Available online at www.sciencedirect.com

SCIENCE@DIRE°T® Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 343 (2005) 370—412

www.elsevier.com/locate/tcs

Semantic essence of AsmL

Yuri Gurevich, Benjamin Rossman, Wolfram Schulte
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Abstract

The Abstract State Machine Language, AsmL, is a novel executable specification language based
on the theory of Abstract State Machines. AsmL is object-oriented, provides high-level mathematical
data-structures, and is built around the notion of synchronous updates and finite choice. AsmL is fully
integrated into the .NET framework and Microsoft development tools. In this paper, we explain the
design rationale of AsmL and provide static and dynamic semantics for a kernel of the language.
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1. Introduction

Microsoft develops a huge amount of software. But how do Microsoft employees doc-
ument the requirements, design, data structures, APIs, protocols, etc? Microsoft's devel-
opment practices are diverse. Seldom do employees use mathematical models. Sometimes
they use semi-formal notation like UML, but most of the time they use more or less rigorous
English. However, we all know the drawbacks of semi-formal and informal specifications:
unintended ambiguity, missing important information, etc. Most importantly, such speci-
fications lack a linkage to code. One cannot run and thus debug them, and it is hard to
impose such specifications. In spite of active interaction among architects, developers and
testers, the developer’s interpretation of an architectural specification may differ from that
of the architect, and the tester may not know the precise functionality of the system.We
need readable but precise specifications of what the software is supposed to do and we need
the specification to be linked to an executable code. We view specifications as models that
exhibit the desired behavior on the appropriate level of abstraction. AsmL is a new language
for writing such models.
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1.1. Language requirements

AsmL is designed to be
e simple easy to use and able to deal naturally with common features like object orien-

tation;

e precise having a simple and uniform mathematical foundation based on abstract state
machines (ASMs);

e executableallowing you to validate the model;

o testable with models acting as test oracles for the developed code as well as test case
generators;

e inter-operable able to interact with code in the existing Microsoft runtime environ-
ments;

e integrated acting properly in the existing Microsoft runtime and tool environments;

e scalable appropriate to write large industrial models;

e analyzable amenable to efficient semantic analysis, like race condition or deadlock
detection.

AsmL was designed because no existing language satisfied these criteria; seelSéction
in this connection. The group on Foundations of Software Engineering (FSE) at Microsoft
Research designed, implemented and integrated AsmL with the Microsoft runtime and tool
environment. The FSE group has also built various tools on top of AsmL.

1.2. Language features

The language features of AsmL were chosen to give the user a familiar programming
paradigm. For instance, AsmL supports classes and interfaces in the same way as C# or
Java do. In fact all .NET structuring mechanisms are supported: enumerations, delegates,
methods, events, properties and exceptions. Nevertheless, AsmL is primarily a specification
language. Users familiar with the specification language literature, will find familiar data
structures and features, like sets, sequences, maps, pattern matching, bounded quantification,
and set comprehension.

But the crucial features of AsmL, intrinsic to ASMs, are massive synchronous paral-
lelism and finite choice [9]. These features give rise to a cleaner programming style than
is possible with standard imperative programming languages. Synchronous parallelism al-
lows you to perform a collection of parametrized actions in parallel. For example, you
may reverse simultaneously all edges of the given finite directed graph. This leads to trans-
actional semantics. The collection of parametrized actions is treated as a single transac-
tion. If something goes wrong, the whole transaction is rolled back. This provides for a
clean separation between the generation of new values and the committal of those values
into the persistent state. For instance, when an exception is thrown, the state is automat-
ically rolled back rather than being left in an unknown and possibly inconsistent state.
Finite choice allows the specification of a range of behaviors permissible for an (even-
tual) implementation. Finite choice leads to a simple concept of program refinement: a
finer program makes fewer choices and is more defined (and having fewer cases of non-
termination or termination with an exception). Finite choice provides also a simple way
of interleaving parallel computations that are supposed to be asynchronous, which is good



Y. Gurevich et al. / Theoretical Computer Science 343 (2005) 370—-412 373

enough for many distributed applications. An extension of AsmL with true asynchrony is in
progress.

1.3. AsmL-S, a core of AsmL

AsmL is rich. It incorporates features needed for .NET integration and features needed
to support various tools built on top of AsmL. It is also evolving. There are several rea-
sons for this. The Microsoft runtime and tool environments evolve, and AsmL needs to
be constantly reintegrated. The FSE group continues to build tools on top of AsmL and
needs to be able to support these tools. The group continues to enrich AsmL with new
features and revise it from time to time. But there is already a stable and mature core of
AsmL.

AsmL-S, where S alludes to “simple”, represents the stable core of AsmL. This paper is a
semantical study. So we allow ourselves to compactify the syntax and ignore some features
that do not add semantical complexity. In particular, maps, sequences and sets are first-class
citizens of the full AsmL. In AsmL-S only maps are in the language. Sets ofttgpa be
represented as maps frdrno the unit type.

1.4. Related work

The semantics of abstract state machines was defin@j amd elaborated in [10]. The
ASMs of [9] have the forall construct and the choose construct but no intra-step sequential
composition. Intra-step sequential composition was accounted semantically in [11] (the sim-
ple non-iterative form) and in [6] (the iterative form). ASMs with set-theoretic background
were studied in [5].

A number of ASM tools preceded AsmL; see Interpreters and Tools at [16] in this connec-
tion. None of those tools was sufficient for our purposes, however. Of course, we looked into
other tools as well. Precise specification languages like HOL [8], PVS [25], VDM [2], or
Z [26] are difficult to use for non-specialists; more importantly they are not inter-operable.
Functional languages like Haskell [15] or SML [20] are attractive but they are not state
oriented and, in our opinion, do not deal satisfactory with state. Modern object-oriented
languages, like C# [14], Java [18], O’Caml [21], or Pizza [22], lack some abstractions
of great importance to us. In particular, they do not support synchronous parallelism or
non-determinism.

And so the group of Foundations of Software Engineering developed AsmL [1]. This
development did not take place in a vacuum, though it is hard to pinpoint all the influences.
The object-oriented aspects of AsmL were influenced by mainstream imperative languages
like Java [18] and C# [14]. The type system was influenced by mainstream imperative
languages as well as functional languages like Haskell [15] or SML [20]. The use of maps
was influenced by VDM [2]. An early attempt to consider the semantics of AsmL is found
in[12].

1.5. Article organization

This article is organized as follows.
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Section2, that is Section 2, illustrates the design of AsmL by means of examples. For
expositional purposes, the language is introduced piecemeal and certain notions get revised
along the way. For example, locations are first defined as object fields. Later, maps are
introduced and the notion of location is generalized.

In Section 3, we give an abstract syntax for AsmL-S and explore its type system.
In Section 4, we present operational semantics for AsmL-S. In Section 5, we prove the
type soundness of AsmL-S, discuss semantic refinement and some other issues.

2. Motivating the design

This section serves the purposes of motivation and illustration only. The rest of the paper
does not depend on this section.

AsmL is arichlanguage. One can see it as a fusion of the Abstract State Machine paradigm
andthe .NET type system, influenced to an extent by other specification languages like VDM
or Z. This makes it a powerful modeling tool. On the other hand, we also aimed for simplicity.
That is why AsmL is designed in such a way that its core, AsmL-S, is small. AsmL-S is
expression and object oriented. It supports synchronous parallelism, finite choice, sequential
composition and exception handling.

The rest of this section presents examples of AsmL-S expressions and programs. For
the abstract syntax of AsmL-S, see Fig. 1 in Section 3. We stress again that this ar-
ticle is a semantical study. The syntax of the full AsmL, intended to be user friendly
and appropriate for substantial programs, was compactified to fit our purposes in this

paper.

Remark 1. The “definitions” in this section are provisional, having been simplified for the
purpose of explaining examples. The notions/alue type content mapstore etc., are
formally defined in Section8 and 4.

2.1. Expressions

InAsmL-S, expressions are the only syntactic means for writing executable specifications.
Binding and function application are call-by-value. (The necessity of .NET integration is a
good reason all by itself not to use lazy evaluation.)

Literal is the set of literals, such asttue, null or void. We write the value denoted by a
literal as the literal itself. Literals are typed; for instance, 1 is of typeandtrueis of type
Bool. AsmL-S has various operations biteral, like the addition operation ovént or the
conjunction operation ovesool.

Exceptionis an infinite set of exceptions that is disjoint frdtiteral. Think of excep-
tions as values representing different kinds of errors. We will discuss exceptions further in
Section 2.8.

If eis a closed expression, i.e. an expression without free variables, iaralliteral or

an exception, thema— v means thae evaluates t@. The “v" above the arrow alludes to
“value”. Examples 1-5 show how to evaluate simple AsmL-S expressions.
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Evaluation of simple expressions

1+2-53 (1)
1/0 BN argX (2)
letx=1dox +x — 2 (3)
letx =1/0do?2 N argX (4)
if truethen 0 else3 — 0 (5)

For instance, Examplé shows that let-expressions expose call-by-value semantics: if the
evaluation of the binding fails (in this case, resulting in an argument exception), then the
complete let-expression fails, irrespective of whether the body is used the binding.

2.2. Object orientation

AsmL-S encapsulates state and behavior in classes. As in C# or Java, classes form a
hierarchy according to single inheritance. We use only the single dispatch of methods.
Objects are dynamically allocated. Each object has a unique identity. Objects can be created,
compared and passed around.

Objectldis an infinite set of potential object identifiers, that is disjoint froiteral and
Exception Normal valuesare either object identifiers i@bjectld or literals. Typeis the
collection of AsmL-S types. The types will be introduced as we go; alternatively see Fig. 1
in Section 3Valuesare either normal values or exceptions.

Nvalue = ObjectldU Literal,
Value = NvalueU Exception

A type magps a partial function fronObjectldto Type It sends allocated objects to their
runtime types. Aocationis an object identifier together with a field name drawn from a set
Fieldld. A content maps a partial function fromLocationto Nvalue It records the initial
bindings for all locations.

TypeMap= Objectld — Type
Location = Objectld x Fieldld,
ContentMap= Location— Nvalue

If eis a closed expression, thenM 0, w, v means that the evaluation efproduces

the type mag, the content map and the value. Example$-14 demonstrate the object
oriented features of AsmL-S. A colon is used to separate the class definitions from the
expression that is the body of the program.

classA {} : new A0 2% (0 > A}. 7. 0. (6)

The execution of a nullary constructor returns a fresh object identifesrd extends the
type map. The fresh object identifieis mapped to the dynamic type of the object.
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(One of the referees asked whether “the bindings in the type map ever get ‘garbage
collected’ in the semantics.” On the semantical level of this paper, garbage collection is
not a semantical issue. In any case, garbage collection is used in the full AsmL but not in
AsmL-S.)

classA {i asInt}, classB extendsA {b asBool} :
new B(L, true) 2% (o > B}, {(0.1) — 1, (0, b) > truel, o. @)

The default constructor in AsmL-S takes one parameter for each field in the order of their
declaration. The constructor extends the type map, extends the field map using the corre-
sponding arguments, and returns a fresh object identifier.

classA {i asInt} : new A(1).i Y1 (8)

Instance fields can immediately be accessed.

classA {Fact(i asInt) asint do
(if i =0then 1elsei x meFact(n — 1))} : new A().Fact(3)

0,mw,v

—>{o— A},0,6. (9)

Method calls have call-by-value semantics. Methods can be recursive. Within methods
the receiver object is denoted e

classA {Ong) asint do 1,
Two() asint do meOng) + meOne)},

classB extendsA {Ong) asint do —1} : new B().Twa() Y 2 (20)

Asin C# or Java, method dispatch is dynamic. Accordingly, in this example, itis the redefined
method that is used for evaluation.

classA {i asint} :
let x = (if 3 < 4then null else newA(1)) do x.i — nullX. (11)

If the receiver of a field or method selectiomigll, evaluation fails and throws a null pointer
exception.

classA {}, classB extendsA {} : new B() is A Y true. (12)

The operators tests the dynamic type of the expression.

classA {}, classB extendsA {} : new B() asA ““S{o > B}. 9. o. (13)

Casting checks that an instance is a subtype of the given type, and if so then yields the
instance without changing the dynamic type of the instance.

classA {}, classB extendsA {} : new A() asB Y5 castx (14)

If casting fails, evaluation throws a cast exception.
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2.3. Maps

Maps are finite partial functions. Aap displayis essentially the graph of the partial
function. For example, a map display= {1 — 2, 3+ 4} represents the partial function
that maps 1 to 2 and 3 to 4. The mazonsists of twanapletsl — 2 and 3— 4 mapping
keys(or indiceg 1, 3 to values 24, respectively.

