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Abstract

We study separation between models of speech attributes. A
good measure of separation usually serves as a key indicator
of the discrimination power of these speech models because it
can often be used to indirectly determine the performance of
speech recognition and verification systems. In this study, we
use a probabilistic distance, called generalized log likelihood
ratio (GLLR), to measure the separation between a model of a
target speech attribute and models of its competing attributes.
We illustrate five applications to compare separations among
models obtained over multiple levels of discrimination
capabilities, at various degrees of acoustic definitions and
resolutions, under mismatched training and testing conditions,
and with different training criteria and speech parameters. We
demonstrate that the well-known GLLR distance and its
corresponding histograms also provide a good utility to
qualitatively and quantitatively characterize the properties of
trained models without performing large scale speech
recognition and verification experiments.

1. Introduction

In real-world pattern matching problems, such as automatic
speech recognition (ASR) [1] and utterance verification (UV)
[2], the true distributions of the patterns to be matched are
often not precisely known. Thus the performance of such
systems are usually determined by running experiments over a
representative collection of evaluation samples intending to
cover all possible variations of testing conditions using models
created in a separate training phase. In many cases such an
endeavor can be very challenging, if not impossible, in order
to collect a large enough testing set that will produce
statistically significant results. We are therefore interested in
developing techniques that can be used to estimate the
performance and behavior of real-world systems without
conducting large scale experiments. Intuitively the separation
between competing models in the same system serves as an
important indicator to accomplish such purposes. For example
model-based error estimation algorithms have been shown
capable of predicting ASR performance [3].

Learning from minimum classification error (MCE) [4]
and minimum verification error (MVE) [5] training
formulations, the misclassification measure provides a
quantitative indicator to represent a distance between a target
model and its competing models. It can be used to measure the
model separation as well. MCE and MVE can then be
considered as a way to find model parameters that enhances
the overall separation of the collection of models. A closer
look at the misclassification measure reveals that it can also be
considered as a probabilistic distance, called generalized log
likelihood ratio (GLLR), commonly used in statistical
hypothesis testing [6], if a log likelihood function is used to
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compute the class discriminant function [7]. GLLR also plays
a key role in evaluating speech attribute detectors in a new
speech research paradigm we are currently exploring under the
ASAT (automatic speech attribute transcription) project [8].
In this study we illustrate a number of applications of the
GLLR measure, and demonstrate that GLLR provides a good
utility to characterize the discrimination capabilities of trained
models without running large scale ASR and UV experiments.

2. Characterization of model separation

We now discuss issues related to computing GLLR measures
and show that the corresponding histograms obtained from the
sample GLLR values of target and non-target sets serve as
useful tools to visually analyze model separation, and predict
system performance for many ASR and UV tasks.

2.1. Defining target and competing sets

In pattern verification of a signal X, we first define a null
hypothesis, Hy, and an alternative hypothesis, H;, with Hy: {X
is generated from S,} versus H;: {X is generated from any
source but Sp}. A statistical test is then designed to divide the
signal space Sy into two complimentary regions such that we
reject hypothesis Hy, if X ¢ Sy, and accept Hy, if X € S,. A
tutorial can be found in [9].

In speech problems, H; is usually a composite hypothesis
consisting of many signal classes. It has been shown that only
the most competitive classes to Hy need to be considered. This
is usually accomplished by finding a speaker or phone
“cohort” set [10, 2]. In this study, the cohort set is determined
by selecting models that obtained the highest likelihood values
when evaluating training data from the target class.

2.2. Computing target and competing scores

The LLR measure used in verification problems is defined as:

T(X | 2,0) = log[l(X [ ho)] - log[((X | A)] 0]
where Ayand Ajare the parameters for the target model and
non-target model, with log[/(X |Xy)] and log[/(X | A)]

representing the target and competing scores, respectively.

When we use a cohort set for the target to calculate the
non-target score generated by multiple competing models, the
modified LLR score in Eq. (2) is called a generalized log
likelihood ratio (GLLR) computed as follows:

T(X [ Ay, Ag) =log[t(X | L] -log[f (X [Ag)] @
where 2, is a model for the target ¢, and Kq represents the

set of competing models. The second term in the right hand
side of Eq. (2) is an L]] norm of the scores in the cohort set

C, with size | Cq |of the claimed target g, as shown by Eq. (3),

and is commonly used in MCE algorithm [4]:
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2.3. Preparing competing GLLR histograms

