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Abstract 
We study issues related to designing speech event detectors for 
automatic speech recognition. Event detection is a critical 
component of a recently proposed automatic speech attribute 
transcription (ASAT) paradigm for speech research. Similar to 
keyword spotting and non-keyword rejection, a good detector 
needs to effectively detect speech attributes of interest while 
rejecting extraneous events. We compare frame and segment 
based detectors, study their properties in detecting manners of 
articulation, and propose new performance measures. We test 
these detectors on the TIMIT database with several evaluation 
criteria. Our results indicate that segment based detectors 
outperform frame based detectors in several key aspects of 
speech detector design.  We also show that the performance 
can be significantly enhanced by incorporating discriminative 
training into designing speech event detectors. 

1. Introduction 
A detection-based automatic speech recognition (ASR) 
paradigm through automatic speech attribute transcription 
(ASAT) has recently been proposed [1]. In this framework, a 
bank of speech event detectors that are capable of producing 
consistent detection results need to be developed. These 
“events” are usually low level speech attributes related to 
information required to form higher level “evidences”, so they 
can then be combined to detect phones, words and sentences, 
and perform speech recognition in a probabilistic manner. 

In this study, a speech event is defined as the presence of 
a particular acoustic-phonetic attribute. The task of detecting 
speech events is usually more difficult than conventional 
signal detection, in which the target signals can often be 
clearly characterized. Classical signal detection theory has 
thus been well-established (e.g. [2]). In contrast speech events 
are mostly ill-defined. In cases when events can be better 
specified, they often exhibit a wide variation when the speech 
signals are collected in different acoustic conditions over a 
large population of speakers. Another difficulty is that some 
events are as long as a few seconds, while other can as short 
as only a few milliseconds. It is therefore a great challenge for 
us to design high performance speech event detectors. 

One way to appreciate the issues related to speech event 
detection is to compare it with keyword spotting (e.g. [3]). 
Keywords are usually much longer and more stable to detect 
than the shorter and more variable speech events that have a 
tendency to be inserted and deleted. Furthermore, detailed 
timing in keyword detection is not as critical as event 
detection because we often need to combine these detected 
events with highly variable segment boundaries to form 
higher level evidences. So we can no longer afford having 
only rough segment information. These two new detection 
requirements also motivate us to modify existing performance 

evaluation methods commonly used in keyword spotting to 
suit speech event detection. 

In summary, in order to design effective speech event 
detectors, three key issues need to be investigated, namely: (1) 
detector selection; (2) techniques to improve detector 
performance; and (3) modification of detector evaluation 
criteria according to properties of the detected events. In this 
study we design frame and segment based detectors, study 
their properties in detecting manner of articulation, and 
propose new mechanism to evaluate detector performance. 
Our results on the TIMIT database indicate that segment 
based detectors work better than frame based detectors in 
several key aspects of speech detector design.  We also show 
that the performance of speech event detection can be 
significantly boosted with the discriminative training. 

2. Detector design 
In the following we focus our attention on detecting only 
manner of articulation attributes [4], namely vowel, fricative, 
stop, nasal, approximant and silence. The above three issues 
related to detector design are now addressed in detail.  

2.1. Frame and segment based detection 

Both frame and segment based event detectors can be used. 
Frame based detectors can be realized with artificial neural 
networks (ANNs) [5] as demonstrated in [6]. One advantage 
with such ANN based detectors is that the output scores can 
simulate the a posteriori probabilities of an attribute given the 
speech signal. In [7], speech attribute “detectors” for manner 
and place of articulation were designed using ANNs with 
multiple outputs. Strictly speaking, these event “detectors” can 
also categorize each speech frame into one of the competing 
attributes. A “true” detector should only determine if the 
current speech frame exhibits the specified attribute or not. We 
need to group consecutive frames that have detection scores 
higher than a pre-selected threshold to form detected 
segments. It is clear that the frame detection scores are likely 
to fluctuate a great deal, resulting in extra detected segments.  

On the other hand segment based detectors can be built by 
combining frame based detectors, or with segment models, 
such as hidden Markov models (HMMs) [8], which have 
already been shown effective for ASR. We train two HMMs, 
one for a target event, and the other for all other competing 
events. We used these two models to decode a speech 
utterance, and the segments that are recognized with the target 
label mapping to the detected target events. Combined 
detection and verification has also been proposed in keyword 
spotting to improve overall performance [9]. In this study, 
only detection is discussed, verification will be realized in the 
evidence verifier module in ASAT in the future. 