Remark 2. InAsmL, maps can be also described by means of comprehension expressions.
For example{x — 2% x |x € {1, 2, 3}} denoteg1+> 2, 2+ 4, 3+ 6}. InAsmL-S
map comprehension should be programmed.

The maps of AsmL-S are similar to associative arrays of AWK or Perl. Maps have identities
and each key gives rise to a location. Arbitrary normal values can serve as keys. We extend
the notion of a location accordingly.

Location= Objectld x (Fieldld U Nvalue.

Maps may be modified (see Sectidd). Maps are often used in forall and choose expres-
sions (see Sections 2.5 and 2.7). Examples 15-19 exhibit the use of maps in AsmL-S.

new Int—Bool {1 — true, 5+ falsg

0oV 5 s (Int—Bool)}. {(0, 1) > true. (0, 5) — false. o. (15)
A map constructor takes the map type and the initial map as arguments.
new Int—Bool {1 — true, 1 > falsg LN argconsistencyX (16)

If a map constructor is inconsistent (i.e. includes at least two maplets with identical keys
but different values), then the evaluation throws an inconsistency exception.

(new Int—Bool {1 — true}) [1] Y true. a7

The value of a key can be extracted by means of an index expression.

(if truethen null else newint—Int {1+ 7}) [1] 5 nullX. (18)

(new Int—Int {1+ 7})[2] -5 mapkeyX (19)

However, if the receiver of the index expressiomisl! or if the index is not in the domain
of the map, then the evaluation throws a null-pointer exception or a map-key exception,
respectively.

Remark 3. AsmL-S treats maps differently than the full AsmL. The full AsmL is more
sophisticated; it treats maps as values which requires partial ugtldjels AsmL-S, maps
are objects. An example illustrating this difference is given in Section 2.10.
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2.4. Assignments

One of AsmL’s unique features is its handling of state. In sequential languages, like C# or
Java, assignments trigger immediate state changes. In ASMs, and therefore also in AsmL,
an assignment creates apdate An update is a pair: the first component describes the
location to update, the second the value to which it should be updated. An update set is a
set of updates. A triple that consists of a type map, a content map and an update set will be
called astore

Update = Locationx (ValueU {DEL}),
UpdateSet= SetOf(Update,
Store = TypeMapx ContentMapx UpdateSet

Note that we extendedaluewith a special symbdDEL which is used only with locations
given by map keys and which marks keys to be removed from the map.

If eis a closed expression, ther>% s, v means that evaluation efproduces the store
s and the valuey. Examples20-23 show the three ways to create updates. Note that in
AsmL-S, but not in AsmL, all fields and keys can be updated. AsmL distinguishes between
constants and variables and allows updates only to the latter.

classA {i asint} :
new A(1).i := 225 ({o > A}, {(0, i) = 1}, {((0, ), 2)}), void. (20)

A field assignment is expressed as usual. However, it does not change the state. Instead, it
returns the proposed update.

(new Int—Bool {1 — true}) [2] := false
2% (fo — Int—Bool}, {(0, 1) > true}, {((0, 2), false)}), void. (21)

A map-value assignment behaves similarly. Note that the update set is created irrespective
of whether the location exists or not.

remove (new Int—Bool {1 true}) [1]
2% ({o ~ Int—Bool}, {((0, 1) — true}, {(0, 1), DEL)}), void. (22)

The remove instruction deletes an entry from the map by generating an update that contains
the placeholdebEL in the location to delete.
classA {F(mapasint— A, valas A) asVoid do magd0] := val},
classB extendsA {} :
leta = new A() doa.F(newInt—B {}, a)

5 maptypeX (23)

classA {F(mapas A—Int, valasA) asVoid do magval] := 0},
classB extendsA {} :
leta =new A() doa.F(new B — Int {}, a)

N maptypeX (24)
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Map types are covariant in both argument and result types. &ieeB (resp.B—Int)

is a subtype ofnt— A (resp.A—Int), it is reasonable for Example3 and 24 to type-

check successfully at compile time. However, the assignments fails at runtime and throw
map-assignment exceptions. Thus, map assignments must be type-checked at runtime. (The
same circumstance forces runtime type-checks of array assignments in C# or Java.)

2.5. Parallel composition

Hand in hand with the deferred update of the state goes the notion of synchronous
parallelism. It allows the simultaneous generation of finitely many updates. Examples
25-28 show two ways to construct synchronous parallel updates in AsmL-S.

let x = new Int—Int {} do
(x[2]:=4 || x[3]:=9)
2% ({o~ Int=Int}, 4, {((0,2), 4), ((0, 3),9)}), Void. (25)
Parallel expressions may create multiple updates. Update sets can be inconsistent. A con-
sistency check is performed when a sequential composition of expressions is evaluated and
at the end of the program.
let x = newInt—Int {} do
let y = new Int—Void {2 — void, 3 — void} do
forall i in y dox[i] :=2x%1i
2% ({o1 ~ Int=Int, 0y — Int—Void},

{(02, 2) > void, (02, 3) — void}, {((01,2), 4), (01, 3), 6)}), void.
(26)
Parallel assignments can also be performed using forall expressions. In a forall expression
forall x in e1 do ez, the subexpressian must evaluate to a map. The subexpressiois
then executed with all possible bindings of the introduced variable to the elements in the
domain of the map.
let x = newInt—Int {} do

(forall i in x dox[i] :=1/i)

2% (fo — Int—=Int}, &, #), void. (27)
If the range of a forall expression is empty, it simply returns the liteoa.

let x = newlInt—Int {2+ 4} do
let y = x[2] do ((x[2] =28) | y)
Y ({o = Int=Int}, {(0, 2) > 4}, {((0, 2), 8)}), 4. (28)
Parallel expressions can return values. In full AsmL, the return value is distinguished syn-
tactically by writingreturn. In AsmL-S, the value of the second expression is returned

(see the remark after rule E24 in Sect#8 in this connection), whereas forall-expressions
returnvoid.
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2.6. Sequential composition

AsmL-S also supports sequential composition. Not only does Asrobr@mit updates
on the stateas in conventional imperative languages, but it @soumulates updateso
that the result of a sequential composition can be used in the context of a parallel update as
well. Examplef29—-32 demonstrate this important feature of AsmL-S.

let x = newInt—Int {2 — 4} do
((x[2] :=8); (x[2] := x[2] * x[2]))
2% (fo = Int=Int}, {(0,2) = B}, {((0, 2), 64)}), void. (29)

The evaluation of a sequential compositioregf e, at a states proceeds as follows. First

e1 is evaluated irS If no exception is thrown and the resulting update set is consistent,
then the update set is fired (or executedBiThis creates an auxiliary staf. Thenes

is evaluated irs’, after whichS’ is forgotten. The current state is sl The accumulated
update set consists of the updates generated byS’ and the updates ef; that have not
been overridden by updates®f

let x = newlInt—Int {2 — 4} do
(x[2] =8| x[2] := 6) 0 x[2] = x[2] * x[2]

Y, updateX (30)

If the update set of the first expression is inconsistent, then execution fails and throws an
inconsistent-updates exception.

let x = newlInt—Int {1+ 2} do
(x[2] =4 || x[3] := 6) ; x[3] i =x[3]+1

2% ({o Int=Int}, {(0, 1) > 2)}, {((0,2),4), ((0,3),7)}), void.  (31)

In this example, the updatgo, 3), 6) from the first expression of the sequential pair is
overridden by the updatgo, 3), 7) from the second expression, which is evaluated in the
state with content mafio, 1) — 2, (0, 2) — 4, (0, 3) — 6}.

let x = newInt—Int {1 +— 3} do
(while x[1] > O0do x[1] := x[1] — 1)

2% ({o~ Int=Int}, {(0, 1) = 3)}, {((0, 1),0)}), void. (32)

While loops behave as in usual sequential languages, except that a while loop may be
executed in parallel with other expressions and the final update set is reported rather than
executed.

The question arises when are the updates fired? In principle, the updates are collected
while the body of the program is executed and fired at the end of the execution. This does
not mean that the execution proceeds in the initial state. Consider for instance E82mple
Every round of the while loop is executed in the state resulting from the execution of the
previous rounds. Then why should we collect the updates? There is no good reason to
collect updates in the case of Example 32. But, as we mentioned already, a while loop may
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be executed in parallel with some other expression; then the updates need to be reported.
Also, something may go wrong with a while loop, in which case it needs to be rolled back.

2.7. Finite choice

AsmL-S supports choice between a pair of alternatives or among values in the domain of
a map. The actual job of choosing a value from a giverXswtalternatives is delegated to
the environment. On the abstraction level of AsmL-S, an external functiesf(X) does
the job. This is similar to delegating to the environment the duty of producing fresh object
identifiers, by means of an external functi@eshid. (See Sectiod.2 for more about these
external functions.)

Evaluation of a program, when convergent, returns one effect and one value. Depending
on the environment, different evaluations of the same expression may return different stores
and values. Examples 33—-37 demonstrate finite choice in AsmL-S.

102 - oneof{d, 2}. (33)
An expressiores [| e2 chooses between the given pair of alternatives.

choosei in (new Int—Void {1 > void, 2 > void}) do i
2% oneof{(({o > Int—Void}, {(0, 1) - void, (0, 2) — voidy, %), 1)
(({o +— Int—Void}, {(0, 1) > void, (0, 2) > void}, ¥), 2)}.  (34)
Choice-expressions choose from among values in the domain of a map.
choosei in (newInt — Int {}) do i
Y5 choiceX (35)

If the choice domain is empty, a choice exception is thrown. (The full AsmL distinguishes
between choose-expressions and choose-statements. The choose-expression throws an ex-
ception if the choice domain is empty, but the choose-statement with the empty choice
domain is equivalent tgoid.)

classMath{Doublgx asInt) asint do 2 % x} :
new Math().Doublg1 ] 2)
Y oneof{2, 4}. (36)

classMath{Doublgx asInt) asint do 2 x x} :
new Math().Doublg1) [| new Math().Doubleg?2)
N oneof{2, 4}. (37)

Finite choice distributes over function calls.
2.8. Exception handling

Exception handling is mandatory for a modern specification language. In any case, it is
necessary for AsmL because of the integration with .NET. The parallel execution of AsmL-S
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means that several exceptions can be thrown at once. Exception handling behaves as a finite
choice for the specified caught exceptions. If an exception is caught, the store (including
updates) computed by the try-expression is rolled back.

