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Abstract

The Abstract State Machine Language, AsmL, is a novel executable specification language based
on the theory of Abstract State Machines. AsmL is object-oriented, provides high-level mathematical
data-structures, and is built around the notion of synchronous updates and finite choice. AsmL is fully
integrated into the .NET framework and Microsoft development tools. In this paper, we explain the
design rationale of AsmL and provide static and dynamic semantics for a kernel of the language.
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1. Introduction

Microsoft develops a huge amount of software. But how do Microsoft employees doc-
ument the requirements, design, data structures, APIs, protocols, etc? Microsoft’s devel-
opment practices are diverse. Seldom do employees use mathematical models. Sometimes
they use semi-formal notation like UML, but most of the time they use more or less rigorous
English. However, we all know the drawbacks of semi-formal and informal specifications:
unintended ambiguity, missing important information, etc. Most importantly, such speci-
fications lack a linkage to code. One cannot run and thus debug them, and it is hard to
impose such specifications. In spite of active interaction among architects, developers and
testers, the developer’s interpretation of an architectural specification may differ from that
of the architect, and the tester may not know the precise functionality of the system.We
need readable but precise specifications of what the software is supposed to do and we need
the specification to be linked to an executable code. We view specifications as models that
exhibit the desired behavior on the appropriate level of abstraction.AsmL is a new language
for writing such models.
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1.1. Language requirements

AsmL is designed to be
• simple: easy to use and able to deal naturally with common features like object orien-

tation;
• precise: having a simple and uniform mathematical foundation based on abstract state

machines (ASMs);
• executable: allowing you to validate the model;
• testable: with models acting as test oracles for the developed code as well as test case

generators;
• inter-operable: able to interact with code in the existing Microsoft runtime environ-

ments;
• integrated: acting properly in the existing Microsoft runtime and tool environments;
• scalable: appropriate to write large industrial models;
• analyzable: amenable to efficient semantic analysis, like race condition or deadlock

detection.
AsmL was designed because no existing language satisfied these criteria; see Section1.4

in this connection. The group on Foundations of Software Engineering (FSE) at Microsoft
Research designed, implemented and integrated AsmL with the Microsoft runtime and tool
environment. The FSE group has also built various tools on top of AsmL.

1.2. Language features

The language features of AsmL were chosen to give the user a familiar programming
paradigm. For instance, AsmL supports classes and interfaces in the same way as C# or
Java do. In fact all .NET structuring mechanisms are supported: enumerations, delegates,
methods, events, properties and exceptions. Nevertheless,AsmL is primarily a specification
language. Users familiar with the specification language literature, will find familiar data
structures and features, like sets, sequences, maps, pattern matching, bounded quantification,
and set comprehension.

But the crucial features of AsmL, intrinsic to ASMs, are massive synchronous paral-
lelism and finite choice [9]. These features give rise to a cleaner programming style than
is possible with standard imperative programming languages. Synchronous parallelism al-
lows you to perform a collection of parametrized actions in parallel. For example, you
may reverse simultaneously all edges of the given finite directed graph. This leads to trans-
actional semantics. The collection of parametrized actions is treated as a single transac-
tion. If something goes wrong, the whole transaction is rolled back. This provides for a
clean separation between the generation of new values and the committal of those values
into the persistent state. For instance, when an exception is thrown, the state is automat-
ically rolled back rather than being left in an unknown and possibly inconsistent state.
Finite choice allows the specification of a range of behaviors permissible for an (even-
tual) implementation. Finite choice leads to a simple concept of program refinement: a
finer program makes fewer choices and is more defined (and having fewer cases of non-
termination or termination with an exception). Finite choice provides also a simple way
of interleaving parallel computations that are supposed to be asynchronous, which is good
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enough for many distributed applications. An extension of AsmL with true asynchrony is in
progress.

1.3. AsmL-S, a core of AsmL

AsmL is rich. It incorporates features needed for .NET integration and features needed
to support various tools built on top of AsmL. It is also evolving. There are several rea-
sons for this. The Microsoft runtime and tool environments evolve, and AsmL needs to
be constantly reintegrated. The FSE group continues to build tools on top of AsmL and
needs to be able to support these tools. The group continues to enrich AsmL with new
features and revise it from time to time. But there is already a stable and mature core of
AsmL.

