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ABSTRACT

We propose a rescoring framework for speech recognition that
incorporates acoustic phonetic knowledge sources. The scores
corresponding to all knowledge sources are generated from a
collection of neural network based classifiers. Rescoring is then
performed by combining different knowledge scores and uses
them to reorder candidate strings provided by state-of-the-art
HMM-based speech recognizers. We report on continuous phone
recognition experiments using the TIMIT database. Our results
indicate that classifying manners and places of articulation
provides additional information in rescoring, and achieving
improved accuracies over our best baseline speech recognizers
using both context-independent and context-dependent phone
models. The same technique can also be extended to lattice
rescoring and large vocabulary continuous speech recognition.

1. INTRODUCTION

With the increasing usage of data-driven learning frameworks,
such as hidden Markov model (HMM) (e.g. [1]) and artificial
neural network (ANN) (e.g. [2]), we have witnessed a fast
technology progress in automatic speech recognition (ASR) in
recent years. However, effort in integrating additional knowledge
sources into state-of-the-art HMM based systems has only
resulted in very limited successes. In order to improve ASR
performance, we usually rely on collecting more data to train
more detailed models. It is believed that diagnostic information
provided by acoustic phonetic knowledge is potentially
beneficial to ASR. In this study we explore ways to incorporate
such knowledge sources into ASR design.

One way to integrate knowledge sources into ASR is to
extract “knowledge-based” front-end features. In [3] and [4],
such features are used to train new phone HMMs. In this paper
we propose the generation of “knowledge scores” and use them
to rescore N-Best candidate lists provided by the conventional
HMM-based systems with a given set of models. Plenty of
knowledge sources can be used (e.g. [4]). As proposed in this
paper, we use articulatory knowledge that is related to human
speech production. Such features are known to be robust to
speech variations.

Two groups of techniques to score speech vectors can be
implemented. The first (e.g. [3], [4], [5]) uses MFCCs [6] as
input features. The algorithm usually adopts neural network to
simulate the posterior probabilities of the feature, given the

speech vector. Another group (e.g. [7], [8], [9]) uses knowledge-
based features to detect acoustic landmarks. Support vector
machine based classifiers for manner of articulation have also
been designed using a set of 13 knowledge-based features under
a probabilistic framework [10]. In the current study, we use
neural network to classify speech frames into attribute categories
and use the classification scores to feed into a score combination
algorithm to obtain corresponding phone scores.

N-Best lists and word lattices [11] are usually used in multi-
pass search to rescore candidate theories based on more detailed
acoustic and language models. We propose an N-Best rescoring
algorithm by combining phone scores obtained from different
knowledge sources. It works well for both coarse and detailed
models.

We evaluate the proposed algorithm on continuous phone
recognition using the TIMIT database [12]. Our experimental
results indicate that classifying manners and places of
articulation provides additional information in rescoring, and
resulting in improved accuracies over our best baseline speech
recognizers using both context-independent and context-
dependent phone models. The same technique can also be
extended to lattice rescoring and large vocabulary continuous
speech recognition.

2. KNOWLEDGE SCORING

To provide a set of scores to measure a goodness-of-fit between
a speech frame and an individual knowledge source in order to
rescore multiple theories, we first compute speech parameters
related to the particular knowledge source. Then we design a
classifier to evaluate a corresponding knowledge score used for
classification. To avoid confusion with the term “feature”
commonly used in the front end of conventional ASR systems,
we will call these knowledge based features as “attributes”.