In AsmL-S, exceptions are special values similar to literals. For technical reasons, it is
convenient to distinguish between literals and exceptions. Even though exceptions are val-
ues, an exception cannot serve as the content of a field, for example. (In the full AsmL,
exceptions are instances of special exceptional classes.) There are several built-in excep-
tions: argX, updateX choiceX etc. In addition, one may use additional exception names
e.g.fooX

classA {Fact(n aslnt) asint do
(if n>0then(if n = 0then 1 elseFact(n — 1))
else throwfactorialX)} :

new A.Fact(—5) Y factorialX. (38)

Custom exceptions may be generated by means of a throw-expression. Built-in excep-
tions may also be thrown. Here, for instantieow argX could appropriately replace
throw factorialX.

Examples39—41 explain exception handling.

let x = newlInt—Int {} do

try (x[1] := 2 ; x[3] := 4/0) catchargX : 5

2% (fo — Int—Int}, 9, %), 5 (39)
The argument exception triggered byo4n the try-expression is caught, at which point the
update((x, 1), 2) is abandoned and evaluation proceeds with the contingency expression
5. In general, the catch clause can involve a sequence of exceptions: a “catch” occurs if
the try expression evaluates to any one of the enumerated exceptions. Since there are only
finitely many built-in exceptions and finitely many custom exceptions used in a program, a

catch clause can enumeratéexceptions. (This is common enough in practice to warrant
its own syntactic shortcut, though we do not provide one in the present paper.)

try (throw fooX) catchbarX, bazX : 1 -5 fooX. (40)
Uncaught exceptions propagate up.
throw fooX | throw barX N oneof{fooX, barX}. (42)
If multiple exceptions are thrown in parallel, one of them is returned nondeterministically.
throw fooX[ 1 N oneof{fooX, 1}. (42)
Finite choice is “demonic”. This means that if one of the alternatives of a choice expression

throws an exception and the other one converges normally the result might be either that the
exception is propagated or that the value of the normally terminating alternative is returned.
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2.9. Expressions with free variables

Examplesl—42 illustrate operational semantics for closed expressions (containing no
free variables). In general, an expressémontains free variables. In this case, operational
semantics oéis defined with respect to avaluation contextb, r) consisting of a binding
b for the free variables of and a store = (0, w, u) where for each free variable b(x) is
either a literal or a object identifier in dai$). We writee l> p.r v if computation ofein
evaluation contextb, r) produces value.

v
X+Y =7y 11, @00 18 (43)

v
2[2] — (¢ o}, ({0 Int—Bool},{(0,2) — false,g) false (44)

.SV . .
A more general notatioa —, , s, v means that a computation efn evaluation context
(b, r) produces new storeand valuev.

2.10. Maps as objects

This subsection expands Rem&Mt was prompted by a question of Robert Stark who
raised the following example.

classA {f asInt — Bool, g asint — Bool} :
let a = new A(new Int — Bool {1 — true, 2 — true},
new Int — Bool {}) do
a.g:=a.f ; ax(2) :=false
Y (for— A, 02 — Int - Bool, 03 — Int — Bool},

{(01, ) > 02, (01, 8) = 03}, {((01. &), 02), (02, 2),false}), void.
(45)

In this example, the first assignmeng := a. f is responsible for the updaté, g), 02);
the second assignment gives rise to the update 2), false). Thus,a.g[2] has valudalse
after all updates are executed.

This same program has a different semantics in the full AsmL, where maps are treated as
values rather than objects. In AsmL, the assignmesnit= a. f has the effect of updating
a.g to the value ofu. f, i.e., the mapl — true, 2 — falsg. The second assignment,
a.f[2] .= falsg has no bearing on.g. Thus,a.g[2] has valugrue after all updates are
executed.

In treating maps as objects in AsmL-S, we avoid having to introduce the machinery of
partial update§l 3], which is necessary for the treatment of maps as values in AsmL. This
causes a discrepancy between the semantics of AsmL-S and of AsmL. Fortunately, there is
an easy AsmL-S expression that updates the value of asmapthe value of another map
my (without assigningn, to m1):

forall i in m1 do removem1[i] ; forall i in mo dom1[i] := mo[i]



384 Y. Gurevich et al. / Theoretical Computer Science 343 (2005) 370—-412

The first forall expression erases; the second forall expression copias to m1 at all
keysi in the domain ofn,.

3. Syntax and static semantics

The syntax of AsmL-S is similar to but different from that of the full AsmL. In this
semantics paper, an attractive and user-friendly syntax is not a priority but brevity is. In
particular, AsmL-S does not support the offside rule of the full AsmL that expresses scoping
via indentation. Instead, AsmL-S uses parentheses and scope separators like “:'.

3.1. Abstract syntax

We take some easy-to-understand liberties with vector notation. A vedsotypically
alistx1...x, of items possibly separated by commas. A sequeneer, ..., x, &y, can
be abbreviated t® « y, wherex represents a binary operator. This allows us, for instance,
to describe an argument sequerigeas 1, . .., ¢, as t, more succinctly ag as 7. The
empty vector is denoted hy

Fig. 1 describes the abstract syntax of AsmL-S. The meta-variabfem, ¢, prim, op,
lit, andexg in Fig. 1 range over disjoint infinite sets of class names (includbgec),
field names, method names, local variable names (incluti@gprimitive type symbols,
operation symbols, literals, and exception names (including several built-in exceptions:
argX, updateX . ..). Sequences of class names, field names, method names and parameter
declarations are assumed to have no duplicates.

An AsmL-S program is a list of class declarations, with distinct class names different
from Object followed by an expression, the body of the program. Each class declaration
gives a super-class, a sequence of field declarations with distinct field names, and a sequence
of method declarations with distinct method names.

AsmL-S has three categories of types—primitive types, classes and map types—plus two
auxiliary types,Null and Thrown (Thrownis used in the static semantics, although it is
absent from the syntax.) Among the primitive types, therdBai@, Int andVoid. Ironically,

Void isn’t void but contains one element. There could be additional primitive types; this
makes no difference in the sequel.

Objects come in two varieties: class instances and maps. Objects are created méth the
operator only; more sophisticated object constructors have to be programmed in AsmL-S.
A new-class-instance expression takes one argument for each field of the class, thereby
initializing all fields with the given arguments. A new-map expression takes a (possibly
empty) sequence of key-value pairs, calledplets defining the initial map. Maps are
always finite. A map can be overridden, extended or reduced (by removing some of its
maplets). AsmL-S supports the usual object-oriented expressions for type testing and type
casting.

The common sequential programming languages have only one way to compose expres-
sions, namely the sequential compositian e2. To evaluate; ; e, first evaluatee; and
then evaluate,. AsmL-S provides two additional compositions: the parallel composition
e1 || e2 and the nondeterministic compositien[] e2. To evaluatee; || e2, evaluates; and
ez in parallel. To evaluate; [] e; evaluate eithee; or e;. The related semantical issues
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pgm = cls : e programs
cls = classc extendsc {fld mth} class declarations
fld = fast field declarations
mth = m(¢ as7) ast doe method declarations
lit = null | void | true| 0] ... literals
op =+|—-|/I=I<land] ... primitive operations
prim = Bool| Int | Void]| ... primitive types
t = prim | Null | ¢ | t—t normal types
exc = argX |updateX| choiceX| ... exceptions
e = expressions
lit | ¢ literals/local variables
| op(e) built-in operations
| leté=edoe local binding
| if ethene elsee case distinction
| new c(e) creation of class instances
| new r—t {e+— ¢} creation of maps
| e.f | ele] | em(e) field/index'method access
| ef:=e field update
| ele]l:=e | removeele] index update
| eist type test
| east type cast
| elle | forall £inedoe parallel composition
| elle | choosetinedoe nondeterministic composition
| e;e | whileedoe sequential composition
| try ecatchexc: e exception handling
| throw exc explicit exception generation

Fig. 1. Abstract Syntax of AsmL-S.

will be addressed latewhile, forall andchooseexpressions generalize the two-component
sequential, parallel and nondeterministic compositions, respectively.

AsmL-S supports exception handling. In full AsmL, exceptions are instances of special
exception classes. In AsmL-S, exceptions are atomic values ofityjpevn (Alternatively,
we could have introduced a whole hierarchy of exception types.) There are a handful of
built-in exceptions, likeargX; all of then end with “X”. A user may use additional excep-
tion names. There is no need to declare new exception names; just use them. Instead of
prescribing a particular syntactic form to new exception names, we just presume that they
are taken from a special infinite pool of potential exception names that is disjoint from other
semantical domains of relevance.

3.2. Class table

It is convenient to view a program as a class table together with the expression to be
evaluated17]. We assume that no class name is declared more than once and that there is
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no declaration foObject The class table associates class names different@igjectwith
the corresponding declarations.

Proviso 4. For the remainder of this papewe restrict attention to an arbitrary but fixed
class table. In particularclassewvill mean declared classes

If cis a class other tha@bject thenparent(c) is the class’ extended byc according
to the declaration of. We assume thatarent(c) either equal©bjector is declared earlier
thanc. addf(c) is the sequence of distinct field names appearing in the declaratiofiloé
sequence of all fields of a class is defined by induction using the concatenation operation.
fldseqObject = ¢
fldseqc) = addf(c) - fldsedparentc)).
We assume thatddf(c) is disjoint fromfldsedparent(c)) for all classeg. If f is a field of
c of typet, thenfldtypd f, ¢) = ¢. If fldsedqc) = (f1, ..., f,) andfldtyp€ f;, ¢) = 1;, then

fldinfo(c) = f asi = (frast1, ..., f, @Sty).

The situation is slightly more complicated with methods because, unlike fields, methods
can be overridden. Letddn(c) be the set of method names included in the declaratian of
We presume for simplicity that different method declarations of any daswe different
names. We define inductively the set of all method names of a class.

mthsetObject) = ¢

mthsetc) = addn(c) U mthsetparent(c))

For eachn € mthsetc), dclr(m, ¢) is the declaration
m(¢1asty, ..., £, ast,) asrdoe

of m employed byc. We assume, as a syntactic constraint, that the variablase all
distinct and different fronme The declaratiordclr (m, ¢) is the declaration ofm in the
classhomém, c) defined as follows:
m € addm(c) m € mthsetc) — addnc)
homém, ¢) = ¢ homem, ¢) = homém, parent(c)) -

3.3. Subtyping

The subtype relatiorg (relative to the underlying class table) is defined inductively by
the following rules, where, ', t”, 7, 7’ are arbitrary types and ¢’ are arbitrary classes.

1<t <t . .
o <1, % < is a partial order
~
parentc) = ¢/ .
s — < extends the parent relation over classes
c<cC

e 7 — t<Object maps are objects
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<t o<t
=< =1

maps types are covariant in argument and
result types

t < Object . .
° Nal<r Null lies beneath all object types
e Thrown<r Thrown lies beneath all other types

Note that map types are covariant in both argument and result types which is consistent
with the type system of AsmL and which fits many purposes. For example, maps are often
used as lookup tables e.g. to represent dynamic functions of abstract state mggjhines
(In Section 5.3.4 we discuss the advantages and disadvantages of changing our type system
such that map types are contravariant in argument types.)

The subtype relation is a partial order of a relatively simple form described in the following
proposition. Call two typesomparablef one of them is a subtype of the other; otherwise
call themincomparable

Proposition 5.

