggplgyﬁR R.b to it, we obtain a concrete search procedure. Since we keep relaxing

configurations, we implicitly prune the search space of configura-
tions. In fact, this space is not the power set of all possible physi-

Merging V1 and V4 results in the following view: )
ging ¥y 2 9 cal structures, but a much more reduced one that is traversed only

Var= SELECT R.a, R.b, R.c by transforming (e.g., merging) structures that are useful in some
FROM R,S other configuration. Figure 6, however, illustrates that in general
wﬁEgElg":SﬁYa < o the search space is still extremely large. In the figure we instan-

AND 10 < B.b tiated line 5 by selecting the last relaxed configuration, and line 6

by picking an arbitrary new transformation for such configuration.
After views V1 and V> are merged intd/y, all indexes over  The figure shows the total number of transformations that can be
V1 and 'V, are promoted td/ys. In other words, for each index  chosenin lines 5-6 at each iteration of the search algorithm for a 22-
I(K; S) overV; (respectivelyVz) we create and indek (K'; S”) guery TPC-H workload. We observe that each iteration introduces
where K’ andS’ consist of all columns i andS mapped from hundreds of new transformations (which in turn result in hundreds
Vi (respectivelylz) to Vi, ”. A configurationC' that is relaxed by of new configurations). Clearly, an exhaustive search algorithm is
merging viewV; and Vs into Vi, results in the new configuration  not feasible even for small to medium workloads.

C'=C — <U/17 ‘/2} — IVl — IV2 U {V]u} UIVM s W|'1(i‘r(i'fv1 s IV2 and
6000 - —e—Indexesonly ~  F--------_A#F---
—#—Indexes and views

Iv,, are the indexes associated, respectively, With2 andVa,.
4000 === A

Note that we do not include a “split” transformation for views. The
reason is that the analogous of index intersections in this case is
to join simpler views to obtain the original one, but this is already
handled by our model. In fact, if a view’ that is simpler than

the original viewV’ (say,V’ contains fewer joined tables) could be
used to answer a query, thé#i should have been already requested
during the initial optimization.

2000 +

Candidate Transformations

L e e B A S B p
1 2 3 4 5 6 7 8 9 10 11

Removal: Any view V' in a configurationC' can be removed Iterations
to obtain a new configuratio6” = C — {V, I1,...,I,}, where Figure 6: Candidate transformations for a TPC-H workload.
I, ..., I, are all indexes defined ovéf.

. For that reason, it is crucial to develop good heuristics to guide

3.2 Search Algorlthm the search strategy so that good configurations are quickly identi-
Having defined the set of transformations to relax a given con- fied. In the next section we show how to estimate some useful prop-

figuration into a new configuration that is smaller but generally less erties of candidate transformations, and then we introduce heuris-

efficient than the original one, we now design a generic search strat-tics that rely on those properties to instantiate lines 5 and 6 in the

egy as follows (see Figure 5). While optimizing each qugirythe algorithm of Figure 5.

input workloadW we intercept all index and view requests and . . ) . )

obtain an optimal initial configuration,..: following the ideasin 3.3  Estimating Configuration Properties

A small number of additional columns is sometimes added'tdo al- In the physical design problem, the two critical properties of

low V), efficiently answer requests féf, and V2 without performing rid any given configuratior” are (i) the spac€' consumes, and (ii)
lookups. We omit those details for simplicity. the expected execution cost of the workload widéis available.




Clearly, any heuristic used to choose a transformation to relax the 3.3.2 Expected Execution Cost