Based on the GLLR scores evaluated on samples of target and
non-target segments in a set of speech utterances, a pair of
GLLR histograms can be obtained with Egs. (2) and (3).
Figure 1 is an example of a typical GLLR plot with the right
distribution (or histogram) curve representing the samples
from the target source (X €S ), and the left curve depicting

the sample distribution of the non-target source (X & S ). The

shaded region to the left of the vertical threshold line under
the target curve gives the Type I error which is target samples
missed. On the other hand, the shaded region to the right
under the non-target curve represents the false alarms in
detection. The smaller the regions the less the errors will be.
Therefore, the performance of verification or recognition
systems with the given models can be predicted (e.g. [3]). It is
clear that this set of GLLR histograms can be generated for
any verification problems we are interested in ASR and UV.
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Figure I: An illustration of GLLR plot for pattern verification.
2.4. GLLR as a measure of separation

It is noted that GLLR is also a good measure for estimating
the separation between a target and its competing cohort
models. Therefore, it is easy to visually analyze the separation
between two sets of models by examining the GLLR plots.
New training and compensation algorithms can be developed
to move the target and non-target curves. The effectiveness of
different speech parameters, speech attributes, or model
resolutions can be evaluated by comparing the overlap regions
for each case. By moving the right curve to the right, or the
left curve to the left or both, it is clear that it results in more
separation between the two sets of competing models. It also
indicates reduced Type I and Type II errors. Since minimizing
errors and maximizing the model separation are closely related,
it is clear to see why MCE and MVE algorithms have been
shown very effective in many ASR and UV applications.

3. Applications of model separation measures

In this following, we illustrate five applications of GLLR to
compare separation among models obtained over multiple
levels of discrimination capabilities, at various levels of
acoustic definitions and resolutions, under mismatched
training and testing conditions, and with different training
criteria and speech parameters. We show that the GLLR
separation measures and their corresponding histograms are
good utilities to quantitatively and qualitatively study the

properties of trained models without carrying out an extensive
set of ASR and UV experiments.

In all the following experiments, both TIMIT and
NTIMIT (Network TIMIT) databases [11] are used. Data in
TIMIT were recorded with high-quality desktop microphones
in a clean environment at a 16 KHz sampling rate. Excluding
the speech materials reserved for speaker adaptation, there are
3696 and 1344 utterances in the standard training and testing
sets, respectively. The NTIMIT data were obtained by passing
the TIMIT version over dial-up lines, intending to simulate
channel and noise distortion over the telephone network.

We used the entire training sets in the TIMIT database to
train hidden Markov models (HMMs) [12] for phones and
speech attributes. A1l HMMs were either related to a set of 45
English phones or another set of five manners of articulation,
namely vowel, fricative, stop, nasal and approximant [13],
plus silence. Almost all models have 3 states with each state
characterized by a mixture Gaussian density with 8 mixture
components. In most cases we used a feature vector of 39
elements, consisted of 13 MFCC parameters plus their first
and second time derivatives, a commonly adopted feature
vector used in most state-of-the-art ASR systems (e.g. [1]).

3.1. Model separation and acoustic discrimination

First we are interested in any correlation between model
separation and acoustic discrimination capabilities. Two
vowels, /ix/ (in tension) and /ay/ (in sunshine), were chosen
for illustration. We used the five most competitive phones for
/ay/, namely {/ah/, /aa/, /ae/, /eh/, /ao/} obtained from
recognition results over the training set, to form its
corresponding cohort set. Similarly, the five most competitive
phones, {/ih/ (in shinbone), /ax/, /eh/, /uw/, /uh/}, to /ix/ were
used to build the cohort set for /ix/. Based on some phonetic
knowledge, the diphthong /ay/ is usually considered easier to
recognize than /ix/, so the separation of /ay/ from other
competing sounds is expected be larger than that of the phone
/ix/ from its competing sounds. Figure 2 validates our
assumption. It is seen that the overlap region in the top panel
for /ix/ is clearly larger than that in the bottom panel for /ay/.
This utility can be used to compare the degree of difficulty in
recognizing and verifying different phones. We can also use
the cohort set for each phone to evaluate the confusability of
competing words in an ASR vocabulary, and try to avoid
confusable pairs as much as possible in vocabulary design.
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Figure 2: Model separation and acoustic discrimination.

Another way to examine the properties of the model
separation measure is to list recognition errors as shown in
Table 1. Since Figure 2 indicates that there are much more
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Type II errors for phone /ix/ when compared to phone /ay/, we
predict that sound /ix/ is easier than sound /ay/ to be
substituted by other competitive sounds. The results from
Table 1 confirm the information displayed in Figure 2.

Tablel: Errors for two phone models /ay/ and /ix/.