AsmL-S, where S alludes to “simple”, represents the stable core of AsmL. This paper is a
semantical study. So we allow ourselves to compactify the syntax and ignore some features
that do not add semantical complexity. In particular, maps, sequences and sets are first-class
citizens of the full AsmL. In AsmL-S only maps are in the language. Sets of typet can be
represented as maps fromt to the unit type.

1.4. Related work

The semantics of abstract state machines was defined in[9] and elaborated in [10]. The
ASMs of [9] have the forall construct and the choose construct but no intra-step sequential
composition. Intra-step sequential composition was accounted semantically in [11] (the sim-
ple non-iterative form) and in [6] (the iterative form). ASMs with set-theoretic background
were studied in [5].

A number ofASM tools precededAsmL; see Interpreters and Tools at [16] in this connec-
tion. None of those tools was sufficient for our purposes, however. Of course, we looked into
other tools as well. Precise specification languages like HOL [8], PVS [25], VDM [2], or
Z [26] are difficult to use for non-specialists; more importantly they are not inter-operable.
Functional languages like Haskell [15] or SML [20] are attractive but they are not state
oriented and, in our opinion, do not deal satisfactory with state. Modern object-oriented
languages, like C# [14], Java [18], O’Caml [21], or Pizza [22], lack some abstractions
of great importance to us. In particular, they do not support synchronous parallelism or
non-determinism.

And so the group of Foundations of Software Engineering developed AsmL [1]. This
development did not take place in a vacuum, though it is hard to pinpoint all the influences.
The object-oriented aspects of AsmL were influenced by mainstream imperative languages
like Java [18] and C# [14]. The type system was influenced by mainstream imperative
languages as well as functional languages like Haskell [15] or SML [20]. The use of maps
was influenced by VDM [2]. An early attempt to consider the semantics of AsmL is found
in [12].

1.5. Article organization

This article is organized as follows.



374 Y. Gurevich et al. / Theoretical Computer Science 343 (2005) 370–412

Section2, that is Section 2, illustrates the design of AsmL by means of examples. For
expositional purposes, the language is introduced piecemeal and certain notions get revised
along the way. For example, locations are first defined as object fields. Later, maps are
introduced and the notion of location is generalized.

In Section 3, we give an abstract syntax for AsmL-S and explore its type system.
In Section 4, we present operational semantics for AsmL-S. In Section 5, we prove the
type soundness of AsmL-S, discuss semantic refinement and some other issues.

2. Motivating the design

This section serves the purposes of motivation and illustration only. The rest of the paper
does not depend on this section.

AsmL is a rich language. One can see it as a fusion of theAbstract State Machine paradigm
and the .NET type system, influenced to an extent by other specification languages likeVDM
or Z.This makes it a powerful modeling tool. On the other hand, we also aimed for simplicity.
That is why AsmL is designed in such a way that its core, AsmL-S, is small. AsmL-S is
expression and object oriented. It supports synchronous parallelism, finite choice, sequential
composition and exception handling.

The rest of this section presents examples of AsmL-S expressions and programs. For
the abstract syntax of AsmL-S, see Fig. 1 in Section 3. We stress again that this ar-
ticle is a semantical study. The syntax of the full AsmL, intended to be user friendly
and appropriate for substantial programs, was compactified to fit our purposes in this
paper.

Remark 1. The “definitions” in this section are provisional, having been simplified for the
purpose of explaining examples. The notions ofvalue, type, content map, store, etc., are
formally defined in Sections3 and 4.

2.1. Expressions

InAsmL-S, expressions are the only syntactic means for writing executable specifications.
Binding and function application are call-by-value. (The necessity of .NET integration is a
good reason all by itself not to use lazy evaluation.)

Literal is the set of literals, such as 1,true, null or void. We write the value denoted by a
literal as the literal itself. Literals are typed; for instance, 1 is of typeInt andtrue is of type
Bool. AsmL-S has various operations onLiteral, like the addition operation overInt or the
conjunction operation overBool.

Exceptionis an infinite set of exceptions that is disjoint fromLiteral. Think of excep-
tions as values representing different kinds of errors. We will discuss exceptions further in
Section 2.8.

If e is a closed expression, i.e. an expression without free variables, andv is a literal or
an exception, thene

v−→v means thate evaluates tov. The “v” above the arrow alludes to
“value”. Examples 1–5 show how to evaluate simple AsmL-S expressions.
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Evaluation of simple expressions

1+ 2
v−→ 3 (1)

1/0
v−→ argX (2)

let x = 1 do x + x
v−→ 2 (3)

let x = 1/0 do 2
v−→ argX (4)

if true then 0 else3
v−→ 0 (5)

For instance, Example4 shows that let-expressions expose call-by-value semantics: if the
evaluation of the binding fails (in this case, resulting in an argument exception), then the
complete let-expression fails, irrespective of whether the body is used the binding.