2.2. Performance measurement 

Before we describe detector optimization techniques in detail 
we need to demonstrate the need for new performance 
evaluation methods. A pseudo example is given below as an 
illustration. For the fricative event, the reference and detected 
strings are listed as ref.mlf and det.mlf in the commonly 
adopted HTK [10] MLF format in the following. 

 
ref.mlf 

#!MLF!# 
"*/si1039.lab" 
0  8  fricative  -3.1 
8  13  fricative  -10.0 
13  21 non   -12.1 
21 30 fricative  -34.2 
30 41 non   -19.0 
41 45 fricative  -3.0 
. 

det.mlf 
#!MLF!# 
"*/si1039.rec" 
0  13  fricative  -13.1 
13  21 non   -12.1 
21 24 fricative  -16.0 
24 30 fricative  -18.2 
30 41 non   -19.0 
41 45 fricative  -3.0 
. 

 
In HTK, the detection false alarms (FA) and hits can be 

obtained with its HResults tool. If the start and end times of a 
detected event lies in a segment with an identical label in the 
reference, then the detected segment represents a hit, 
otherwise an FA is flagged. This evaluation mechanism may 
reduce the number of actual hits and increase the number of 
true FAs of shorter speech events when there are contiguous 
segments with the same label. The HTK tool will report 3 hits 
and 1 FA for this example, judging the segment (8, 13) in 
ref.mlf as a false rejection (FR), and the segment (21, 24) in 
det.mlf as an FA. 

Looking into the segments in the two MLF lists more 
closely the segment (0, 13) in det.mlf is clearly been broken 
into two segments at (0, 8) and (8, 13) in ref.mlf. In addition, 
the segment (21, 30) in det.mlf is equivalent to the combined 
segments at (21, 24) and (24, 30) in ref.mlf. So we need to 
consider 4 hits and 0 FA for this example. This motivates us 
to propose new evaluation criteria to more faithfully reflect 
detector performance. The modified procedure to extend the 
HTK detection evaluation method is described as follows. 

If the reference label lies between the start and end times 
of a recognized segment with the same label, we regard it as a 
hit. For every detected segment, we consider it as a FA only if 
the center of the recognized segment falls into the reference 
segment with a different label. This modification gives us the 
correct 4 hits and 0 FA in the above the example. 

The FA, FR and error rates are defined as follows: 
FA Rate = (# of FAs) / (total # of non-target) 
FR Rate = (# of FRs) / (total # of targets)  
Error Rate = (# of FAs + # of FRs) / (total # of labels) 

Another tool is the DET curve [11] widely used for 
evaluating speaker verification systems. It is different from 
the conventional receiver operating characteristic (ROC) [2] 
curve by using a non-linear scale on both the FA and FR axes 
to give an easy observation of system contrasts which may be 
very little and not clearly displayed on the ROC curves. It is 
not easy to plot the DET curves for the ASAT detection tasks, 
because the reference and detected target segments are often 
not aligned. So, we plot the DET curve only when detecting 
with known segment boundaries. First, we obtain the 
segments by a forced alignment of the utterance. Second, we 
retrieve the segment scores from the alignment segments. For 
the HMM detectors, the segment score is the log likelihood 

ratio (LLR) score. As for the ANN based detectors, the 
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)( tOs is the output score for the t-th frame. By varying the 
threshold and comparing it to the segment score, we can 
decide if the detected segment is the desired target. The FA 
and FR rates are then computed and used to plot DET curves.  

The third utility is the LLR histograms for the target and 
non-target segments, a conventional way to visualize the FA 
and FR rates with varying operating points (e.g. [9]). We need 
a reference label for each detected segment for deciding a hit 
or miss. For idealized detection with known segment 
boundaries, we can easily get the segment labels as either a 
target or non-target event from the reference strings. As for 
detection with unknown segment boundaries, the situation is 
more ambiguous. For every detected segment, we assign the 
label as the one in the reference string that corresponds to the 
center of the detected segment. For every sample segment, the 
LLR score is then computed and used to plot the histograms. 