In the most general framework shown in Figure 1, For any
given speech attribute, Ai, FEi stands for a feature extraction
module that converts a speech signal, x(t), into a sequence of
speech parameter vectors, Yi. SCi is an attribute scoring module
that computes knowledge score, KSi. KSi can be interpreted as a
goodness-of-fit score between Yi and Ai. In some cases, these
scores simulate the a posteriori probabilities, p(Ai|x(t)), of an
attribute given the speech signal. Attribute-specific feature
extraction modules can be designed to evaluate sound-specific
parameters, and then fed into various scoring routines. In this
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study, we use the 10-msec MFCC vectors for all FEs. We will
explore other speech parameterization techniques in the future.
There are also many techniques for designing the classification
modules. To simplify our study, we use ANNs for all scoring
modules. Different from those in [3] and [5], which use neural
network to classify the entire manner or place attribute groups,
we design one classifier for every single attribute. It is highly
plausible that the optimal speech parameters and corresponding
classifier or detector can be different for each speech attribute.
Our design enables us to incorporate new speech parameters to
design new attribute classifiers and detectors in future studies.

Figure 1 Knowledge extraction module

For every attribute in Figure 1, we use a feed-forward
neural network to perform feature extraction. All the networks
share the same structure, no parameter tuning was performed.
The input to the networks has 9 frames (frame rate is 10 msec in
the current system) of 12MFCCs + energy, giving a total of 117
input nodes. The hidden layer has 100 nodes. The output layer
has only one node, and its value is 1 if the desired attribute is
present at the center frame, and 0 otherwise. The silence attribute
appears in both groups, only one classifier is needed for it. So
we designed a collection of 15 neural networks, one for the each
of the 15 attributes of the manner and place of articulation listed
in Table 1. This list was adopted from [3]. We will incorporate
other knowledge sources to better discriminate phones in future
research.

Attribute Group Attributes
Manner vowel, stop, fricative, approximant,

nasal, silence
Place low, mid, high, dental, labial, coronal,

palatal, velar, glottal, silence

Table 1 Manner and place of articulation attributes

3. N-BEST RESCORING

ROVER [13] is a convenient tool to combine ASR systems and
it sometimes leads to a significant performance improvement
when these systems use complementary features and exhibit
different error patterns (e.g. [4]). For strings in an N-Best list
obtained from a single system, like in our current study, we
believe ROVER will not help much. Instead we use knowledge
sources in a two-stage ASR system to improve performance as
shown in Figure 2. In the first stage, the N-Best list is generated
by using the baseline HMM based speech recognizer. The
knowledge scores needed in the second stage are computed by
passing speech through the knowledge extraction module
described in Figure 1. These knowledge scores are then fused
with some combination weights to get phone scores. We then
combine phone scores into string scores and rescore the N-Best
candidate strings to obtain the final recognized results. The
rescoring algorithm is described as follows:

Step1. For the m-th frame of the speech signal ( ],1[ Mm ∈ , M is
the total number of frames in the test utterance), get the
individual knowledge scores, KSi,m, of the i-th attribute
( ],1[ Ki ∈ , K is the total number of attributes) with the
extraction module in Figure 1.

Step2. Given the m-th frame and the n-th candidate string
( ],1[ Nn ∈ , N is the total number of candidates), use the
set of knowledge scores, KSi,m, to come up with a phone
score, PSn,m, as described in Figure 3.

Step3. For every n-th candidate string weight PSn,m of all the
frames to obtain the total phone score for candidate n as:

� =
=

M

m mnmn PSwPS
1 , . The weight mw can be chosen

according to the confidence of speech frame
classification. We chose all the frame weights to be 1/M
for simplicity here.

Step4. For every candidate, compute the final string score as:

nLnKn LPSS αα += , where nL is the log likelihood

computed from the baseline HMM recognizer for
candidate n . Here, we didn’t tune the weights, and
simply chose 5.0== LK αα . Better result may be

achieved with different weights. Finally, we select the
candidate with the largest nS as the final recognition

result.

Figure 2 Two-stage ASR with knowledge sources

In Step2 above, a combination module is used to map the
knowledge scores, KS, to phone scores, PS. In our current work,
simulated attribute probabilities are used as KS and are fused
together in order to simulate the a posteriori probabilities of
phones, p(Phj |x(t)) ( ],1[ Pj ∈ , P is the total number of phones)
as shown in Figure 3. In our implementation for the combination
module, we use a feed-forward ANN with 100 hidden nodes.
Given the m-th frame and the n-th candidate string, we obtain the
phone identity, Phj, from the corresponding transcription. Take
the logarithm of p(Phj |x(t)) as the phone score, PSn,m, for the
candidate frame.