2.2. Object orientation

AsmL-S encapsulates state and behavior in classes. As in C# or Java, classes form a
hierarchy according to single inheritance. We use only the single dispatch of methods.
Objects are dynamically allocated. Each object has a unique identity. Objects can be created,
compared and passed around.

ObjectId is an infinite set of potential object identifiers, that is disjoint fromLiteral and
Exception. Normal valuesare either object identifiers inObjectId or literals.Typeis the
collection of AsmL-S types. The types will be introduced as we go; alternatively see Fig. 1
in Section 3.Valuesare either normal values or exceptions.

Nvalue= ObjectId∪ Literal,
Value= Nvalue∪ Exception.

A type mapis a partial function fromObjectId to Type. It sends allocated objects to their
runtime types. Alocationis an object identifier together with a field name drawn from a set
FieldId. A content mapis a partial function fromLocationto Nvalue. It records the initial
bindings for all locations.

TypeMap= ObjectId→ Type,
Location= ObjectId× FieldId,

ContentMap= Location→ Nvalue.

If e is a closed expression, thene
�,�,v−−−→ �, �, v means that the evaluation ofe produces

the type map�, the content map� and the valuev. Examples6–14 demonstrate the object
oriented features of AsmL-S. A colon is used to separate the class definitions from the
expression that is the body of the program.

classA {} : newA()
�,�,v−−−→{o �→ A},∅, o. (6)

The execution of a nullary constructor returns a fresh object identifiero and extends the
type map. The fresh object identifiero is mapped to the dynamic type of the object.
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(One of the referees asked whether “the bindings in the type map ever get ‘garbage
collected’ in the semantics.” On the semantical level of this paper, garbage collection is
not a semantical issue. In any case, garbage collection is used in the full AsmL but not in
AsmL-S.)

classA {i as Int}, classB extendsA {b asBool} :
newB(1, true)

�,�,v−−−→{o �→ B}, {(o, i) �→ 1, (o, b) �→ true}, o. (7)

The default constructor in AsmL-S takes one parameter for each field in the order of their
declaration. The constructor extends the type map, extends the field map using the corre-
sponding arguments, and returns a fresh object identifier.

classA {i as Int} : newA(1).i
v−→ 1. (8)

Instance fields can immediately be accessed.

classA
{
Fact(i as Int) as Int do(
if i = 0 then 1 elsei ∗me.Fact(n− 1)

)} : newA().Fact(3)

�,�,v−−−→{o �→ A},∅, 6. (9)

Method calls have call-by-value semantics. Methods can be recursive. Within methods
the receiver object is denoted byme.

classA {One() as Int do 1,

Two() as Int dome.One()+me.One()},
classB extendsA {One() as Int do−1} : newB().Two()

v−→−2. (10)

As in C# or Java, method dispatch is dynamic.Accordingly, in this example, it is the redefined
method that is used for evaluation.

classA {i as Int} :
let x = (if 3 < 4 then null else newA(1)

)
do x.i

v−→ nullX. (11)

If the receiver of a field or method selection isnull, evaluation fails and throws a null pointer
exception.

classA {}, classB extendsA {} : newB() isA
v−→ true. (12)

The operatoris tests the dynamic type of the expression.

classA {}, classB extendsA {} : newB() asA
�,�,v−→ {o �→ B},∅, o. (13)

Casting checks that an instance is a subtype of the given type, and if so then yields the
instance without changing the dynamic type of the instance.

classA {}, classB extendsA {} : newA() asB
v−→ castX. (14)

If casting fails, evaluation throws a cast exception.
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2.3. Maps

Maps are finite partial functions. Amap displayis essentially the graph of the partial
function. For example, a map displaym = {1 �→ 2, 3 �→ 4} represents the partial function
that maps 1 to 2 and 3 to 4. The mapmconsists of twomaplets1 �→ 2 and 3�→ 4 mapping
keys(or indices) 1, 3 to values 2, 4, respectively.

Remark 2. In AsmL, maps can be also described by means of comprehension expressions.
For example,{x �→ 2 ∗ x | x ∈ {1, 2, 3}} denotes{1 �→ 2, 2 �→ 4, 3 �→ 6}. In AsmL-S
map comprehension should be programmed.