current configuration (line 6 in Figure 5) might greatly benefit from Consider a configuratior’ that is relaxed taC’, and suppose
knowledge about space consumption and expected execution cosfye want to estimate the increase in expected execution cost for the
of the resulting configuration. In fact, if we knew how much would input workload when using” instead ofC. An expensive alterna-
the space consumption decrease or the expected execution cost ingye consists of re-optimizing all queries in the workload usiifg
crease after applying a given transformation, we could make a moreand calculate the difference with complete information. Due to the
informed decision in choosing the best alternative. specific transformations that we consider (see Section 3.1), there
Unfortunately, there is no efficient way to precisely calculate s 3 more effective method that we can use. As we explained in
such values in general. In fact, to calculate the space consumed bysection 3, if some query in the workload does not use any of the
an arbitrary configuration (especially if the configuration contains replaced structures froil, the execution plan fog under config-
materialized views) we first need to materialize all of its physical ration’ would not change. For that reason, we only need to re-
structures in the database. In turn, to obtain the expected execu-gptimize the subset of queries in the workload that originally used
tion cost of a given workload we need to re-optimize all queries in gome of the physical structures that belongtbut do not appear
the workload after materializing (or simulating) the physical struc- i, ¢, This technique is expected to be much more efficient, since
tures in the database. These procedures are obviously not scalablg, general there are just a few queries that use each physical struc-
to help decide which transformation to apply for relaxing the cur- tyre in a configuration, and therefore the fraction of re-optimized
rent configuration. In the example of Figure 4, we would need to queries is rather small.
re-optimize the workload hundreds of times per iteration to obtain  ynfortunately, even when considering the optimization described
the expected execution cost of each relaxed configuration. above, this approach remains too costly. As shown in Figure 4, for
Since itis unfeasible to obtain exact quantities, in this section we 5 gmall 22-query workload there are hundreds of candidate trans-
show how to obtain approximate values for space consumption andformations per iteration. If we were to estimate the increase in
expected cost. These approximations are not exact, but adequate t@yecution cost of each resulting configuration, and assuming that
guide the search. Specifically, in the next section we review how there is 0n|y one query per Configuration to re_optimize’ we would
to estimate the size of a given configuration without materializing require hundreds of optimizer's calls per iteration, which becomes
it, and then we propose a technique to obtain a (tight) upper bound prohibitively expensive. In this section we take a different approach
of t_he expecte_d _execution cost of a relaxed configuration without gng develop techniques that allow us to (tightly) upper-bound the
calling the optimizer. increase in cost for a candidate relaxed configuration without mak-
331 S . ing a call to the optimizér We will then use these upper bounds as
o pace Consumption a measure of how costly a relaxed configuration might become.
The space consumed by a configuration is the sum of sizes of all  Consider the execution plaR at the left of Figure 7. Index
its physical structures. In this section we briefly describe how we | = ([q]; {b, c}) is used to seek tuples that satiafyc 10 and also
estimate the space consumed by indexes and materialized views. to retrieve additional columnisandc, which would eventually be
Consider first indext = (K;S) over tableT. To estimate  needed at higher levels in the execution plan. Suppose that we are

its size we first calculate the width of an entry in any/df leaf evaluating gprefixingtransformation that replacdsin the current
nodes adVy = - 5 Width(c), wherewidth(c) is a system-  configurationC' with the alternativel’ = ([a]; {b}) in the relaxed
dependant constantfis a fixed-length column (e.g., integers are  configurationC’. In general, the optimal execution plan und&r
four bytes long), or is the average length of values f the data- might be arbitrarily different from the original execution plartit