1. The primitive types form an anti-chain with respectga(i.e. they are pairwise incom-
parablg. No primitive type compares to Null

2. Restrictedto classethe subtype relation is @eflexive transitivitree relation. The class
tree is rooted at Object and lies above Nlo class compares to any primitive type

3. The map types are located below Object and above.Mdl map type compares to

primitive types or subclasses of Object
. Below all these types is located Thrown
. For all map types1 — » andt; — 12, we have

(G20~

(11 —> )<(t1—> 12) &= ((1<7) A (12<12).

The proof is straightforward. (]

Corollary 6. Everytwo types, t» have a greatest lower boungriz,. Every two subtypes
of Object have a least upper bound ! 7.

3.4. Well-typed expressions

We assume that every literiitl has a built-in typdittype(lit). For instancelittype(2) =
Int, littype(true) = Bool andlittype(null) = Null. We also assume that a type function
optypeop) defines the argument and result types for every built-in operafioRor exam-
ple, optypgand) = (Bool, Bool)— Bool.

A type context Ts a function mapping local variables, possibly including to types.

I is afunction associating certain expressiength types. IfT7 (e) is defined, them is
said to bewell-typedwith respect tarl.

The definition ofT7 (e) is inductive. The induction step splits into many rules, most of
them self-explanatory. A comment, if any, follows the rule. As a notational shorthand, we
write Tr(e1,...,e,) = (f1,...,1,) to mean thatty(e;)) =, foralli = 1,...,n. The
same applies to inequalities.
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Note that, in the following rules, typdsandt may equalThrown but remember that
Thrownis not available in the syntax and thus cannot occur in expressions.
Literals and local variables
T1. Tr(it) = littype(lit).
¢ € dom(T)

= IrO=TO "

T (0) is undefined wheh ¢ dom(T). It will follow that an expressioris well-typed with
respect tar only if dom(7") contains all free variables e

Operations

T3 OPlypeop) =71 Ir(e)<z
' Ir(ople)) =1

Local binding

Ta. Tr(er) =t

Ir(letl =e1doer) = Tr g n(e2)

Here T© {¢ +—t} is the type context obtained from either by adding? +— ¢,
if £ ¢ dom(T), or else by replacing — T (¢) with ¢+ ¢. The override operationg)is
defined formally in Sectiod3.

Case distinction
Tr(e1) = Bool

. T7(if e1 thenes elsees) = Tr(ex) U T (e3z) -

Thus,if e1 then e elsees is well-typed with respect td only if the least upper bound
of Ty (e2) andTy (e3) exists.

Class instances
fldinfo(c) = fasi  Ir@) <7

T6. Ir(newce(e)) =c
T7. Tr(e) =c .
Ir(e.f) = fldtype f, c)
Ir(ep) =c¢ delr(m, ¢) = m(€ as7) ast doez  Tp(en) <7
T8. — .
Ir(er.m(er)) =t
T9 Tr(ex) <Trler.f)
" Ir(er.f :=e2) = Void '
Maps
Tr(en<n Tr(ex) <12
T10. — — .
Tr(newn—tr{e1t—>e3}) =t —>
T11 Ir(er) =1t Ir(ex) <t

Ir(ewlez]) =1
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Ir(e) =1t Ir(ep)<t Ir(em)<t
Tr(e1lez] := e3) = Void '

T12.

Ir(e1) = 1>t Tr(er) <
Tr(removeeifeo]) = Void

T13.

Note that map assignments require runtime type checking (for the same reason that array
assignments of C# or Java require runtime type checking). For example, we may have a
method that, given a magof typelnt — Point, performs assignmen{3] := new Point(),
which is statically correct. Later on, we exteladint to ColoredPointso that the typént —
ColoredPointis a subtype ofnt — Point. But passing a map of tydet — ColoredPoint
to our method causes a problem. See also exan2glend 24.

Type test and type cast

t < Ir(e)

T14. : .
Tr(eist) = Bool

t < Ir(e)

T15. Ir(east) =t

Casting into a subtype is viewed valid at compile time but may turn out to be invalid at
runtime. Thus, casts must be rechecked at runtime.

The premise < Tr(e) requires an explanation. Why do we restrict type casting to
this one case? 7 (e) <1, then, by type soundness (theoréB), e is r+ must evaluate to
true unless an exception occurs.3fy (e) andt have no lower bound other tharrown
then type soundness implies tlads ¢+ must evaluate téalse In either case, the expression
e ist is superfluous and can harmlessly (perhaps usefully) be disallowed. There is a third
possibility: T (e) andt are incomparable but have a lower bouhd Thrown In this case,
we can replace is r with the more reasonabieis t 1 T7(e). (Note that the greatest lower
bound exists by corollary 6.)

Parallel, nondeterministic and sequential composition

Tr(eq) is defined
Ir(er |l e2) =Tr(er)
This reflects the intention that an expressign| e> outputs the value produced by

unless an exception is thrown. There are good ways to restore the symmetry of the parallel
composition. This issue will be discussed later on.

T16.

ITr(e1) = 1>t ITr Q1) (e2) is defined
Ir(forall £in eq doey) = Void

T18. Tr(erlle2) = Tr(er) U T (e2).

T17.

Tr(e1) = 1>t

T19. Tr(choosel in e1 doep) = Iy oltsr)(e2) '
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The partchoose? in ¢; refers to choosing an element in the domairep{rather than
choosing an entire maplet).

Tr(ep) is defined
Tr(er; ex) =Tr(en)
Tr(e1) = Bool Tr(e2) is defined
T (while e; do ez) = Void

T20.

T21.

Exception generation and handling

T22. Ty (throw exg = Thrown

T23. Ty (try eg catchexc: e2) = Ty (e1) U Ty (en).

Remark 7. Typing rules T1-T23 could be strengthened so as to filter out certain degenerate

expressions like # (throw fooX) which always evaluates to an exception even though it
is well-typed. See Sectidn 3.6 in this connection.

3.5. Well-formed programs
A program iswell-formedif all of its classes are well-formed and its body is well-typed

in the empty type context. A classis well-formedif every methodm € mthsetc) is
well-formed relative tac, symbolicallym ok in c.

Suppossalclr(m, c¢) = m(£y ast1, ..., £, ast,) ast do e andparentc) = ¢’. LetT
denote the type contefner— c} U {£1 — 11, ..., €, — t,}. The definition ofn ok in ¢
is inductive.

m € addm(c) — mthsetc’) Tr(e) <t
mokinc '

m € mthsetc) — addm(c) mokinc

mokinc
m € addm(c) N mthsetc) Tr(e) <t mokinc
dclr(m, ¢’y = m(¢} astj, ..., ¢, ast,) ast’ doe¢’ Tt <71

mokinc

The statement—r <7'—¢’, in the final premise, abbreviates the inequalities 77, ..
7, <1, andr <t'.

.

Proviso 8. In the sequelwe assume that all classes in the underlying class table are
well-formed

3.6. Analysis: type contexts

The results in this subsection are not used until Se&iaile include them here because
they belong naturally in the present section on static semantics.
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3.6.1. Induced type contexts

Let o be a distinguished element bbcalVar. A punctured expressiois an expression
e with a unique free occurrence of variaklgthis is sometimes written ago). For any
expressior’, lete(e’ /o) denote the expression obtained frery substituting the unique
free occurrence of with ¢’.

For every punctured expressieio) and type contexT, we define thanduced type
contextT ® e(o) ato in e with respect tol.
o If eisothenT ®e(o) =T.
e If ehas any of the forms

let ¢ = e doe’ (o), forall £in e doe’(o), chooselin e’ doe” (o),

thenT ® e(o) = (T — Tr(e)}) ® €” (o). For example,
T ® (let ¢ =7do (114 0)) = TO{¢ > Int}.

e Otherwisel ® e(o) = T ® eg(o) Whereeg(o) is the unique maximal proper punctured
subexpression af. For example, it = ¢’ || ¢’ (o) thenT ® e(o) = T & ¢” (o).

Proposition 9. If T7 @ ¢(0)(¢') = T1 @ (o) (¢”) thenZTr(e(e/0)) = Tr(e(e”/0)).

The proposition is proven by a straightforward inductiores).
We will not need the concepts of punctured expressions or induced type contexts until
Section5.2.

3.6.2. Dominating type contexts
LetT andT’ be any type contexts. We s@&y dominates Twritten T <T’, if T (£) <T'(£)
forall £ € dom(T).

Theorem 10. If T<T’ and bothTr (e), T (e) are definedthenZTr (e) < T7(e).

Proof. Proofis by induction oe. Assume that the statement hold for all proper subexpres-
sions ofe. By examination of typing rules T1-T23, we show that the statement holdas for
as well.

T1-T3T6, T9-T10,T12-T17T20-T22 These cases are obvious. For instancejsfof
the formremoveei[ez] thenTy(e) = T4/ (e) = Void by rule T13.

T4: Supposeeis of the formlet £ = ¢ do eo. Letr = Tr(e1) ands’ = Tyr(e1). Then
t <t by the induction hypothesis. TherefolBQ {¢ — 1}<T'Q {¢ — t’}. Using the
induction hypothesis again, we have

Ir(e) = Tr g —n(e2) T g sry(e2) = Tri(e).

T5, T18 T23 Supposee is any of the following:if eg then eq elseep, e1 [] e2, Ortry e
catchexc: ex. ThenTy(e;) < Ty (¢;) fori = 1, 2 by the induction hypothesis. Therefore,

Tr(e) = Tr(er) UTr(e2) <Typr(en) U Ty (e2) = Ty (e).

T7: Supposee is of the formeg. f. Letc = Ty (eg) andc’ = Ty (ep). Thenfis a field of
bothc andc¢’. Sincec < ¢, well-formedness of the underlying class table implies that
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declared in a unique common ancestocahdc’. Therefore,

Tr(e) = fldtype f, ¢) = fldtype f, ¢) = Ty (e).

T8 Supposee is of the formeg.m(e). Letc = Ty (ep), ¢ = Ty (eg), T — t = mthtype
(m, ), and? — ¢’ = mthtyp&m, ¢"). Sincec <¢’, the well-formedness ah relative toc
andc’ implies thatt — <7 — ¢'. In particular,T7 (e) = t <t' = Ty (e).

T11 Supposeis of the formey[e2]. Lett — t = Ty (e1) andt’ — ¢ = Ty/(e1). Invoking
the induction hypothesis, we hale-(¢) = 1 <t = T/ (e).

T19 Suppose e is of the forrmhoosel in e1 do e2. Again, lett — ¢ = Ty (eq) and
v — t' = Ty/(e1). By the induction hypothesis,<7'. It follows that7T & {£ — )} < T’
©{¢ — 7'}. Using the induction hypothesis again, we have

Tr(choosel in ey doez) = Tr gr -1y (e2)

< Iy ol ,_”/}(6‘2) =3I (ChOOSGg in e1 do er). O

4. Operational semantics

By induction on expressiores we define the effedg; ;(e) of executinge (starting) at a
given storesunder a bindingp for the free variables ad This allows us to define the effect
of executing a program.

Our semantics is structural operational semantics (SOS) in the sense that it is operational
and is defined by induction on syntactical structure. It is thus similar to Plotkin’s structural
operational semantid24]. People distinguish between small-step and big-step styles of
structural operational semantics [23]. The latter is sometimes called natural semantics [19].
Our semantics is of the big-step variety.