The maps ofAsmL-S are similar to associative arrays ofAWK or Perl. Maps have identities
and each key gives rise to a location. Arbitrary normal values can serve as keys. We extend
the notion of a location accordingly.

Location= ObjectId× (FieldId ∪ Nvalue).

Maps may be modified (see Section2.4). Maps are often used in forall and choose expres-
sions (see Sections 2.5 and 2.7). Examples 15–19 exhibit the use of maps in AsmL-S.

new Int→Bool {1 �→ true, 5 �→ false}
�,�,v−→ {o �→ (Int→Bool)}, {(o, 1) �→ true, (o, 5) �→ false}, o. (15)

A map constructor takes the map type and the initial map as arguments.

new Int→Bool {1 �→ true, 1 �→ false} v−→ argconsistencyX. (16)

If a map constructor is inconsistent (i.e. includes at least two maplets with identical keys
but different values), then the evaluation throws an inconsistency exception.(

new Int→Bool {1 �→ true}) [1] v−→ true. (17)

The value of a key can be extracted by means of an index expression.(
if true then null else newInt→Int {1 �→ 7}) [1] v−→ nullX. (18)

(
new Int→Int {1 �→ 7}) [2] v−→ mapkeyX. (19)

However, if the receiver of the index expression isnull or if the index is not in the domain
of the map, then the evaluation throws a null-pointer exception or a map-key exception,
respectively.

Remark 3. AsmL-S treats maps differently than the full AsmL. The full AsmL is more
sophisticated; it treats maps as values which requires partial updates[13]. In AsmL-S, maps
are objects. An example illustrating this difference is given in Section 2.10.
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2.4. Assignments

One of AsmL’s unique features is its handling of state. In sequential languages, like C# or
Java, assignments trigger immediate state changes. In ASMs, and therefore also in AsmL,
an assignment creates anupdate. An update is a pair: the first component describes the
location to update, the second the value to which it should be updated. An update set is a
set of updates. A triple that consists of a type map, a content map and an update set will be
called astore.

Update= Location× (Value∪ {DEL}),
UpdateSet= SetOf(Update),

Store= TypeMap× ContentMap× UpdateSet.

Note that we extendedValuewith a special symbolDEL which is used only with locations
given by map keys and which marks keys to be removed from the map.

If e is a closed expression, thene
s,v−→ s, v means that evaluation ofeproduces the store

s and the valuev. Examples20–23 show the three ways to create updates. Note that in
AsmL-S, but not in AsmL, all fields and keys can be updated. AsmL distinguishes between
constants and variables and allows updates only to the latter.

classA {i as Int} :
newA(1).i := 2

s,v−→ ({o �→ A}, {(o, i) �→ 1}, {((o, i), 2)}), void. (20)

A field assignment is expressed as usual. However, it does not change the state. Instead, it
returns the proposed update.(

new Int→Bool {1 �→ true}) [2] := false
s,v−→ ({o �→ Int→Bool}, {(o, 1) �→ true}, {((o, 2), false)}), void. (21)

A map-value assignment behaves similarly. Note that the update set is created irrespective
of whether the location exists or not.

remove
(
new Int→Bool {1 �→ true}) [1]

s,v−→ ({o �→ Int→Bool}, {((o, 1) �→ true}, {(o, 1), DEL)}), void. (22)

The remove instruction deletes an entry from the map by generating an update that contains
the placeholderDEL in the location to delete.

classA {F (mapas Int→A, val asA) asVoid domap[0] := val},
classB extendsA {} :
let a = newA() do a.F (new Int→B {}, a)
v−→ maptypeX. (23)

classA {F (mapasA→Int, val asA) asVoid domap[val] := 0},
classB extendsA {} :
let a = newA() do a.F (newB → Int {}, a)
v−→ maptypeX. (24)
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Map types are covariant in both argument and result types. SinceInt→B (resp.B→Int)
is a subtype ofInt→A (resp.A→Int), it is reasonable for Examples23 and 24 to type-
check successfully at compile time. However, the assignments fails at runtime and throw
map-assignment exceptions. Thus, map assignments must be type-checked at runtime. (The
same circumstance forces runtime type-checks of array assignments in C# or Java.)