base ifc is a variable-length column (we approximate average  and the only way to find the new plan would be to re-optimize the
length using sampling). Similarly, we calculate the width of an en- query. However, because of the way we defined transformations,
try in an internal node of the B-Tree a&; = }__, width(c). we know thatl’ can answer any request that the origihalid, al-
Using Wy and W we then calculate the number of entries per peit less efficiently (e.g., by introducing an additional rid lookup
page in leaf £z) and internal {7) nodes of the B-Tree. Finally,  or sort operator, or by having to scan the whole index instead of
we calculate the total number of pages used/bys the sum of  performing a few index seeks). We can then replace the small por-
pages per level in the B-Tree. Specifically, leaf nodes in the B-Tree tion of the execution plan that uséswith a small compensating
fitin So = [|T'|/P.] pages and level(i > 1) nodes inthe B-Tree  plan that used’. This plan would be valid and therefore as least
fitin S; = [Si—1/P:] paged. as efficient as the best plan found by the optimizer. Specifically,
Since materialized views are defined as regular views for which a the alternative plan at the right of Figure 7 ugésind additionally
clustered index has been implemented, obtaining the size of a mateperforms rid lookups to obtain the remaining requicgmblumn.
rialized view is almost equivalent to the case described above. That  The example above illustrates the principle that we follow to ob-
is, the space consumed by a materialized Viéig estimated as the  tain an upper-bound on the cost of executing a given query under a
sum of sizes of each index (including the clustered index) defined relaxed configuration. In short, we isolate the usage of each physi-
overV. We can apply the same procedure as before, with the only cal structure that is removed from the original configuration and es-
caveat that we do not know the valli| (while cardinality val- timate (without re-optimizing) how expensive would be to evaluate
ues for base tables are typically stored in the database catalogs, thénose sub-expressions using the physical structures available in the
cardinality of arbitrary views is not known in advance). To approx- relaxed configuration. Clearly, there is a spectrum of alternatives
imate|V'|, we use the cardinality module of the optimizer itself to  to obtain these costs, ranging from simple estimators to complex
estimate the number of tuples returned by the view definition. We procedures that almost mimic the optimizer itself. In this work we
note that more accurate procedures can be used (e.g., using samise a simple non-intrusive approach that can be implemented by
pling for single-table views, or views that use foreign-key joins), simply analyzing information exposed by current optimizers.
but those procedures are not general (e.g., see [3]).

Note that we do not completely eliminate optimizer’s calls.ehf trans-
8The analysis is slightly more complex due to factors such asxiritl formation is chosen and the current configuration is relawede-optimize
factors, hidden rid columns in secondary indexes, and pagitesd due to the queries in the workload that use some of the deleted miystitictures
fixed- and variable-length columns, but we omit those detailsiinplicity. to obtain the actual configuration cost in line 8 of Figure 5.




Lo View Transformations
r=(al{n When we merge viewg; andVx into V)7, we additionally promote
= all indexes ovel; andV; to Vi, (see Section 3.1). Also, the view
-

merging transformation has the property that the optimizer would
] match Vs whenever it matches eithéf, or V2 (optionally using

) additional filters or group-by operators). We therefore bound the
:qel:r(:;loc) increase in cost due to a view-merge transformation in two steps.

. First we calculate, using the techniques in the previous section, the
increase in cost for each index & or V5 that is used to answer
some query under the original configuration. Then, we estimate the
cost of any compensating operation (e.g., group-by operatorns) tha
need to be inserted on top B, to obtain the results that eith&i
. . . . . or Vs produce. Finally, we obtain an upper-bound of the cost of the
Specifically, the source of information we use to obtain execution query under the new configuration as the sum of all these partial
cost upper-bounds is the optimized execution plans of each queryqanities. While the main concepts are clear, there are a number
in the workload under the original configuration. We assume that ot g pleties that need to be taken into account. We illustrate some

we can extract from a query’s execution plan the following infor- ¢ these below, but we omit the full details for simplicity. Consider
mation for each used index over a base table or materialized view: the following views:

estimated 1/0 and CPU cost, estimated number of rows returned,

Figure 7: Estimating execution-cost upper-bounds.

type of usage (i.e., whether the index is used to seek a fraction of Vi= SELECT R.a, R.b Vo= SELECT R.a, sum(R.c)
the rows or to scan all rows), the optional required order that is FROM R FROM R

enforced on the returned rows, the optional set of columns sought WHERE R.a<10 WHERE R.a<20 AND R.b<20
or used for ordering, and the set of additional columns that are re- GROUP BY R.a

quired upwards in the tree. We note that current optimizers expose

this minimal information via special “explain” interfaces. SELECT R.a, R.b, R.c

which are merged inte,; = FROM R
WHERE R.a<20

Index Transformations and suppose that que@yseeks an index,=([b, a]) on'V; for some
Consider a transformation that removes an infdlex (K;.S) that range predicate on colundn The corresponding index dr addi-
is used to evaluate some query under the original configuration. tionally contains tuples that satisfy) < R.a < 20. When bound-
Suppose that we want to bound the increase in execution cost ofing the cost of evaluating the same sub-plan with the promoted in-
such a plan when we repladewith a suitable use of an available  dex onV),, the expected fraction of tuples retrieved from the index
indexIr = (Kr;Sr) (e.9.,Ir can be the merged index in the does not change since we assume independence, but we need to
case of a merge transformation). We now describe such procedureadd the cost of a compensating filter for predicRte < 10. On