However, we break the SOS tradition as far as the interaction with the outside world is
concerned. To query the outside world, we egeernal functionswe use them the same
way they are used in abstract state machines [9]; we do not presume any familiarity with
abstract state machines, however. The question arises why to break the tradition. (One of
our referees insisted that we address this question.) Well, there are two aspects of AsmL-S
that require the intervention of outside world. One is nondetermihismd the other is
the creation of new objects. Traditional SOS deals elegantly with nondeterminism. It
is more awkward to account for new-object creation in traditional SOS, especially when, as
in our case, multiple new objects are created in parallel. More importantly, the full AsmL
is highly interactive, and so our semantics should scale up with respect to additional kinds
of interaction with the outside world.

Remark 11. We speak here abotuttra-step interactiona kind of interaction that occurs
within one step of a program. The resolution of nondeterminism and new object creation
are examples of such intra-step interaction. Other examples include calling library routines
or foreign methods. Without loss of generality, intra-step interaction can be conducted
by issuing queries and receiving repligd. Call an interactive algorithnordinary if it

1The point that an algorithm needs an outside world to resolve nondeterminism is ardigdSection 9.1]



Y. Gurevich et al. / Theoretical Computer Science 343 (2005) 370—-412 393

completes a step only after all the queries from that step have been answered and if it uses no
information from the outside world except for the answers to its queries. An axiomatization
of ordinary sequential algorithms with intra-step interaction is fourf@]init turns out that
external functions are sufficient to support ordinary interaction with the outside world [4].

The rest of this section is as follows. In Section 4.1, we define some semantic domains
and functions that are needed in the definition&gf;(e). In Section 4.2, we introduce
evaluation contexts, effects and two external functions that take care of object construction
and nondeterminism. Section 4.3 is devoted to a recursive definitiGp ak) and a def-
inition of the effectEffect(n) of a programz. A type soundness theorem is formulated in
Section 4.2 and proved in Section 5.1.

4.1. Stores

Let Literal, LocalVar, Objectld Class Fieldld, MapType Exceptionbe the following
disjoint sets: the AsmL-S literals, an infinite set of local variables includiega pool of
potential objectids, the classes of the underlying class table, the field names of these classes,
the map types generated by these classes, the set of built-in exceptions plus an infinite set
of potential custom exceptions. LBEL be a fresh symbol, not occurring anywhere in the
AsmL-S syntax.

We define a few additional sets of interest. Some of them have been described—in a
preliminary way—in Section 2. If, § are sets, them — f denotes the set of partial
functions frome to . e () denotes the powerset of

Nvalue = ObijectldU Literal,
Value = NvalueU Exception

Elements of\valueare callechormal values

TypeMap = Objectld— (ClassU MapType

Index = Fieldld U Nvalue

ContentMap = Objectld— (Index— Nvalue

Update = (Objectld x Index x (NvalueU {DEL})
UpdateSet = g (Update.

If 0is atype map antlis a type, then we define
Nvalug(r) = {o : (o) <t} U {lit : littype(lit) <t}.

States of a computation are represented by stores. Formsityeis a triples = (0, o, u),
wheref is a type mapg is a content map andis an update set, that satisfies the following
three conditions.
(@) dom0) = dom(w) 2 {0 : ((0,i), v) € u} wherev could beDEL
(b) if 6(0) = ¢ € Classandfldinfo(c) = f as? then

o dom((0)) = {f1. ... fu)

e w(0)(f) € Nvalug(r)

e ((0,i),v) eu = i €{f1,..., fn} andv € Nvalug (fldtypdi, c))
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(c) if B(o) = v — t € MapTypethen
o dom(w(o)) € Nvalug ()
e rg(w(o)) € Nvalug(r)
e ((0,i),v) eu = i € Nvalug(r) andv € Nvalug)(¢) U {DEL}.

If sis a store, we will sometimes writg;, oy andu; to denote the components sf
To clarify our intentions, here are explanations in plain language.

The domain off andw is the set of object ids allocated prior to the evaluation of the
expression. Once an object is created, its id persists until the end of the run of the pro-
gram. That is, unless the object becomes unreachable and is garbage-collected; however,
for purposes of semantics, garbage collection can be ignored.

0 maps allocated objects to their runtime types. Once declared, an object’s runtime type
never changes. The content mapssociates objects with functions representing their, well,
contents. Ifo is an instance of clags thenw(o) maps the field names a@fto their values
in o. If ois an object of type — t, thenw(o) is the map represented by

Remark 12. Alternatively (and closer to the traditional ASM paradigm), letcation=
Objectld x Index ThenContentMapcan be defined dsocation— Nvalue This explains
why updates are represented as pailsdaoation x (NvalueU {DEL}).

There are two kinds of updates: modifications and removals. A modification update puts
a new value into a given location. Formally, this is a pair, 1), v), whereo is a class
instance/f is a field ofo andv is a value of the appropriate type, or e{ge, v1), v2), where
o is an object of map type and, vo are values of the appropriate domain and codomain
types, respectively. It is not required that the new value differs from the old one. Since
updates may be performed simultaneously, a trivial update, where the new value equals the
old one, may have semantical significance: it may clash with another update of the same
location. A removal update, formally a pdifo, v), DEL), removes a given map location.
We sayu is inconsistentff it contains distinct updates of the same location; otherwise, it is
consistentA consistent update set thus gives rise to a content map in the alternative sense:
from Objectld x Indexto NvalueU {DEL}.

Notation 13. Let Ry, R» be any binary relations andj, m2 any maps.
e Theoverride ofR1 by R, is defined by

R1©Ry ={(x,y) € R1: #z.(x,2) € R2} URy.
e Theoverride ofmj bymy is defined by

mi(x) if x € dom(my) — dom(m2)
ma(x) if x € dom(m2).

(m1©m2)(x) = {
e Theunion of R1 and Ry is defined, in the usual way, & U R>.
o If m©mo = mo&m1, then theunion ofmy andmy is defined by

m1(x) if x € dom(m1)

(m1Um2)(x) = { ma(x) if x € dom(my).

If m1©ma # maQm1, thenmi U my is undefined.
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e By extension, for any storeg = (01, w1, u1) andsz = (62, w2, uz) we define
s1Us2 = (01U 02, w1 Uwy, uiUuo)

provided that map8; U 62 andw1 U w2 are defined.uy U u» is always defined, sinag
andu, are binary relations.) Check thatsif U s» is defined then it meets the definition
of a store.

e We saysp extendsy, writtensy C so, if 51 U sz = s2.

Remark 14. If G(m) = {(x, y) : m(x) = y} denotes the graph of a map thenG (m1
©mo) = G(m1)QG (m2) andG(m1 U mo) = G(my) U G(m2) whenmy U my is defined.

Remark 15. Representin@ontentMapn the formz — (f — v), rather thario x ) — 7,
allows us to use the convenient override operapn

Firing updates Lets = (6, w, u) be any store. Itiis consistent, then it gives rise to a new
stores = (0, &, ¥) where content mag is defined by

N N if ((0,1),v) € uandv # DEL,
w@m)_{w@xm if ((0,1), DEL) ¢ u

§ is the store obtained from by “firing” all updates inu. If u is inconsistent, the® is
undefined.

4.2. Evaluation contexts, effects, and external functions

An evaluation contexis a pair(b, r) consisting of a store and abinding b which is a
partial function fromLocalVarto dom(6,) U Literal. Every evaluation contexb, r) gives
rise to a type contexb, r] where

0,(b(£)) if b(¢) € dom(0,)

(b, r](6) = { littype(b(£)) if b(¢) € Literal.

Check that, if a stors extendsr, then(b, s) is an evaluation context and, r] = [b, s].
(We will use this fact extensively in the type soundness proof.)
An expressioreis (b, r)-typedif it is well-typed with respect to the type contet, ],
that is, if Ty - (e) is defined.
An effectis a pair(s, v) (the angular brackets are used only for the purpose of visual
distinction) consisting of a stoeand a value in dom(6,) U Literal U Exception The type
of effect (s, v) is defined in the obvious way:

05 (v) if v e dom(0y)

type((s, v)) = { littype(v) if v € Literal
Thrown if v € Exception

In the next subsection, we define an opera&gy. over (b, r)-typed expressions. The
computation ofE; , () is in general nondeterministic and it may diverge. If it converges, it
produces an effed§; . (e) = (s, v). In Section5.1 we prove:
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Theorem 18(Type soundnestype€y, - (e)) < Ty, -1 (e) forall b, r, e and any converging
computation of€;, . (e).

The definition of the effect operatdy, , utilizes two external functions. One of them is
a nullary functionfreshid. Every evaluation ofreshid produces a new object id. Different
invocations offreshid produce different objects. The other external function is a unary
functiononeof(X). It takes a nonempty s&tas an argument and returns one of its elements.
We presume that the outside environment guarantees that the two external functions work
properly.

The effect€; , (e) is nondeterministic only because of the use of external functions. Due
to the use of external functions, the effect depends on the outside environment. We keep the
dependence of the effe€}, - (e) on the environment implicit. The equali®, , (e) = (s, v)
means that some convergent computatio@0f(e) produces the effec, v). The equality
€y - (e) = €y v (¢) means that

e therange of possible convergent effect€pf. (¢) equals the range of possible convergent
effects of€; ,+(¢’), and

e there is a divergent computation &f, . (e) if, only if, there is a divergent computation
of €y /().

The range of possible effects 6}, , (¢) does not depend on the environment.

4.3. Definition of the effect operator

This section is devoted to a recursive definition of the effect opetatp(e) over (b, r)-
typed expressions. The recursion reflects the inductive definition of the abstract syntax of
AsmL-S.

Proviso. In rules E1-E32,the symbols), v, v1, v2, ... stand for normal valuesot ex-

ceptions. In ruleg33—-E40 (ealing with exception generatipmandling and propagation

these same symbols represent any vajnesmal or exceptional In this way we separate
the rules for normal evaluations from those for exception handling and propagation.
Literals and local variables

E1l. €, (lit) = (rlit).
E2. €, (&) = (r,b(0)).
Operations
€y r(e) = (5, 0) op(v) is defined
€, (op(e)) = (s, op(v))
Cp (&) = (5, ) op(v) is undefined

ES.

E4. =
€, - (op(e)) = (r, argX)
Local Binding
Es. €y, (e1) = (s, v)

€y (lett =epdoer) =€ g vy, s(€2)



Y. Gurevich et al. / Theoretical Computer Science 343 (2005) 370—-412 397

Case distinction
Cp,r(e1) = (s, true)

€, (if e1then ez elsees) = €, ;(e2)
€y, (e1) = (s, false)

€y, (if e1then ey elseez) = € 4 (e3)

EG.

E7.

Null exceptions

ES. €p.r(e1) = (s, null)

€ (e1.f) = € (forall £in e doey)

= € ,(choosel in e do e2) = (r, nullX)

€y r(e1) = (s,null)  typea(€, ,(e2)) # Thrown
Cp,r(e1.f :=e2) = €, (e1]e2]) = €, (removee[ez]) = (r, nullX)

Cpr(e1) = (s, null)  typa€y ,(e2,3)) # Thrown
€y - (e1le2] := e3) = (r, nullX)

pr(en) = (s, null)  type(@,,(@3) # Thrown
G, (er.m(@)) = (r, nullX) '

Class instances

9 €pr(e) = (5,v)  freshid) = o
LGy, newce@) = (rU JsU (for ch{o— {f & 114 0), o)

We include * U” in casefldsedc) is the empty sequenee

€y r(e) = (s, v) v # null
Cp.r(e.f) = (s, os()(f))

<(‘3’h,r(€1) = (s1, v1) €. (e2) = (52, v2) type({s1, v1)) = C)
E11.