2.3. Detector optimization 

In order to enhance detector performance, we can use 
discriminative speech parameters and models with detailed 
acoustic resolution and refined content dependency. All other 
algorithms that have been shown to improve ANN and HMM 
capabilities can also be incorporated. Discriminative training 
(e.g. [12], [13]) can be used as well. In this study we train 
detectors with string based MCE (STR_MCE) [12] and 
segment based MCE (SEG_MCE) [13] criteria to boost 
performance. Context dependent detectors will be reported in 
future studies. For MCE training, the LLR is defined as: 

( ) )(log)(log 10 Λ−Λ= OLOLOLLR  

where )( 0ΛOL  and )( 1ΛOL are the likelihoods of target and 

non-target models. Misclassification measures for the target 
and non-target models are ( ) ( )OLLROd −=0  and ( ) ( )OLLROd =1 . 

3. Experiment 
A phonetically balanced speech corpus is needed for our 
evaluation. The TIMIT database [14] is chosen and used in all 
of the following experiments. Excluding utterances used for 
speaker adaptation (SA), there are a total of 3696 and 1344 
utterances in the training and testing sets, respectively. 

We design frame based ANN [6] and segment based 
HMM detectors for the manner of articulation attributes. All 
ANN detectors share the same structure, with no parameter 
tuning performed. The input to the networks has 9 frames (the 
frame rate is 10 msec in the current system) of 12MFCCs + 
energy, giving a total of 117 input nodes. The hidden layer 
has 100 nodes. For the current application the output layer 
has only one node, and its value is 1 if the desired attribute is 
present at the center frame and 0 otherwise. 

The segment based HMM detectors were trained by using 
HTK. The input features are the same as the above ANN case, 
and the 117 elements were grouped into a 39-dimensional 
vector, representing the static MFCC vector, plus their first 
and second order time derivatives. A pair of target and non-
target models was trained for every event of interest. We 
experimented with both STR_MCE and SEG_MCE detectors. 
All HMMs are context independent and have 3 states, with 
each state having 32 Gaussian mixture components. 



3.1. Frame versus segment based detection 

One problem with the frame based detectors is that it often 
generates extra noisy segments due to fluctuation of detection 
scores. Figure 1 compares frame and segment based detectors 
for the fricative manner. The top panel is a spectrogram. The 
panel below shows the reference segments. The bottom two 
panels are detection curves for the frame and segment 
detectors, respectively. The detected segment, achieved by the 
segment detector in bottom panel, is more similar to the 
reference segments. In the third panel for the frame based 
detector, we get one extra segment due to noisy segments 
formed if we set a threshold of 0.5 (shown as the dashed line) 
on the detection curves. 

 

Figure 1 Detection curves of the ANN frame and HMM 
segment based detectors for the fricative attribute 

3.2. Measurement of detector performance 

If detection is performed with known segment boundaries, 
there are no insertion and deletion errors. Using the HTK tool 
and the proposed measurement discussed in Section 2.2, we 
get the same result. However, the segment boundaries cannot 
be known in advance. These two measures will thus result in 
different error rates. We compare these two measurements 
using the baseline HMM detectors in the following.  

One of the advantages of the new evaluation criterion is to 
take into consideration the case of merged segments. In the 
three events listed in Table 1, the fricative manner has the 
smallest probability of co-occurring in consecutive segments. 
As a result, the difference between the HTK and new 
measurement is also the smallest. On the other hand voicing 
attributes often occur contiguously in an utterance. Our 
proposed measure gives a much more reasonable detection 
error rate when compared with the HTK tool. The difference 
in performance for the vowel manner lies in between. 
 

Error rate (%) HTK New  
Vowel 5.3 1.7 
Fricative 9.0 7.9 
Voicing 23.2 2.3 

Table 1 Detection errors of the baseline HMM detectors 

3.3. Comparison of segment detectors 

We measure the performance of segment detectors with and 
without using information of the segment boundaries.  