First suppose that inde’ixwas completely scanned in the original  the other hand, if the index sought is originally=([a, b]) on V1,
execution plan. We then estimate the cost of scanning the alterna-the total number of tuples touched in the corresponding index on
tive Ir ascost(I) - size(Ir)/size(I) (i.e., we linearly scale the V), stays the same (and therefore the fraction of tuples changes)
cost based on the number of pages accessed in each scan). Thesince the leading key-column in the index is precisely. Finally,

we check whether all columns provided byn the original execu- queries that use some index &3 need to add the cost of a fi-
tion plan can be provided bi. If that is not the case, we add the  nal group-by operator after the index sub-plan because the merged
cost of performing-ows([) rid lookups, whereows([) is the esti- view Vjy removed the grouping clause on coluR. We note

mated number of rows returned ByFinally, if the result produced that we reuse components in the optimizer (e.g., costing or cardi-
by I was required to be sorted and the order columns are not com-nality estimation modules) to implement these steps, so we do not
patible with those inr (i.e., key columngs and K r do not share keep the optimizer out of the loop by creating our own parallel es-
the same prefix) we add the cost of an intermediate sort operator.timators.
In that way, we obtain the cost of an alternative plan that ligde For transformations that delete views, the situation is more com-
return the same result thadid under the original configuration. plex. The problem is that we do not know how to replace a sub-plan
If, instead,/ was sought in the execution plan under the original that uses the removed view without calling the optimizer. An inex-
configuration, we proceed as follows. We first identify the columns pensive approach to address this problem is as follows. Each time
in K that were used to seek(usually just one column) and the  we consider a new view’, we optimizeV" with respect to the base
selectivitys; of the predicates that were used in the seek. Then, we configuration (i.e., the configuration that contains only indexes that
identify the longest column prefix i r that has the same columns  enforce constraints and must be present in any configuration) and
as the corresponding prefix i§ and obtain the selectivity;,, of obtainCBy/, the cost to obtaifV" in the base configuration. To es-
the corresponding sargable predicates (if no columns are sharedtimate an upper bound of the cost of each query that Uisedthe
the selectivity is one anfiz has to be scanned completely). Using original configuration we first calculate, for each indexiorused
a similar argument as in the previous case, we first estimate the costn the query, the increase in cost when the replacement index is a
of usinglr ascost(I) - (s - size(Ir))/(s1 - size(I)) and then heap. Then, we ad@By to this partial cost and obtain the final up-
perform the tests for rid lookups and sort operators to obtain the per bound. In other words, the implied plan is one that first obtains
total cost of using r in the relaxed configuration. V (in no particular order) and then replaces each index usage by a
In the case of split transformations, we independently apply the scan ovel/. We can use a more accurate procedure than estimating
previous procedure to the common and residual indexes and thensimply CBy values. Every time we obtain a new configurati@n
include the cost of intersecting rids. We omit the details of this we estimate the cost to obtain each viethat is used irC' with
case for brevity, but the main ideas remain the same. respect to the smaller configuratich— {V'}. We apply the same



ideas discussed earlier to avoid unnecessary optimization calls: if
V was optimized in the configuration that was relaxed to obtain
C andV’s plan contains all indexes that are still presen€inwe

can assume that the optimizer would find the same plaf¥fand
avoid re-optimizing it. Since the number of views per configuration
is not very large, we obtain more accurate estimates@&nwith

a small overhead.

3.4 Heuristics for Guiding the Search

configuration. We then pick the configuration that resulted
in the actual largest penalty when relaxed (with the aim of
“correcting” what went wrong in the previous iteration).