E10.

dclr(m, ¢) = m(¢ as7) ast do e3
ceb,r(elfn(a)) = (E{me—n)l,@—wiz}, 51U UE(eS)

Note that bothe; ande; are evaluated in store A similar remark applies to a number
of other rules. The binding in the latter evaluation conteXni®— vy, £ — v} rather
thanb©{mer— vy, £ — 3} since the free variables i are contained amongu {me
as a consequence of the well-formedness oélative toc.

Remark 16. Almost every rule in the recursive definition &, ,(e) reducesg, ,(e) to
effects €, ;(¢’) wheree’ is a proper subexpression ef Rules E11 (method calls) and

E32 (while-expressions) are the only exceptions. Consequentially, these rules are the only
reasons that computation &, . (e) may diverge.

€y, (e1) = (51, v1) €, (e2) = (52, v2) vy # null
€pr(e1.f :=e2) = (s1Us2U (4,4, {((v1, f), v2)}), void) ~

E12.
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The empty type map as well as the empty context map are denotéd by

Maps
€p.r(e1) = (51, 1) €p.r(e2) = (52, v2)
consistentvy, v2) freshid() = o
E13. — )
€, (newt — ¢ {e1 — e3})
=(rU Ustu UszU (for> 1 — 1}, {fo > {11+ 12}}.9). 0)
whereconsistentay, .. ., an, b1, ..., bn) = Ni1<ij<nl@i = aj) < (bi = bj).

Cp () = (51.v1) € (e2) = (52, 12) —consistentz, v2)

E14. €y (newt — t {e1 — e2}) = (r, argconsistencyX
E15 €y, (e1) = (51, v1) €. (e2) = (52, v2) v2 € dom(wy, (v1))
' €, (e1le2]) = (51U s2, g (v1)(v2)) '
£16 €, (e1) = (51, v1) Cp,r(e2) = (52, v2) v ¢ dom(wy, (v1))
' €y, (e1lez]) = (r, mapkeyX '
<(‘3b,r(61) = (51, v1) €. (e2) = (52, v2) Cp.r(e3) = (53, Us))
E17 type(s2, v2) — type(ss, v3) <type(s1, v1)
C Gy (elen] i=e3) = (s1Usa Usz U (4,9, {((v1, v2), v3)}), void)
<(‘3b,r(61) = (51, v1) Cp.r(e2) = (52, v2) Cp.r(e3) = (53, U3))
E18 type((s2, v2)) — type((s3, v3)) Ltype((s1, v1))
' €y, (e1le2] := e3) = (r, maptypeX
E10. €y r(e1) = (s1,v1) Cp,r(€2) = (52, v2) vy # null

€, (removeeifez]) = (s1Us2 U (4, 4, {((v1, v2), DEL)}), void) '

Type test and type cast

Cor0)=(s,v)  typells,v) <t

E20. €y (eist) = (s, true)
€pr(e) =(s,v)  type((s, v))&t
E21. €y (eist) = (s, false '
€y (e) = (s,v) type((s, v)) <7
E22. €y (e ast) = (s, v) '
E23. Cpr(e) = (s, v) type((s, v)) 1 _

€, (e ast) = (r, cast®

Parallel, nondeterministic and sequential composition

€y, (e1) = (51, v1) €y, (e2) = (52, v2)

E24.
Cp,r(e1 |l e2) = (s1Us2, v2)
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The do-in-parallel operatiofi returns the combined stores of both effects together with
the value of the second effect. (An alternative semantics in which e, returnsvoid is
discussed in Sectiob.3.2.)

€y r(e1) = (s, v)
£25. \Ebeieip)s(e2) = (sp. vp) for eachp € dom(o (v)
" G, (forall Linezdoe) =(sU |J sp, void)
pedom(wg (v))

A forall-expression computes the combined store of multiple parallel executians of
with respect to evaluation contexts which vary as the local vartat@ieges over the domain
of the map given by;. The value returned igoid.

oneof{left, right} = left oneof{left, right} = right

E26. ) :
Cp.r(e1ll e2) = €p r(e1) Cp.r(erlle2) = € r(e2)

Recall thatoneof(X) is an external function computed by the outside world. Different
calls tooneof(X) can give different results.

Cpr(e1) = (s,v)  dom(w;(v)) =¥
€, ,(choosel in e1 do ep) = (r, choiceX

Cp,r(e1) = (s, v) dom(w; (v)) # ¥ oneof(dom(w; (v))) = p
@b,r(ChOOSGQ inep doey) =G, Ol pl.s (e2) )

E27.

E28.

In choose-expressions, like in forall-expressighis, bound to a value in the domain of
the map given by;.

€y r(er) = (s, v) u, is inconsistent
€p.r(e1; e2) = (r, updateX

E29.

uy is consistent €5, (e2) = (s2, v2) s2 = (02, w2, u2)
€y r(e1; €2) = (02, @20w1, ur U u1Qu2)), v2)

(r’ = O, 0, 0) €pple1) = (s1,v1)  s1= (01, 01, ul))
E30.

Recall how we compute the update set¢pfe,. First we evaluate; in the present store
then we evaluate, in the modified store obtained by firing all updates generategl land
we return the specially combined stonewhich updates generated by override updates
generated by1. We compute; in the evaluation context, rather tham, in order to isolate
updates generated ley from those accumulated im,.. We then compute; in the store
51 obtained fromsy by firing u1 (see the end of Sectioh1l in this connection) and return
ur U (u1uo).

We return the type magy since, by monotonicity), < 01 = 05; < 02. Thus, dontfy)
includes all existing objects as well as all objects created lapde,. Also by monotonicity,
wr C w1 andwg; € wy. However, it can happen that; # wg;. It remains to explain the
content mapu2©wi. One may have an impression that the content map should hejust
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But this is not necessarily so. Recall thatis evaluated in the auxiliary stofg obtained
from s1 by firing u1. After the evaluation oy, the auxiliary store is thrown away. The
objects altered by firing; should be returned to their virgin status. This is achieved by
overridingm, with 1.

€y, (e1) = (s, v) ug is inconsistent

E3L. €y, (e1; e2) = (r, updateX ’
€y (1) = (s, false ug IS consistent
€, - (while e1 do e2) = (s, void)
=0, o, 9 €, (e1) = (s1,true) s1= (01, w1, u1)
ugis consistent €5 (e2) = (s2, v2) s2 = (02, w2, uo)
E32 s = (02, 02001, uy U u1€u2))

€, - (while e1 do ep) = €, s (while e1 do e)

If the evaluation ofe; creates no updates, then Rule E32 can be simplified to contain
only the premise€; . (e1) = (s1, true) and €, 5, (e2) = (s, v). In general, however, the
evaluation ofe; does produce updates, and they need to be taken care of. Further, if the
guardes is deterministic, Rule E32 can be simplified to contain only the prerisgée:) =
(s1, true) and €y, . (e1; e2) = (s, v). But if e1 contains calls to the external functioneof
then the simplified form is not appropriate: we have to ensuredha not evaluated
twice.

Rule E32is one reason that computatiofgf (¢) may diverge (see Rematk following
rule E11).

Exception generation and handling

In the remaining rulesy, v/, v1, vo, . .. represent any values, normalor exceptional.
E33. € .(throw exg = (r, exg.
Cp.r(e1) = (s, 0) v ¢ exc

E34. €, - (try e1 catch®Xc: ep) = (s, v)

€y, (e1) = (s, v) v € exC
€y (try e1 catchexc: ep) = Cp r(e2) '
Hereey is evaluated in store The updates produced during the evaluatioey Gire lost.
(In fact,s = r by the part 3 of Theorerh7.)

E35.

Exception propagation
Cprler, ... en) = (51, 1), ..., (Sn, Un) {v1, ..., v,} N Exception# @

E36. €. (e0) = (r, oneof({v1, ..., v,} N Exception)

whereeg is any of the following:

newc(ei,...,e,) NEWt —tf{e1 e, ..., ep_1+> e,} e1iSt
e1.f e1]e2] eq ast
er.m(ez,...,e;) eiler] :=e3 e1 | ez

e1.f :=e2 removee[ez]
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Cpr(e1) = (s,v) v e Exception
€y, (e0) = (r, v) ’
whereeg is any of the following:

E37.

let £ =ep does forall £inejdoey; e1;e2
if e1then ey elseez choosel in e; doex while e1 does.

This is different from E36e¢1 is evaluated first.
r'= (0, o, ¥) Gsb,r’ (e1) = (s1,v1) v1 ¢ Exception
£33 ug, is consistent €3 (e2) = (s2, v2) v € Exception

€y r(e1; e2) = (r, v2)

Cp 51 (e2) = (52, v2) v € Exception

<r/ = (0, wr, D)Cp 1 (€1) = (s1,trU€)  uy, is consisten)
E39. €, - (while eq do e2) = (r, v2)

Cp r(e1) = (s, V) v ¢ Exception
Choep),s(e2) = (sp, vp) for eachp € dom(wy (v))
{vp : p € dom(w;(v))} N Exceptions ¢
€, - (forall £in eg doey) =
r, oneof({v, : p € dom(ew;(v))} N Exception)

E40.

This concludes the definition & .

Check that the premises of rules E1-E40 are mutually exclusive. However, the premises
are not complete, i.e. they do not cover all possibilitiee i$ (b, r)-typed but does not
satisfy any premise, thef), , (e) is said tadiverge If € . (e) = (s, v) converges, then check
that E1-E40 guarantee that v) is indeed an effect (i.esis a store and € dom(0,) U
Literal U Exception

The following theorem describes an important propertEgpf.

Theorem 17(Monotonicity of stores Supposé;, . (e) = (s, v).
1.rCs

2. [b,r] =1[b, s]

3. v € Exception—=— r =3

Proof. Statements 1and 3 are easily verified by inspection of effect rules E1-E40. Statement
2 follows trivially from 1. O

Effect of the programProgramsr are also evaluated (or executed) for its effect. &bt
the body ofr. By abuse of notation, we writé for both the empty binding and the initial
store (with no objects or updates). The effecta$ defined as follows. Recall thatis the
store resulting from firing updates at stores.
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Cyple) = (s, v) v € Nvalue  uy is consistent
Effect(n) = (5, v) '

Cy.ple) = (s, v) v € Nvalue  uy is inconsistent
Effect(n) = (4, updateX '

Cy.ple) = (s, v) v € Exception
Effectn) = (4, v)

5. Analysis

The precise semantics of a programming language allows one to prove various properties
of the language. In Sectidhl1 we prove the type soundness of AsmL-S. In Section 5.2, we
prove a refinement theorem. Some additional issues are discussed in Section 5.3.

5.1. Type soundness
This subsection is devoted to a proof of type soundness for AsmL-S.

Theorem 18(Type soundnegs For every evaluation contexb, ) and every(b, r)-typed
expression gwe have

typq(gb,r (e)) < Z[b,r] (e)

for any converging computation &, , (e).

Proof. Proof is by induction ore. Assume that the statement holds for &hy’, ¢’ where

¢’ is a proper subexpression®fBy examination of effect rules E1-E40, we will show that
the statement also holds forr, e.

E4, E8, E14 E16 E18 E23 E27 E29 E33 E36-E4Q Each of these rules produces an
exceptional value with typ&hrown Thus, ife satisfies the premise of any of these rules
then

type(€; - (e)) = Thrown< Ty, 1 (e),

sinceThrownlies below every other type.

Proviso. In all cases below except E34 and E35y/, v1, vo, . .. represent normal values
(not exceptions).