2.5. Parallel composition

Hand in hand with the deferred update of the state goes the notion of synchronous
parallelism. It allows the simultaneous generation of finitely many updates. Examples
25–28 show two ways to construct synchronous parallel updates in AsmL-S.

let x = new Int→Int {} do(
x[2] := 4 ‖ x[3] := 9

)
s,v−→ ({o �→ Int→Int}, ∅, {((o, 2), 4), ((o, 3), 9)}), void. (25)

Parallel expressions may create multiple updates. Update sets can be inconsistent. A con-
sistency check is performed when a sequential composition of expressions is evaluated and
at the end of the program.

let x = new Int→Int {} do
let y = new Int→Void {2 �→ void, 3 �→ void} do

forall i in y do x[i] := 2 ∗ i
s,v−→ ({o1 �→ Int→Int, o2 �→ Int→Void},
{(o2, 2) �→ void, (o2, 3) �→ void}, {((o1, 2), 4), ((o1, 3), 6)}), void.

(26)

Parallel assignments can also be performed using forall expressions. In a forall expression
forall x in e1 do e2, the subexpressione1 must evaluate to a map. The subexpressione2 is
then executed with all possible bindings of the introduced variable to the elements in the
domain of the map.

let x = new Int→Int {} do(
forall i in x do x[i] := 1/i

)
s,v−→ ({o �→ Int→Int},∅,∅), void. (27)

If the range of a forall expression is empty, it simply returns the literalvoid.

let x = new Int→Int {2 �→ 4} do
let y = x[2] do ((x[2] := 8) ‖ y

)
s,v−→ ({o �→ Int→Int}, {(o, 2) �→ 4}, {((o, 2), 8)}), 4. (28)

Parallel expressions can return values. In full AsmL, the return value is distinguished syn-
tactically by writing return . In AsmL-S, the value of the second expression is returned
(see the remark after rule E24 in Section4.3 in this connection), whereas forall-expressions
returnvoid.
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2.6. Sequential composition

AsmL-S also supports sequential composition. Not only does AsmL-Scommit updates
on the state, as in conventional imperative languages, but it alsoaccumulates updates, so
that the result of a sequential composition can be used in the context of a parallel update as
well. Examples29–32 demonstrate this important feature of AsmL-S.

let x = new Int→Int {2 �→ 4} do(
(x[2] := 8) ; (x[2] := x[2] ∗ x[2]))
s,v−→ ({o �→ Int→Int}, {(o, 2) �→ 4)}, {((o, 2), 64)}), void. (29)

The evaluation of a sequential composition ofe1 ; e2 at a stateSproceeds as follows. First
e1 is evaluated inS. If no exception is thrown and the resulting update set is consistent,
then the update set is fired (or executed) inS. This creates an auxiliary stateS′. Thene2
is evaluated inS′, after whichS′ is forgotten. The current state is stillS. The accumulated
update set consists of the updates generated bye2 at S′ and the updates ofe1 that have not
been overridden by updates ofe2.

let x = new Int→Int {2 �→ 4} do(
x[2] := 8 ‖ x[2] := 6

) ; x[2] := x[2] ∗ x[2]
v−→ updateX. (30)

If the update set of the first expression is inconsistent, then execution fails and throws an
inconsistent-updates exception.

let x = new Int→Int {1 �→ 2} do(
x[2] := 4 ‖ x[3] := 6

) ; x[3] := x[3] + 1
s,v−→ ({o �→ Int→Int}, {(o, 1) �→ 2)}, {((o, 2), 4), ((o, 3), 7)}), void. (31)

In this example, the update((o, 3), 6) from the first expression of the sequential pair is
overridden by the update((o, 3), 7) from the second expression, which is evaluated in the
state with content map{(o, 1) �→ 2, (o, 2) �→ 4, (o, 3) �→ 6}.

let x = new Int→Int {1 �→ 3} do(
while x[1] > 0 do x[1] := x[1] − 1

)
s,v−→ ({o �→ Int→Int}, {(o, 1) �→ 3)}, {((o, 1), 0)}), void. (32)

While loops behave as in usual sequential languages, except that a while loop may be
executed in parallel with other expressions and the final update set is reported rather than
executed.

The question arises when are the updates fired? In principle, the updates are collected
while the body of the program is executed and fired at the end of the execution. This does
not mean that the execution proceeds in the initial state. Consider for instance Example32.
Every round of the while loop is executed in the state resulting from the execution of the
previous rounds. Then why should we collect the updates? There is no good reason to
collect updates in the case of Example 32. But, as we mentioned already, a while loop may
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be executed in parallel with some other expression; then the updates need to be reported.
Also, something may go wrong with a while loop, in which case it needs to be rolled back.