. If there is no candidate in the current chain of configurations

with at least one valid transformation, we choose the config-
uration with the minimum expected cost that additionally has
at least one available transformation.

As we show experimentally in Section 4, applying these heuris-

In this section we propose specific implementations of lines 5 tics to the physical design problem results in high-quality recom-
and 6 of Figure 5 and therefore fully specify our algorithm to auto- mendations in relatively short amounts of time.

matically tune the physical design of a database system.

Consider first line 6, which chooses some transformation to ap- 3-9  Variations and Optimizations

ply to the current configuratio@'. Using the techniques in the pre-

In this section we briefly mention some minor optimizations and

vious sections, we can efficiently estimate, for each valid transfor- variations to the main algorithm described earlier.

mationtr that relaxe<” into C., the expected decrease in storage
space (denotedh Sy, = Space()-Space(-)) and the maximum
increase in cost (denoteNT:,. = CostBound(:,) - Cost(C)). The
value penalty,.= AT, /AS,. estimates the increase in execution
cost per unit of storage that each transformation is expected to re-
turn. Increasingenalty, values seems a reasonable heuristic to
rank possible transformations, since we are interested in relaxed
configurations that are significantly smaller in space without in-
creasing the expected cost too much (this heuristic is also used in
greedy approximations to the knapsack problem). We introduce
a small variation on the definition gfenalty,. values as follows.
Suppose that the space constrainBi§.e., we are interested in the
best configuration that fits iB). Any decrease in space beyoBd

is not strictly useful but we might artificially decrease trenalty,

value of transformations that significantly decrease the space below
B. For that reason, we refine the penalty function as follows:

ATtT
min(SpacéC) — B, AS;)
Line 6 in Figure 5 becomes:

penalty,, =

06 Relax ¢ into cpew using the transformation ir
that minimizes penalty:,

We note that in this step we need to evaluate the penalty of each
transformation in the current configuration. While at first this might
seem expensive, we do not need to re-optimize queries to evaluate
penalty values, and we can also cache results from one iteration to
the next, so the amortized number of transformations that we eval-
uate per iteration is rather small and can be done very efficiently.

Shortcut evaluation: When evaluating the cost of a relaxed con-

figuration C,., we might reach a point in which the cost of
a subset of queries i@, is larger than the total cost of the
current best configuratiofi,.s:. In this case, we know that
neitherC:, nor any configuration that is further relaxed from
C» would be more efficient tha@'.... Therefore, we can
(i) stop evaluating’y, (thus saving optimization calls), and
(i) remove C,,- from the pool of candidate transformations
CP (thus pruning the search space).

Multiple transformations per iteration: In our current algorithm

we apply a single transformation to relax the current configu-
ration. In general, we might apply more than one transforma-
tion. We need to be careful that we do not select conflicting
transformations (such as mergitig and 7> after removing
I). This alternative might reduce the overall time to arrive
to a valid transformation, but introduces additional inaccu-
racies because often transformations strongly interact with
each other.

Shrinking configurations: Another variation consists of remov-

ing, at each iteration, all indexes and views from the cur-
rent configuration that are not used to evaluate any query in
the workload. While this approach would reduce the search
space because fewer transformations are available, it might
also decrease the quality of the final recommendation, since
some structures that are not used in the current configuration
might become useful after applying some transformation.

The only missing piece in the algorithm is a procedure to choose 3.6 Handling Updates
which configuration to relax at each iteration (line 5 in Figure 5).
A reasonable alternative is to choose, at each iteration, the configu-
ration with the minimal estimated cost. This way, we always work
on the current most efficient configuration. While this alternative most workloads are composed of a mixture of “select” and “up-
is interesting, it is also impractical. Usually, the most efficient con- date” . d hvsical desian tool  take int -
figurations are the ones that require the largest amount of storage, ate’ queries, and any physica’ gesign tool must take into consi

and therefore the time to converge to a configuration that is under eL"’:'rO?St;m géarﬁzizftg||§)?n3:§g' d;rﬂ%yg&gr'mgacjg Znu uggfgg
the required space constraint is too long. Instead, we select the nex ableymust also be updated as a side effect Theref?)re )I/t s rﬁ)ot true
configuration to relax as follows: P : :