3.3.1. Detection with known segment boundaries 

Detection assuming known segment boundaries is an idealized 
experimental setup. Given these segments, we can sum over all 
frame scores of the ANN detector to smooth noisy outputs to 

some extent. Even after this smoothing, the HMM detectors 
still outperforms the ANN detector as shown in the DET curve 
comparison in Figure 2. If it is used in detection with 
unknown segment boundaries, the noisy nature at the output 
node of the ANN detectors will make it much worse than the 
HMM detectors. So in the following experiments, we only 
compare the performance of the HMM detectors. 

We can also see that the SEG_MCE detector outperforms 
the STR_MCE detector. This is because the SEG_MCE 
detector only aims at separating the target and non-target 
models by reducing the substitution errors given the “fixed” 
boundaries, while the STR_MCE detector attempts to reduce 
the overall errors, including insertions and deletions of the 
whole string. As a consequence, the SEG_MCE detector 
works best with known segment boundaries. 
 

 

Figure 2 Comparing DET curves for detecting fricative event 
with baseline, STR_MCE, and SEG_MCE HMM detectors 
and the ANN detector with known segment boundaries 

3.3.2. Detection with unknown segment boundaries 

In the actual situation of real-world event detection, 
segment boundaries cannot be assumed known. We have to 
use the two competing HMMs to decode each utterance into 
the target and non-target segments, and compute the FA, FR 
and error rates accordingly. As shown in Table 2, the MCE 
optimized detectors work better than the baseline HMM 
detectors. In the case of vowel and approximant detection, the 
SEG_MCE detectors were superior to the corresponding 
STR_MCE detectors. In the other four cases, the SEG_MCE 
detectors work slightly worse than the STR_MCE detectors. 
This inconsistence in overall error comparison was caused by 
not knowing the correct segment boundaries. In summary the 
SEG_MCE detectors minimizes substitution errors and give 
better model separation, while the STR_MCE detectors 
attempt to minimize the overall errors.  
 

Error rate (%) Baseline STR_MCE SEG_MCE 
Vowel 1.7 2.4 1.8 
Fricative 7.9 4.8 4.9 
Stop 9.9 5.3 5.4 
Nasal 11.2 5.0 5.4 
Approximant 7.3 6.3 5.2 
Silence 2.1 0.6 0.8 

Table 2 Detection error rates of three segment detectors 



It can be seen that the SEG_MCE detector behaved 
slightly worse than the baseline HMM detector only for the 
target vowels. However, if both the target and non-target 
events are considered, the combined error rate of 5.2% for the 
SEG_MCE detector is still better than the 5.7% error rate 
obtained with the baseline HMM detector. This can be 
explained by the MCE training policy that aims at reducing 
the total number of classification errors of all the competing 
classes. Therefore there is no guarantee that the target error 
rate will be reduced as well. So, it is important to develop 
other discriminative training algorithms that directly reduce 
the target event error rate and different combinations of FA 
and FR rates. 

Two sets of LLR histograms for the fricative event are 
plotted in Figure 3 for comparison. The superiority of the 
SEG_MCE detector over the baseline detector is clearly 
shown with the target histogram moving to the right, and the 
non-target (impostor) histogram moving to the left after MCE 
training. This results in a larger separation and a smaller 
overlapping region, which also implies a smaller error rate. 
 

 
Figure 3 The LLR plot for the baseline and the SEG_MCE 
detector for fricative event with unknown segment boundaries 

4. Conclusion 
We have addressed three key issues related to realizing 
effective speech event detectors. Frame based ANN and 
segment based HMM detectors were compared. Experimental 
results on detecting the manner of articulation events using the 
TIMIT database showed that the HMM detectors often gave 
much better performance than the ANN detectors. We also 
found that these detectors can be improved significantly with 
the discriminative learning. Due to the brief nature of some 
speech events we also need some improved techniques to 
accurately evaluate the detector performance.  

Some additional research issues are worth pursuing. So 
far the detectors are all based on 10-msec MFCCs. If optimal 
speech parameters can be derived for some specific speech 
events, we expect the corresponding detectors to be optimal. 
For example, voice onset time has been shown effective in 
discriminating voices against unvoiced stop sounds. To 
capture speech events in context we will extend to designing 
context dependent detectors as well. In addition to the 
conventional MCE formulation, other criteria to directly 
minimize different combinations of FA and FR errors need to 

be investigated. Detectors for higher level event to combine 
multiple spatial and temporal speech events will also be 
studied in the ASAT framework in the future. 
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