2.7. Finite choice

AsmL-S supports choice between a pair of alternatives or among values in the domain of
a map. The actual job of choosing a value from a given setX of alternatives is delegated to
the environment. On the abstraction level of AsmL-S, an external functiononeof(X) does
the job. This is similar to delegating to the environment the duty of producing fresh object
identifiers, by means of an external functionfreshid. (See Section4.2 for more about these
external functions.)

Evaluation of a program, when convergent, returns one effect and one value. Depending
on the environment, different evaluations of the same expression may return different stores
and values. Examples 33–37 demonstrate finite choice in AsmL-S.

1 [] 2
v−→ oneof{1, 2}. (33)

An expressione1 [] e2 chooses between the given pair of alternatives.

choosei in
(
new Int→Void {1 �→ void, 2 �→ void}) do i

s,v−→ oneof
{(

({o �→ Int→Void}, {(o, 1) �→ void, (o, 2) �→ void},∅), 1
)(

({o �→ Int→Void}, {(o, 1) �→ void, (o, 2) �→ void},∅), 2
)}

. (34)

Choice-expressions choose from among values in the domain of a map.

choosei in
(
new Int → Int {}) do i

v−→ choiceX. (35)

If the choice domain is empty, a choice exception is thrown. (The full AsmL distinguishes
between choose-expressions and choose-statements. The choose-expression throws an ex-
ception if the choice domain is empty, but the choose-statement with the empty choice
domain is equivalent tovoid.)

classMath{Double(x as Int) as Int do 2 ∗ x} :
newMath().Double(1 [] 2)

v−→ oneof{2, 4}. (36)

classMath{Double(x as Int) as Int do 2 ∗ x} :
newMath().Double(1) [] newMath().Double(2)

v−→ oneof{2, 4}. (37)

Finite choice distributes over function calls.

2.8. Exception handling

Exception handling is mandatory for a modern specification language. In any case, it is
necessary forAsmL because of the integration with .NET. The parallel execution ofAsmL-S
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means that several exceptions can be thrown at once. Exception handling behaves as a finite
choice for the specified caught exceptions. If an exception is caught, the store (including
updates) computed by the try-expression is rolled back.

In AsmL-S, exceptions are special values similar to literals. For technical reasons, it is
convenient to distinguish between literals and exceptions. Even though exceptions are val-
ues, an exception cannot serve as the content of a field, for example. (In the full AsmL,
exceptions are instances of special exceptional classes.) There are several built-in excep-
tions:argX, updateX, choiceX, etc. In addition, one may use additional exception names
e.g.fooX.

classA
{
Fact(n as Int) as Int do(

if n�0 then
(
if n = 0 then 1 elseFact(n− 1)

)
else throw factorialX

)} :
newA.Fact(−5)

v−→ factorialX. (38)

Custom exceptions may be generated by means of a throw-expression. Built-in excep-
tions may also be thrown. Here, for instance,throw argX could appropriately replace
throw factorialX.

Examples39–41 explain exception handling.

let x = new Int→Int {} do
try

(
x[1] := 2 ; x[3] := 4/0

)
catchargX : 5

s,v−→ ({o �→ Int→Int},∅,∅), 5 (39)

The argument exception triggered by 4/0 in the try-expression is caught, at which point the
update((x, 1), 2) is abandoned and evaluation proceeds with the contingency expression
5. In general, the catch clause can involve a sequence of exceptions: a “catch” occurs if
the try expression evaluates to any one of the enumerated exceptions. Since there are only
finitely many built-in exceptions and finitely many custom exceptions used in a program, a
catch clause can enumerateall exceptions. (This is common enough in practice to warrant
its own syntactic shortcut, though we do not provide one in the present paper.)

try
(
throw fooX

)
catchbarX, bazX : 1

v−→ fooX. (40)

Uncaught exceptions propagate up.

throw fooX ‖ throw barX
v−→ oneof{fooX, barX}. (41)

If multiple exceptions are thrown in parallel, one of them is returned nondeterministically.

throw fooX [] 1
v−→ oneof{fooX, 1}. (42)

Finite choice is “demonic”. This means that if one of the alternatives of a choice expression
throws an exception and the other one converges normally the result might be either that the
exception is propagated or that the value of the normally terminating alternative is returned.
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2.9. Expressions with free variables