anymore that adding more indexes would always reduce the ex-
1. If the last relaxed configuration does not fit in the available pected cost of a workload. In the rest of this section we explain how
space, we choose and further relax it. In this way, we keep re- the different components in our approach change when updates are
laxing the same configuration until we reach one that is under present in the workload. (While the core concepts stay the same,
the space constraint. Using the greedy approach, we usuallywe chose to stage the presentation in this way for simplicity.)
find a good-quality configuration quickly, but we might miss . . .
better%lternitiveg. If thgere is mgre tin)1/e availablegafter we Evaluating Configurations
reach a valid configuration, we use the next heuristic. An important goal in our techniques is to minimize the number of
2. We obtain the chain of relaxed configurations from the last optimization calls, which are the most expensive component of our
one (that fits in the available space) to the initial (optimal) algorithms. The main approach we use for that purpose is based

So far we have exclusively focused on workloads that only query
the database without updating it (i.e., we assume thatPngrk,
INSERT, Of DELETE queries are present in the workload). In reality,



on the optimality principle of the optimizer. Since we always relax | Si Tabl A\I/e/rta%(le f;.\g//%k'oaqg
a configurationC into a less efficientC’, a query undeC' that ame _ ze ables | cositanle] min/max size
uses indexes which are not removedihdoes not need to be re- TPC-H (Synthetic)| 1.25GB 8 76 26 (1/24)

timized under”’. This approach, while still correct, can become DR1 (Real) 2.96B 116 6.9 30/(1/30)
opumi : ppr ' » can | DR2 (Real) 13.4 GB 34 8.5 11 (1/10)
inefficient when update queries are present. The reason is that each psi (Synthetic) 700 MB 26 58.2 57 (1/96)
update query implicitly references all indexes (or some of them, in | Bench (Synthetic) | 530 MB 6 21.0 | 163 (1/144)
the case ofipdate queries) over its referenced table. Therefore, | DS2 (Synthetic) | 170 MB 16 19.1| 259 (1/160)

it is more likely that any transformation affect some index used
in an update query, and many more re-optimizations are likely to
occur. To mitigate this effect, we separate each update query into
two components: a pure select query, and a small update shell. Foring some index can be outweighed by the benefit of not having to
instance, the following query: update it). In those cases the penalty function correctly chooses

UPDATE R SET a=b+1, c=c*c+5 WHERE a<10 AND d<20 transformations with negative over positive cost upper-bounds, but
sometimes makes poor decisions comparing two transformations
with negative costs. INT;; = —10, ASy1 = 10, ATy = —20,

(1)  SELECT b+1, c*c+5 FROM R WHERE a<10 and d<20 andAS;» = 30, the penalty fot, (i.e., -1), would be smaller than

(i1) UPDATE TOP(k) R SET a=0, c=0 the penalty fort, (i.e., -2/3). However, the configuration relaxed
wherek is the estimated cardinality of the corresponding select usingt. is clearly better than the one relaxed fromboth in terms
query. We now can optimize each component separately. Specif-of space and cost (we say thatdominates;). To remedy those
ically, we calculate, for each indek and update-query in the situations, we first obtain the skyline of transformations (i.e., we
workload, the cost of updatingj for the update shell of. Later, consider only transformations that are not dominated by any other
when evaluating a configuration, we use the select portion of updatetransformation) and then use the origimenalty definition over
queries (therefore avoiding many additional optimization calls) and this restricted subset.
then add to the resulting partial cost the update cost of all indexes Additionally, the denominator in the definition pénaltyis given
in the configuration over the table referenced by the update query. by min(SpacéC) — B, AS). Since now we can relax a configura-
. . . tion that requires less thaB storage (see above), the denominator
Optimal Configuration might become negative, which is undesirable. However, in those
In section 2.1 we showed how to obtain a configuration that cannot situations space is not relevant since the configuration already fits
be improved, which was then the starting point of our relaxation- in B. Therefore, when the current configuration requires less than
based approach. Such configuration gives the database user moré storage, we simply usAT;, as the penalty associated with
information about an ongoing tuning session, since it bounds how