E12 E17 E19 E20 E21, E25 E31 Each of these rules returns a particular litefa20,
E21 returntrue, false respectively; the other rules retwnoid. The corresponding typing
rules assigiBool or Void, accordingly. Therefore, type soundness holds with equality.
E1-E3: Type soundness follows immediately from T1-T3. To wit:

type(€y, (lit)) = type((r, lit)) = littypelit) = Ty (lit),
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type(€y, - (€)) = type((r, b(£))) = [b, r](€) Z o (0).
If e = op(e) where€, . (e) = (5, v), optyp&op) = T — ¢ andop(v) is defined, then
type(€s,, () = type((Ls. op(d))) = littype(op(®)) = 1 = Ty, (e).

ES: Supposeeis of the formlet € = eq do ex where€y, . (e1) = (s, v) andZp, (e1) = 1.
By the induction hypothesisype((s, v)) <t. By theoreml7 (statement 2)p, s] = [b, r].
Thus, we have

(6O = v}, s]=[b, s]O{L > type(s, v)}<I[b, s]O{E + 1}
=[b, r]O{ — t}.
By effect rule ESE,, . (¢) = €)oo v),5(€2). By the induction hypothesis,

type(€p it 1 0),5 (€2) <Tp ot > v).51(€2)-
By typing rule T4,Zy;, ,(e) = T r1o1¢ 1) (€2). TheoremlO yields the inequality

T ot )12 KT 1o 1) (€2).

We conclude thatype(€y, ,(e)) < Ipp.r(e).
EG6, E7: Suppose = if e1 then e, elseez where€y, , (e1) = (s, true). Then

hyp.
type(€y,(e) = type(E, 4 (e2)) < Tppg(e2)
= Tp,r1(e2) <Tpp,r(e2) U Ty, r1(e3) it Tp,rie),

where the middle equality is by Theorel# (statement 2). The argument for E7 works the
same way.
E9, E13 Type soundness follows immediately from T6, T10.

type(€,. (New c(2))) = type((... U ({o > ¢}, ...), 0)) = ¢ = T 1 (Newc(2))

type(€, , (Newt — 1 {e1 — &3))) = type((... U ({o > © = 1}, ...), 0))
T10 - —_
=1—>1t=TIp,newt — ¢ {e] — e3}).

E1Q Supposee = e1.f where€p  (e1) = (s,v) andv # null. By typing rule T7,
Ip.r1(e1) = c for some class with field f. By the induction hypothesis (and the fact that
v # null), type({s, v)) = ¢’ for some clasg’ <c. Thusfis a field ofc’ andfldtyp€ f, ¢') =
fldtypd f, ¢).

By definition of store,f e dom(wy(v)) and ws(v)(f) € Nvalug, (fldtype f, ¢')).
Consequentiallytype((s, w5 (v)(f))) <fldtypd f, ¢’). Putting it all together, we get

type(€, , (€)) = type((s, wy (v)(f))) <fldtype f, ¢') = fldtyp& £, ¢) = Tpp.1(e).

E11l Suppose = e1.m(ez), € (e1) = (s1,v1), €p r(€2) = (52, V2), type((s1, v1)) = C
anddclr(m, ¢) = m(¢ ast) ast do e3.

By E11,€; . (e) = € (e3). By the induction hypothesis,

{me—v1, € —>v3},51U Us2

YPEC 1601, 75531510 U5 (€3) < T imes vr, 7 o3}, 50 U 31 (€3)-
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It suffices to show that the latter type is dominated¥y ,1(e). The induction hypothesis
also impliestype((s1, v1)) < Tp,(e1) andtype((sz, v2)) < jp, - (e2). We thus obtain the
following dominance relation among type contexts:

[{mer> v1, £ > 3}, s1 U Uszls{mer> T (e1), £ — T (@)}

Theorem10 now yields:

z[{m3—>v1, —v2},51U Us2] (e3) < z{me—’z[h,r]("l)) LT ()} (e3).
The well-formedness ah relative toc implies

SI;{me—fz[ly,r] (en), € =Ty (@)} (ez) 1.

It suffices to show that <T, ,(e). Let ¢’ = T (e1) and supposelclr(m, ') =
m( as7) ast do e5. Thenc <’ by the induction hypothesis. The well-formedness
of mrelative toc andc’ impliest <t'. By typing rule T8, 1(e) = ¢'. Thust < Iy 11 (e).
E15 Suppose = eiez], € - (¢;) = (s, v;) for i=1, 2, type({s1, v1))=t, T, (e1) =1,
andvy € dom(wy, (v1)). By E15,type€;, »(€)) = (s1 U 52, v2).

By the induction hypothesis,<t'. Lettings = 71 — 12 andt’ = 7] — 15, we have
‘L'2<T/2 andit[b,,](e) = ’L'/2 by T11.

The definition of store implies; € Nvaluep)s1 (1), sincewy, (v1) = v2. Consequentially,

typa((s1, v2)) < 12. Clearly, type((s1, v2)) = typa(s1 U s2, v2)). Putting it all together,
we get

type(€; . (e)) = type((s1 U s2, v2)) = type((s1, v2)) <12 <15 = T 1 (e).

E22 If e = e1 ast where€y, ,(e1) = (s, v) andv <t, then

type(©;, , () Z typel(s, v) <t = Tpp(e).
E24 Suppose = e1 || e2 where€y, ,(e;) = (si, v;) fori =1, 2. Then

E24 hyp. T16 .
type(€y - (€)) = type((s1 U sz, v2)) = type((s2, v2)) < Tpp.ri(e2) = Tpri(e2),

where the middle equality follows from the observation tiyat dom(6;,).
E26 Suppose = e1 [] e2 andoneof{left, right} = left. Then

E26 hyp. ) ) T18 .
type(€p, - (e)) = type(€p,r(e1)) < Tppriler) <K, r1(er) U Tpp ri(e2) = Tpp (o).

The case whereneof{left, right} = right is handled the same way.
E28 Supposee = choosel in e1 do ez, € (e1) = (s,v), domws(v)) # ¥, and
oneof(w, (v)) = p. By theoreml? (statement 2)p, s] = [b, r].

Lettype((s, v)) = © — t. Thenp € Nvalug) (7) by definition of store. Consequentially,
type((s, p)) <t. Letting T 1(e1) = 7 — ¢/, the induction hypothesis impligs — 1)
< (7 = t') and therefore <1’. Thus, we have

[bO{L = p}, s1=[b. sIO{ — type((s, p)}=<[b. s1O{ = ')
=[b, 71Ot 7).
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We conclude

type(€,. - (€)) = type(€y o p).5 (€2))
hyp.
< Ipoep)s1(€2) KT e —v)(e2) 230,
where the latter inequality is by theorel.
E30: Suppose = e1; ez and letr’ = (6, o, 9), €y 11 (e1) = (s1, v1), s1 = (01, w1, u1),
u1 be consistent®, 5 (e2) = (s2, v2), andsa = (02, w2, u2). Then

type(€s., (¢)) Etype(((02, 02001, u, U (u1Qu2)), v2))
hyp.
= type((s2, 12)) < Tpp.1(e2) = Tpi(e) = Tppp(ea).

Both unmarked equalities above are trivial to establish. The first follows from the observation
thatd,, = 0-. The second follows from the observation thaic 05 and thereforéb, r] =

[b, 51].

E31, E32 Suppose = while ¢; do e2. Recall that we consider a converging computation
of € , (). Eventually it returns valueoid by rule E31, assuming the recursion implied by
rule E32 is well-founded. Type soundness clearly holds, s¥jge)(e) = Void by typing

rule T21.

E34, E35 Supposer = try e; catchexc: e2 and€p, . (e1) = (s1, v1) where the value

may be exceptional. lf; ¢ excthen

E34 hyp. 123
type(€, - (e)) = type({(s1, v1)) < Tpp,r1(e1) <Ip,r(er) U T p,r1(e2) = Ty, (e).
On the other hand, if; € excand€,, . (e2) = (s2, v2) then

hyp.

Y|
type(€p- (¢)) = type((s2, v2)) < Tppr1(e2) < Tppr(e2) U Tppri(e2) = Tppri(e).
O

5.2. Semantic refinement

First we formalize the idea that one expression semantically refines the other with respect
to a given type context. Then we prove that an expressiensemantically refines an
expressior, with respect tdl if ¢4 is obtained frome; by replacing a subexpressief of
e2 With somee’ that semantically refineg’ with respect to the appropriate type cont&kt

Let s be any store and et € Value Thes-span of Y symbolicallyspan (V), is the
least supersdd of V N dom(6;) satisfying the following conditions.

e If 0 € O then(dom(w;(0)) U mg(w;(0))) N dom(dy) € O.
e If o€ O, ((0,x), y) € ug anduy is consistent, thefi, y} N dom(ty) C O.
Think of span (V) as the set of objects reachablesiftom V.

The triplesy = 0, @, i) is defined as follows, where- < is a fresh symbol connoting

inconsistency.

0 = 0 ['span(V)
o = o[ span(V)
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_ [ {«0.x),y) €u; : 0 espan(V)} if u, is consistent
L= s if uy is inconsistent

sy is called the/-essential part of.<Check thaty is a store ifu; is consistent. Think ofy
as the result of garbage-collecting all unreachable objects and irrelevant updatelsene
Vis a set of accessible values (such as those named by local variahlg$3.iHconsistent,
then the updates im; can be ignored.

Lemma 19. Suppose that, s, s" are stores and/, V are subsets of value
(@) sy =5y <= svnobjectid = 5"V n Objectid-

(b) syuy =s'vuv = (SU =s'yAsy = S’v)-

(c) fU CVthensy =s'y = sy =5y

(d) If r € s andr C s’ thens gomo,) = 5" dom(@,)-

Proof. (a)—(c) are obvious. (d) follows from the definition of the inclusion relation over
states. O

For any(b, r)-typed expressios, the set

U {(s,v) : some convergent computation®j , (¢) returns(s, v)}
hrle) =
br {oo  : some computation df; . (e) divergeg

is the set of possible effects ofitis presumed that the symbst is not used for anything
else.

Now suppose ande’ are arbitrary expressions. We say thatefinese’ with respect to
type contextT (written e<Spe’) if Tr(e) = Tr(e’) € Typeand each evaluation context
(b, r) with [b, r] = T satisfies | and |1, below.

l. If 0o € €} ,(e) thenoo € €} , (¢').
Il. For every effect(s, v) € €} (e), there exists an effeat’, v) € €, (¢’) such that

Sgb)Ufv) = S mgb)Ufv)-

We say thaeande’ aresemantically equivalentith respecttd (writtene ~7 ¢') if eS¢’
ande’<re.

As expected, refinement is transitive.

Proposition 20. If eS¢’ ande’Spe” theneSpe”. O

Anotherimportant property of refinement is monotonicity with respect to subexpressions.
Recall punctured expressions defined above in Sesti®A.

Theorem 21(Refinement Suppose (o) is a punctured expression ard ¢” are expres-
sions such that(e’/o) is T-well-typed an@” <y ., ¢’- Then

e(e”/o)Sre(e /o).

Proof. Lete(o), ¢’ ande” be as in the hypothesis. Proof of the statenaéeit/o) < e(e’/o)
is by induction on thedepthof the variableo in the punctured expressiatio), defined
recursively by the rules:
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e deptho) =0,
o if ¢ # othendepthe(o)) = 1+ deptheg(o)) whereeg(o) is the unigue maximal proper

punctured subexpression &f
The case oflepthe(o)) = 0, i.e. the case = o, is trivial.