Examples1–42 illustrate operational semantics for closed expressions (containing no
free variables). In general, an expressionecontains free variables. In this case, operational
semantics ofe is defined with respect to anevaluation context(b, r) consisting of a binding
b for the free variables ofeand a storer = (�, �, u) where for each free variablex, b(x) is

either a literal or a object identifier in dom(�). We writee
v−→ b,r v if computation ofe in

evaluation context(b, r) produces valuev.

x + y
v−→{x �→7, y �→11}, (∅,∅,∅) 18 (43)

�[2] v−→{� �→ o}, ({o �→ Int→Bool},{(o,2) �→ false},∅) false. (44)

A more general notatione
s,v−→b,r s, v means that a computation ofe in evaluation context

(b, r) produces new storesand valuev.

2.10. Maps as objects

This subsection expands Remark3. It was prompted by a question of Robert Stärk who
raised the following example.

classA {f as Int → Bool, g as Int → Bool} :
let a = newA(new Int → Bool {1 �→ true, 2 �→ true},
new Int → Bool {}) do

a.g := a.f ; a.x(2) := false
s,v−→ ({o1 �→ A, o2 �→ Int → Bool, o3 �→ Int → Bool},

{(o1, f ) �→ o2, (o1, g) �→ o3}, {((o1, g), o2), (o2, 2), false)}), void.

(45)

In this example, the first assignmenta.g := a.f is responsible for the update((o1, g), o2);
the second assignment gives rise to the update((o2, 2), false). Thus,a.g[2] has valuefalse
after all updates are executed.

This same program has a different semantics in the full AsmL, where maps are treated as
values rather than objects. In AsmL, the assignmenta.g := a.f has the effect of updating
a.g to the value ofa.f , i.e., the map{1 �→ true, 2 �→ false}. The second assignment,
a.f [2] := false, has no bearing ona.g. Thus,a.g[2] has valuetrue after all updates are
executed.

In treating maps as objects in AsmL-S, we avoid having to introduce the machinery of
partial updates[13], which is necessary for the treatment of maps as values in AsmL. This
causes a discrepancy between the semantics of AsmL-S and of AsmL. Fortunately, there is
an easy AsmL-S expression that updates the value of a mapm1 to the value of another map
m2 (without assigningm2 to m1):

forall i in m1 do removem1[i] ; forall i in m2 dom1[i] := m2[i]



384 Y. Gurevich et al. / Theoretical Computer Science 343 (2005) 370–412

The first forall expression erasesm1; the second forall expression copiesm2 to m1 at all
keysi in the domain ofm2.

3. Syntax and static semantics

The syntax of AsmL-S is similar to but different from that of the full AsmL. In this
semantics paper, an attractive and user-friendly syntax is not a priority but brevity is. In
particular,AsmL-S does not support the offside rule of the fullAsmL that expresses scoping
via indentation. Instead, AsmL-S uses parentheses and scope separators like ‘:’.

3.1. Abstract syntax

We take some easy-to-understand liberties with vector notation. A vectorx̄ is typically
a listx1 . . . xn of items possibly separated by commas. A sequencex1 � y1, . . . , xn � yn can
be abbreviated tōx � ȳ, where� represents a binary operator. This allows us, for instance,
to describe an argument sequence�1 as t1, . . . , �n as tn more succinctly as̄� as t̄ . The
empty vector is denoted by�.

Fig. 1 describes the abstract syntax of AsmL-S. The meta-variablesc, f, m, �, prim, op,
lit , andexc, in Fig. 1 range over disjoint infinite sets of class names (includingObject),
field names, method names, local variable names (includingme), primitive type symbols,
operation symbols, literals, and exception names (including several built-in exceptions:
argX, updateX, . . .). Sequences of class names, field names, method names and parameter
declarations are assumed to have no duplicates.

An AsmL-S program is a list of class declarations, with distinct class names different
from Object, followed by an expression, the body of the program. Each class declaration
gives a super-class, a sequence of field declarations with distinct field names, and a sequence
of method declarations with distinct method names.

AsmL-S has three categories of types—primitive types, classes and map types—plus two
auxiliary types,Null andThrown. (Thrown is used in the static semantics, although it is
absent from the syntax.) Among the primitive types, there areBool, Int andVoid. Ironically,
Void isn’t void but contains one element. There could be additional primitive types; this
makes no difference in the sequel.