Figure 3 Combination module for rescoring

4. EXPERIMENTS

The TIMIT database is used in all the following experiments.
Excluding utterances used for speaker adaptation (SA), there are
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a total of 3696 and 192 utterances in the training and core testing
sets, respectively. To train the HMMs, we used the entire
training set. To train ANN-based classifiers and combination
network, we randomly selected 3504 utterances as the training
set, and the remaining 192 utterances serve as a validation set.

4.1 Baseline Phone Recognition System

Starting from the 48 context-independent (CI) phones defined in
[14], we merged the phones “cl”, “vcl” and “epi” into the phone
“sil”, and reduced the TIMIT phone set to a set of 45 CI phones.
We then trained one set of monophone models and another
collection of triphone HMMs by using HTK [15]. The input
features are 12MFCCs + energy, and their first and second order
time derivatives. For the CI-phone based recognizer, every
monophone has 3 states, and every state has 16 mixture Gaussian
components. For the context-dependent (CD) phone based
recognizer, we obtained a total of 995 shared states, each has 8
Gaussian mixture components. Only acoustic models we
employed in continuous phone recognition, no language models
were used. The performance is measured by the phone accuracy
rate (Acc). The Acc for the monophone and triphone based
recognizers are 59.48% and 63.87%, respectively. These
baseline results are similar to those reported in [16].

4.2 ANN-Based Attribute Classifiers

To train the proposed ANN-based attribute classifiers, NETLAB
[17] was used. We evaluated them with frame error rate. For
every frame, we chose the class with the largest output value as
the result of frame classification for the manner or place attribute
group. Confusion matrix of the manner attributes is listed in
Table 2. The (i, j)-th element of the confusion matrix indicates
the classification rate of the i-th attribute being categorized into
the j-th class. For example, we can see the approximant attribute
gives the lowest classification rate of 56.5%. In addition, 32.3%
of the approximant frames were wrongly classified as the vowel
attribute. These frame level classification problems can often be
alleviated by a better definition of attributes. We will also
explore segment-based models and scores, like HMMs, to
improve the performance. In this study, we are mostly interested
in obtaining frame-based knowledge scores. The overall frame
error rates of manner and place attribute group are 17.9% and
26.8%, respectively. The frame error rates for the place attributes
are plotted in Figure 4. Our results are again comparable with
those reported in [5], showing a slightly worse performance for
the manner attributes and a slightly better performance for the
place attributes. Attribute bigram models and duration models,
used in [5] to reduce the classification error rates, were not used
in our experiments.

As shown in Table 2 and Figure 4, large differences exist
among various attribute classes. The silence attribute achieved
the best frame classification accuracy of 92.9%. The vowel,
fricative and retroflex attributes have error rates of less than 20%,
while approximant, mid, dental and glottal attributes give error
rates of more than 40%. One possible explanation is that the
MFCC based spectral features, currently used as the input
features for all ANNs, work well to classify some attributes, but
fail in other cases where temporal features may be more
discriminative. This motivates us to explore other speech

parameters to design attribute classifiers. In the framework
shown as Figure 1, we can flexibly change the input parameters
of individual classifiers, without affecting other classifiers.