Phone model lay/ /ix/
Correct 77.37% 40.11%

Substitution 18.64% 41.96%
Deletion 3.99% 17.93%
Insertion 6.07% 3.84%

3.2. Model separation and acoustic mismatch

Next we are interested in comparing model separation in
mismatched conditions. Phone models built from the TIMIT
database were used, and both the testing sets from TIMIT and
NTIMIT databases were collected to make GLLR plots for
comparison. Since the spectral contents in the higher
frequency bands have been removed in the telephone data, it is
expected that the discrimination among fricative sounds is
likely to be seriously degraded, more than the vowel sounds.
In Figure 3, we compare vowel /iy/ (in sheet) with
fricative /sh/ (in sheet). The two plots in the top panels display
results for matched testing conditions. They clearly show that
the fricative /sh/ is easier to recognize than the vowel /iy/.
When the testing data were from the mismatched NTIMIT
database, it is noted that the overlap region to discriminate /sh/
is significantly increased in the bottom right panel, while the
increase for /iy/ in the bottom left panel was not as serious.
This validates our assumptions that for phone /sh/, the
separation between the target and its competing models will
be significantly reduced in a mismatched environment, and it
is believed that the recognition performance will also be
greatly degraded. However, the separation for the vowel
phone /iy/ does not change as much in mismatched conditions.
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Figure 3: Model separation and acoustic mismatches.

Again, we find the GLLR plot of models serves as a good
utility to observe model behavior of unseen data by simulating
adverse conditions. New compensation algorithms can also be
developed to enhance model separation using this utility [1].

3.3. Model separation and training criteria

It is well-known that a set of good models will usually provide
a good performance improvement. This improvement can be
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easily observed using the GLLR utility without running large
scale recognition experiments. For example when comparing
the conventional maximum likelihood (ML) trained with MCE
learned models, we always plot the GLLR statistics before and
after MCE training to illustrate the concept of separation
enhancement. Here we illustrate this by using a context
independent /Vowel/ manner HMM. In Figure 4, it is clearly
shown that the MCE-trained model enhances the separation
with its competing models. It is recommended that such
GLLR plots are used to compare models trained in various
conditions with different optimization criteria.
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Figure 4: Model separation and training criteria.
3.4. Model separation and acoustic resolution

Intuitively a model with a better acoustic resolution will give
more separation than models with less detailed description.
This can be demonstrated using the GLLR utility to compare
context independent (CI) and context dependent (CD) models.
Here we used manner attribute models. Our recognition results
showed that CD class models reduced the overall class error
rate by 18.23% (from 28.91% to 23.64%) when compared
with CI class models. In Figure 5 we compared CI /Vowel/
class model with CD /Fricative-Vowel+Stop/ class model. It
can be seen that the separation is enhanced with models with a
better acoustic resolution, which resulted in a reduction of
both Type I and Type II errors.
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Figure 5: Model separation and acoustic resolution.

3.5. Model separation and speech parameter selection

The same GLLR utility can also be used to compare detectors
using different speech parameters. It is well known that some
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speech parameters are more discriminative in detecting certain
speech attributes. A single voice onset time (VOT) parameter
was shown to give better detection results than those produced
with 39 MFCC parameters in differentiating voiced against
unvoiced stop sounds [14]. This property can be clearly
illustrated by plotting the GLLR histograms to compare the
model separation induced by the two sets of detectors using
different speech parameters. In Figure 6 (adopted from [15])
for comparing speaker verification parameters, we plot two
sets of GLLR histogram plots for one speaker to show that a
single pitch parameter gives a smaller overlapping region in
the bottom panel than that obtained with 39 MFCC parameters
in the top panel, similar to the above VOT case for ASR.
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Figure 6: Speaker model separation and MFCC and pitch.

Although new speech parameters may not give a
significant word error reduction in a complex large vocabulary
continuous speech recognition task, the GLLR measure is still
a useful tool to evaluate these speech parameters in a well-
controlled testing environment in order to demonstrate its
utility in discriminating special classes of sounds. We believe
that it is critical to develop class-specific speech parameters
and fuse them to provide different recognition capabilities.
The detection-based ASAT paradigm is an ideal framework to
accommodate a large set of diverse speech parameters for
speech attribute detection and automatic speech recognition.

4. Summary

The separations between models are closely related to the
performance of pattern recognition and verification systems. A
one-dimensional GLLR measure can be used to measure the
distance between a target and a set of competing models. We
found that the two histograms corresponding to the GLLR
statistics derived from a collection of target and non-target
samples form a GLLR plot that serves as a useful tool to
visually analyze the separation between models. We also
found that Type I and Type II errors can be clearly displayed
on a GLLR plot and two sets of GLLR plots corresponding to
two given sets of models can be compared to estimate the
discrimination power and the implied recognition or
verification errors. We illustrate five examples of the GLLR
measure and demonstrate their potential extensions to different
applications. We believe the GLLR measure serves as a great
tool for developing algorithms based on improved speech
models, and new speech parameters without having to conduct
large scale, real world ASR and UV experiments.
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