efficient a configuration can get. When updates are present, the4, EXPERIMENTAL EVALUATION

configuration obtained in this way is not optimal anymore because In this section we report an extensive experimental evaluation

indexes also need to be updgted, raising f[he over all CQSt of theof our proposed technique over both synthetic and real databases,
workload. However, the resulting configuration is still optimal for with respect to hundreds of different workloads (see Table 2 for a
the SEIQCI component of each l_J_pdate query, and_we can use this faCéummary of the experimental setting). We implemented the client
to obtain a lower bound. Specifically, the execution cost for the se- component of our prototype in C++ and modified Microsoft SQL
lect portion of the queries in the workload (see above) is added t0 g o\ e to support our extensions of Section 2. We note that the
the cost of all the update shells under the base configuration (which complete implementation of our prototype was finished in less than

contains all th.e indexes that must be present in any configurgtion).two months by a single developer, and the resulting prototype was
We then obtain a cost that cannot be improved by any configura- robust enough to handle virtually all input workloads. The aim of

t'o.n'hthhe main (:'lfferetr_lce tlr? tthat tht's tk?]oulnd IS EOt t'%htb("te" there this section is to show that our approach, which is based on sound
might be no configuration that meets the lower bound) but can any- principles and relies on few assumptions, results in high-quality

way offer valuable addit!ona_l i_nformati_on to the user while tuning a recommendations and often even outperforms state-of-the-art tools

complexlworkload.. We |.mpI|C|tIy consider updatg costs as ar)othgr available in commercial database systems.

vangble in the opt|m|zat_|on proplem that moves in the opposite di- In the rest of this section we use PTT (Prototype Tuning Tool) to

rection of select costs (like configuration sizes). denote our prototype implementation, and CTT (Commercial Tun-

Choosing configurations ing Tool) to denote the commercial state-of-the-art alternative in
Microsoft SQL Server we compare PTT against. The metric to

In Section 3.4 we showed how we pick the next configuration o re- gy 4)yate a physical recommendatiofinigrovementdefined as:
lax. Specifically, we keep relaxing the current configuration until it

fits in the available space. If the workload contains updates, it is ad- improvement(Cy, Cr, W) = 100% - (1 _ cost(W, CR))
visable to continue relaxing the current configuration even beyond B cost(W, Cr)

that point, because removing indexes that result in EXPENSIVE UP-\yhere(; is the initial configurationC' is the recommended con-
dates might further decrease the cost of the relaxed com‘lguratlon.ﬁguration andcost(W, C) is the expected cost of evaluating all
We therefore change the first heuristic of Section 3.4 as follows: queries in the input workloatl” under configuratiore’. Improve-

1. If the last relaxed configuration does not fit in the available ment values can be negative (when the recommended configuration
spaceor its cost is smaller than the configuration it was re- s less efficient than the initial one due to stricter space constraints),
laxed from we choose and further relax it. but always are smaller than 100%.

Transformation Penalty 4.1 No Constraints

For workloads with update queries, the cost upper-bound of a re- We first validate the approach of Section 2 (i.e., the ability to
laxed configuration can be negative (sometimes the cost of remov-intercept index and view requests during optimization and generate

Table 2: Databases and workloads used in the experiments.

is separated into (i) a pure select query and (ii) an update shell:



optimal configurations for workloads without updates). For that
purpose, we obtained physical recommendations for each available
SELECT-only workload using PTT and CTT (we did not impose any
time or space constraint on CTT to obtain the best alternative). We
report experimental results in Figure 8. Specifically, each bar in the
figures represents one tuned workload and its magnitude measure:
Almprovement = Improvemegsi - ImprovementgtT. (Values

of Almprovemengreater than zero represent cases in which PTT
obtained better recommendations than CTT.) We observe that:

1. There is a large number of cases (around 64%) for which
both PTT and CTT return the same recommendation (or rec-
ommendations within 1% of quality, which is attributed to
small inaccuracies in the various cost models used by both
the server and the tools, or small statistical fluctuations when
creating histograms using sampling).