% vowel frica
-tive

stop nasal approxi
-mant

silen
-ce

vowel 89.0 1.5 1.5 1.8 6.0 0.2
fricative 3.8 85.2 6.8 1.2 1.3 1.7
stop 7.6 11.0 72.5 2.9 2.1 3.9
nasal 11.2 2.5 4.8 77.5 3.2 0.8
approxi
-mant

32.3 2.9 3.7 3.2 56.5 1.4

silence 1.1 1.2 3.2 0.7 0.9 92.9
Table 2 Confusion matrix for manner attributes
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Figure 4 Frame error rate of place attributes

4.3 Rescoring Performance

In order to achieve an improved performance over the baseline
systems, we need the N-Best lists from both the monophone and
triphone based recognizers. We experimented with both the 24-
best and 100-best lists for rescoring. If the candidate that best
matches the reference phone transcription of the test utterance is
chosen, we can get the upper bound accuracies of our rescoring
algorithm shown in Table 3. It is clear that with more candidates
and better models, the upper bound accuracies always improve.

24-Best list 100-Best list
Monophone 64.41% 66.43%
Triphone 69.08% 71.10%

Table 3 Upper bound accuracies for N-best rescoring

Since the strings that achieve the upper bound accuracies
are not known, we picked the candidate with the largest score as
the recognized string. Table 4 lists the result of rescoring.
Although the absolute Acc rate improvement is rather small, it is
very important to realize that the N-Best list only provides us a
very small room for performance improvement, as limited by the
performance upper bounds listed in Table 3. Even if our
classifiers are perfect and the knowledge scores are capable of
discriminating among all attributes, we can only attain these

I - 839

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 7, 2008 at 02:45 from IEEE Xplore.  Restrictions apply.



upper bounds. In the current situation, with imperfect classifiers
and limited knowledge sources, we only reach an Acc rate
between the baseline and the upper bound achievable by the
given N-Best list. Therefore it is more meaningful to measure a
relative Acc improvement shown in the bottom row of Table 4.

Baseline-BoundList UpperNBest

Baseline-ResultRescoring
ImprovmentAccRelative =

Acc CI Phone
24-Best

CI Phone
100-Best

CD Phone
24-Best

CD Phone
100-Best

Upper
Bound

64.41% 66.43% 69.08% 71.10%

Baseline 59.48% 59.48% 63.87% 63.87%
Rescore 60.80% 61.13% 64.55% 64.72%
Relative 26.8% 23.7% 13.0% 11.8%

Table 4 Relative performance improvement

It is interesting to note that the relative Acc improvement
obtained by our rescoring algorithm was over 20% for
monophone based systems. This Acc improvement was reduced
to about 10% when triphone based systems are evaluated. It
seems that the performance improvement for the triphone based
recognizer is not as much as monophone based recognizer,
because the attribute classifiers help less when detailed models
are used. It is imperative to design more accurate classifiers to
integrate more useful knowledge sources into our rescoring
algorithms. It is also noted that the absolute Acc improvement of
the 100-best list is better than that of the 24-best list. That is to
say that with more candidates, we can achieve a better accuracy.
We therefore expect to get better error rate reduction when word
or phone lattices are used in rescoring, because they have the
ability to provide more varieties of candidates than the N-Best
list.

5. CONCLUSION

We have proposed a string rescoring approach to ASR by
incorporating knowledge sources into computing knowledge
scores and reordering N-best candidate strings. Based on
classifying manner and place of articulation, the corresponding
attribute scores provide additional discrimination information,
and therefore improve the overall phone recognition accuracy.
Different rescoring strategies have been evaluated. The best
performance improvement was obtained by using a neural
network to combine outputs of the attribute classifiers.

Many research issues are worth pursuing. Our classifiers are
all based on 10-msec MFCCs. If we can design classifiers with
corresponding optimal input features, including both short time
temporal features, such as voice onset time, and long term
features, such as pitch contours, we expect to improve the
classification rate, and therefore boost the overall system
performance. In addition to manner and place of articulation,
other knowledge sources can be incorporated to rescore the N-
Best list. We also intend to explore other strategies for rescoring
word and phone lattices. The graphical models [18] seem to be
an ideal tool to model the complex interactions among different
acoustic phonetic attributes. Furthermore, many new types of
knowledge scores and confidence measures can also be
combined to improve the effectiveness of rescoring.
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