It suffices to prove the theorem in the casedepthe(o)) = 1. Indeed, suppose that
depthle) > 1. Leteg be the maximal proper punctured subexpressiamanfd lete; be the
result of replacingg by o in e so thate(o) = e1(ep(0)/0) anddepthe1(o)) = 1. Check
thatT ® e(o) = (T ® e1(0)) ® ep(o). Invoking the induction hypothesis twice, we have

v /

¢ , S (T ® e1(0)) ® eplo) € ,
= eo(e") , ST ®e100) eo(e’) /
= eileo(e”)) S e1(eo(e’)).

So we restrict attention on the cased#pthie(o)) = 1. Sincee” <y ., ¢’, we have
7 @ e(0)(€) = T7 @ e(0)(€”) € Type Thus, by Propositio, Ty (e(e’ /o)) = Tr(e(e” /o))

€ Type Let (b, r) be any evaluation context such thatr] = 7. We must show that state-
ments | and Il in the definition of the refinement relation hold.

There are numerous (sub)cases to consider, for instance, three case gheafr¢he
formsif o then eq elseey, if eg then o elsee; andif eg then e; elseo. In most cases, proof
follows straightforwardly from the typing and effect rules. Whefialls under the scope of
a fresh binding (i.e. is the body of a let-, forall- or choose-expression), proof is a matter of
definition-chasing. We consider here a single case whiref the formlet £ = e1 do o.

Claim 22. 1 andll hold if e is of the formlet £ = e do o.

For any expressioep such thatet ¢ = e1 do e; is T-well-typed, effect rules E5 and E37
(those mentioning let-expressions) imply tkat, (let £ = e1 do e2) diverges if, and only
if, either €, . (e1) diverges or els€,, , (e1) = (s, v) andv is normal and, g¢r- v}, s (€2)
diverges. Since” <y g ()¢’ and[{€ — v}, s]1 =T ® e(o), we have

*

o0 € (9{2,_)1)}"?(6”) — 0 € (E?Z'_)v}’s(e/).

We concludexo € €}, ,(e(e” /o)) = oo € €}, (e(e’/0)), confirming statement |.
As for statement I, suppose, v) € €} . (e(e”/0)). By E5 and E37, it follows that there
is an effect(s1, v1) € €}, (e1) such that

(v1 € Exceptionh v1 = v) Vv (v1 € Nvaluen (s, v) € (E;@{KHvl}’ﬂ(e”)).

If v1 € Exceptionthen E37 impliegs, v) € (fz’,(e(ez/o)) for any expressiomr, such
thate(ez/0) is [b, r]-typed, so in particular foe, = ¢’. We will therefore assume that
v1 € Nvalue

Since[{€ > v1}, s1]1 = T ® e(o), the refinement relatiosl’ < o e(o)e/ means that there
is an effect(s’, v) € € o/, 4y, 5, (¢) such that

Sig(b ©{¢ —vihuv} = s/mg(b ISHASUDEIE
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Note that rngb) N Objectld € dom(6,). By monotonicity of stores (Theore@v),r C s
andr C s’. Lemma 19 implies gomg, U, v} = 8 dom0,)uter,v}- HENCE, Dy Lemma 19(c),

Srgh)Ufv} = S/rng(b)u{v}~
Effect rule E5 impliegs’, v) € €} ,(e(¢’/0)), so we are done. [(Theoremz1)

We now describe a few canonical refinements involving nondeterministic expressions of
the formse1 [| e2 andchoosel in e do es.

Proposition 23. Suppose [] ez is T-well-typed ando<rtrue[] false Then
(if egtheney elseez) Sreillea

Furthermorefori = 1, 2,if Ty (e;) = Tr(e1 [ e2) thene; Syeqll e.
The proof is straightforward. [J

In order to state a similar proposition for choose-expressions, we must first define a
specialized notion of refinement. We say thathoice-domain refinas with respect tor
(written eg‘;de/) if Tr(e) = Tr(e’) € MapTypeand each evaluation contef, ) with
b, r] = T satisfies ¢d- and 19, below.

I”". If 00 € €}, (e) thenco € €}, (¢').

11°*. For every effects, v) € €} ,(e), there exists an effedt’, v') € €} ,(¢') such that
type((s, v)) = type({s’, v')) = ¢ and one of the following holds:
i. ¢ € {Null, Throwrj andv = v/,

ii. t e MapTypeandw;(v) = wy (V) = 3,

jii. e MapTyped # w;(v) S wy (V') andsmgp) = 'mgp)-
We are now able to state the following:

Proposition 24. Suppos&hoosel in e; do ez is T-well-typed and’lg%d'el. Then

(chooset in ¢} do e2) <, (chooset in eg doey).

The statement follows straightforwardly from the relevant definitions, including typing
rule T19 and effect rules E8, E27, E28, E37 (i.e. those mentioning choice-expressions).

5.3. Discussion

There are numerous additional issues related to the analysis of AsmL-S. Here we touch
on some of them without developing them in depth.

5.3.1. Simultaneous let
Currently the let bindings are evaluated sequentially. Consider for example the expression

let £1 = e1 do (Iet £ =ep do 63)
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where?1 does not occur ir,. It would not hurt to evaluates, e; in parallel (unlesg;
produces an exception) but our rules dictate to evalesafiest ande, second. In the spirit

of ASMs with its emphasis on parallelism, we generalize the current let construct to a new
simultaneous let construct:

letéy =e1, ..., €, =¢,doe, 1,
wherety, ..., ¢, are distinct local variables. To evaluate the above expression, evaluate
all binding bodiesy, ..., ¢, at the present evaluation context. Let us presume that all

computations converge. If allcomputations return normal values, then proceed to evalu-
atione, 1 in the new evaluation context. Otherwise, return one of the exceptional values
nondeterministically. The only reason we did not introduce this simultaneous let construct
in AsmL-S above was to simplify notation.

5.3.2. Parallel composition

€ - (e1 || e2), when convergent, returns the value®f, (e2), as defined in rule E24.
Why do we want that the expressien || ez returns anything? Because the return value
may be useful in programming. Unfortunately, our decision to return the vakjelhoéaks
the symmetry betwean andes, thatis,e; || e2 # e2 || e1. Furthermore, this contrasts with
the symmetry of forall-expressions, which always retunid. The operatofi can be made
symmetric, and consistent with the semantics of forall-expressions, by modifying rule E24
so that€p, . (e1 || e2) always returnsoid. (Note that this can be simulated in the present
semantics by writinde; || e2) || void, though this does not change fundamental asymmetry
of the|.)

Making || symmetric exacts some price. Suppose that we would like to simulate the
asymmetric version of that returns the value of the second expression. This would be
possible to achieve, but awkward, in the present syntax. For example, we could write

(newBool — T {falser> ei, true > ez})[true]

for the appropriatd. The asymmetrie; || e2 could be expressed more naturally by means
of simultaneous let dgt £1 = e1, {2 = e» do 5.

5.3.3. Coverage

Our definition of €} ,.(e) in Section5.2 tacitly assumes that the definition &f , is
complete and covers all the cases, so that every finite computati®p a¢) returns a
value, possibly exceptional. The assumption is not immediately obvious but can be proven.

5.3.4. Covariance vs. contravariance in argument types

In the type system of AsmL-S, maps are covariant in both argument and result types (see
Section 3.3). This is consistent with the type system of the full AsmL. On the other hand,
in functional languages, functions are conventionally contravariant in argument types [23].
The rationale for contravariance in argument types is that a function ot type could be
safely placed in any context expecting a map of type- r wherer’ <z. One can argue that
maps should be contravariant in argument types. Either variant has benefits and drawbacks.
Ultimately the most important consideration is how maps are supposed to be used. In AsmL
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they have been used more as look-up tables than as functions in functional programming,
and so covariance is appropriate. For those familiar with abstract state machines, let us
mention that maps are often used to represent dynamic functions of ASMs; in that role they
are essentially look-up tables.

We make a couple of technical points related to the controversy. One benefit of contravari-
ance in argument types is preclusion of thaptypeXexception that arises in computing
€. (e1[e2] := e3) Wwhentype(€,, - (e1)) = T—T' andtype(€,, , (e2))£T, as in exampl@4.
Obviously, we want to have as few built-in exceptions as necessary. But contravariance in
argument types has a price. The problem with contravariance lies in computing the forall-
and choose-expressions of AsmL-S

€, (forall £in e;doey) €, (choosel in eq doey),

where the binding of ranges over the domain of the map givenday(which, as a set,
should be viewed as naturally covariant).

Suppose for a moment that map types are contravariant in argument types but the type
system of AsmL-S is otherwise unchanged. We encounter problematic programs such as
the following:

classA, classB extendsA {i asint} :
let f = (new A — Int {new A() — 0}) do
let g = (if truethen f else newB — Int {}) do
chooset in g do €.

We check that this program is well-typed: the static typeg &f the least upper bound of

A — IntandB — Int, thatis,B — Int; the static type of is thereforeB; the body¢.i of the
choose-expression is thus well-typed. However, in evaluating this program we run into the
problem of computing.; when¢ has runtime typé andi is not a field ofA. This calls for a

new exception (for undefined object fields) precluded in the current semantics of AsmL-S.
An alternative fix is to require explicit type casting in forall- and choose-expressions, as e.qg.
forall ¢ ast in e; doeo.

5.3.5. Side-effect-free expressions
Since AsmL is primarily a specification language, it may be reasonable to require that
expressionsgg in

let-expressions let £ = eg doey,
conditional expressionsif ¢g then e elsees,
classfield expressions ep. f,

type tests eoist.

be side-effect free. The list is not exhaustive list. Our purpose here is just to illustrate
the idea.

The requirement that be side-effect free means that no evaluatiorgp€an produce
updates, and it can be enforced by simple syntactical constraints.

It is less reasonable to impose such restrictions of the full AsmL because it is also used
as a programming language. The guard of a conditional expression could be instrumented
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for example to collect certain data. In this semantical study, we have not been opposed
in principle to restrictions of that kind. It turns out, however, that the fact that we did
not impose such restrictions did not cause any problems. If one takes a route of imposing
such restrictions on AsmL-S, one should consider enriching the language with additional
constructs to compensate for the lost expressivity.

5.3.6. Well-typed expressions with subexpressions of static type Thrown

If an expressiore has static typdhrownin some type context, then type soundness
(Theorem18) implies that the value d, - (e) is exceptional for all evaluation contexts
(b, r) such thatb, r] = T. Most of such expressiorgsare nonsense expressions, with the
obvious exception wheais a throw-expressiothrow exc For example, the map-creation
expression

new Int — Bool {(throw fooX) — true}

is well-typed in the present semantics. Its static typénts— Bool, even though any
evaluation will returrfooX. This does not contradict type soundness, stgpefooX) =
Thrown < (Int — Bool). However, the fact that this expression will always result in an
exception can be recognized—and prevented—at compile time. In this particular example,
we can change typing rule T10 from its present formulation

Ir(en) < Ir(ex) <12
Ir(newn—t {e1 > e2}) =t — 1t

to the following:

Thrown< Tr(er) <11 Thrown< Tyr(ex) <m
Ir(newrn—t {er > e3}) =n — 12 '

The effect of this change is that the above degenerate map-creation expression is no longer
well-typed. A similar observation applies to several other type rules with explicit premises.
Note that such a strengthening of type rules does not jeopardize type soundness, or any
other theorem, as the only consequence is that fewer expressions are well-typed.

Notice that the qualifier “static” in the heading of this discussion item is there for good
reason. It is undecidable whether a given subexpression produces only exceptions. These
improvements in type checking catch only the most egregious offenders.
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