2. Thereis aimportant number of cases (around 34%) for which
PTT returns better-quality recommendations than CTT (up to
60% additional improvement when recommending indexes
and even above 95% when also recommending views). It is
interesting to note that a small fraction of these cases helped
uncover design and implementation problems in CTT that
were not found during regular testing.

3. There is a very small number of cases (less than 2%) for
which PTT returns a configuration that is worse than that of
CTT. We examined these workloads in detail, and found that
they belong in two classes. On one hand, there were several
instances for which the optimizer made suboptimal choices
(for instance, returning a worse plan when additional indexes
or views were added to a configuration) and therefore were
violations of our assumptions. On the other hand, there were
a small number of cases (around 5 globally) that required
special handling by our techniques. This is expected as the
complexity of data sets and workloads is very high, but we
chose not to implement any special case in our prototype to
evaluate a clean and minimalist approach.

4. In general, the largest differences appear when recommend-
ing views in addition to indexes. The reason is, in addition to
view recommendation being inherently more complex, that
CTT has more shortcuts and special cases to handle views.

Table 3 shows the top-10 workloads that required the most time
to be tuned with CTT along with the time it took PTT to obtain the
optimal configuration and the improvements of the respective rec-
ommendations (we included at most two workloads per database).
Clearly, when no space constraints are present our techniques are
very efficient, since the starting point is already the desired goal. In
contrast, CTT spends considerable time in the merge and enumer-
ation phases. In the next section, we show that a relaxation-based
approach is also a better alternative in presence of updates or wher
space constraints are reasonably loose.

Workload | Timectt [ TimepTT [ ImpretT [ ImprpTT |

Table 3: Tuning time for the most expensive workloads.
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4.2 Space and Update Constraints

In this section we report experimental results for constrained
versions of the problem. Specifically, we consider input work-
loads withupDATE queries (which impose overheads to each rec-
ommended index or view), and tuning sessions with storage con-
straints. Figures 9(a-b) shoxImprovemenwalues for all these
workloads (we used both real workloads with updates and syntheti-
cally generated ones, such as those obtaineddwigen for TPC-H
databases). While we imposed no time-bounds for CTT, we gave
PTT 15 and 30 minutes, respectively, for index-only and indexes-
and-views recommendations. As we can see (specially when rec-
ommending indexes and views), a large percentage of workloads
(83%) resulted in equal or better recommendations when using
PTT. In the remaining 17% of the cases, either the optimizer vi-
olated our assumptions (see previous section) or the search strategy
in PTT failed to obtain the better recommendation in the allotted
time. We note, however, that with only one exception, PTT resulted
in at most 5% degradation with respect to CTT for these workloads.

Estimated Improveement
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Figure 9: Quality of recommendations for upDATE workloads.

Figure 10 shows the quality of recommendations when varying
the storage constraints. For these experiments, we first used PTT to
obtain the optimal, largest, configuration (in our experiments, the
sizes of the optimal configurations were between 1.8 and 6 times
the sizes of the databases themselves). We then defined the spac
taken by such configuration as 100% and the space taken by the
minimum configuration (even smaller than the existing configura-
tion) as 0%. Finally, we varied the space constraint between these
two extreme values and tuned each workload using PTT and CTT. [7]
We can see that even when we do not impose a time bound to CTT,
the recommendations obtained by PTT are of better quality. Also,
our search strategy guarantees that the more space is available, the
better the quality of the recommendations. Due to multiple heuris-
tics and greedy approximation, CTT might recommend worse con-
figurations when slightly more space is available.

(5]

el

9]
5. SUMMARY

Motivated by the increasing complexity of current physical de- [10]
sign tools, we proposed a new architecture for the physical de-
sign problem that is based on sound principles and geared towards
avoiding guesswork. Our technique is conceptually simpler than
the current alternatives and our preliminary experiments indicate [11]
its potential to improve the quality of recommendations and the
time needed to arrive to such recommendations compared to state-
of-the-art techniques.
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