Objects come in two varieties: class instances and maps. Objects are created with thenew
operator only; more sophisticated object constructors have to be programmed in AsmL-S.
A new-class-instance expression takes one argument for each field of the class, thereby
initializing all fields with the given arguments. A new-map expression takes a (possibly
empty) sequence of key-value pairs, calledmaplets, defining the initial map. Maps are
always finite. A map can be overridden, extended or reduced (by removing some of its
maplets). AsmL-S supports the usual object-oriented expressions for type testing and type
casting.

The common sequential programming languages have only one way to compose expres-
sions, namely the sequential compositione1 ; e2. To evaluatee1 ; e2, first evaluatee1 and
then evaluatee2. AsmL-S provides two additional compositions: the parallel composition
e1 ‖ e2 and the nondeterministic compositione1 [] e2. To evaluatee1 ‖ e2, evaluatee1 and
e2 in parallel. To evaluatee1 [] e2 evaluate eithere1 or e2. The related semantical issues
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pgm = cls : e programs
cls = classc extendsc {fld mth} class declarations
fld = f as t field declarations
mth = m(� as t) as t do e method declarations
lit = null | void | true | 0 | . . . literals
op = + | − | / | = | < | and | . . . primitive operations
prim = Bool | Int | Void | . . . primitive types
t = prim | Null | c | t→t normal types
exc = argX | updateX| choiceX| . . . exceptions
e = expressions

lit | � literals/local variables
| op(e) built-in operations
| let � = e do e local binding
| if e then e elsee case distinction
| new c (e) creation of class instances
| new t→t {e �→ e} creation of maps
| e.f | e [e] | e.m(e) field/index/method access
| e.f := e field update
| e[e] := e | removee[e] index update
| e is t type test
| e as t type cast
| e ‖ e | forall � in e do e parallel composition
| e [] e | choose� in e do e nondeterministic composition
| e ; e | while e do e sequential composition
| try e catchexc: e exception handling
| throw exc explicit exception generation

Fig. 1. Abstract Syntax of AsmL-S.

will be addressed later.while, forall andchooseexpressions generalize the two-component
sequential, parallel and nondeterministic compositions, respectively.

AsmL-S supports exception handling. In full AsmL, exceptions are instances of special
exception classes. In AsmL-S, exceptions are atomic values of typeThrown. (Alternatively,
we could have introduced a whole hierarchy of exception types.) There are a handful of
built-in exceptions, likeargX; all of then end with “X”. A user may use additional excep-
tion names. There is no need to declare new exception names; just use them. Instead of
prescribing a particular syntactic form to new exception names, we just presume that they
are taken from a special infinite pool of potential exception names that is disjoint from other
semantical domains of relevance.

3.2. Class table

It is convenient to view a program as a class table together with the expression to be
evaluated[17]. We assume that no class name is declared more than once and that there is
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no declaration forObject. The class table associates class names different fromObjectwith
the corresponding declarations.

Proviso 4. For the remainder of this paper, we restrict attention to an arbitrary but fixed
class table. In particular, classeswill mean declared classes.

If c is a class other thanObject, thenparent(c) is the classc′ extended byc according
to the declaration ofc. We assume thatparent(c) either equalsObjector is declared earlier
thanc. addf(c) is the sequence of distinct field names appearing in the declaration ofc. The
sequence of all fields of a class is defined by induction using the concatenation operation.

fldseq(Object) = �

fldseq(c) = addf(c) · fldseq(parent(c)).

We assume thataddf(c) is disjoint fromfldseq(parent(c)) for all classesc. If f is a field of
c of typet, thenfldtype(f, c) = t . If fldseq(c) = (f1, . . . , fn) andfldtype(fi, c) = ti , then

fldinfo(c) = f̄ as t̄ = (f1 as t1, . . . , fn as tn).

The situation is slightly more complicated with methods because, unlike fields, methods
can be overridden. Letaddm(c) be the set of method names included in the declaration ofc.
We presume for simplicity that different method declarations of any classc have different
names. We define inductively the set of all method names of a class.

mthset(Object) = ∅
mthset(c) = addm(c) ∪mthset(parent(c))

For eachm ∈ mthset(c), dclr(m, c) is the declaration

m(�1 as�1, . . . , �n as�n) as t do e

of m employed byc. We assume, as a syntactic constraint, that the variables�i are all
distinct and different fromme. The declarationdclr(m, c) is the declaration ofm in the
classhome(m, c) defined as follows:

m ∈ addm(c)

home(m, c) = c

m ∈ mthset(c)− addm(c)

home(m, c) = home(m, parent(c))
.

3.3. Subtyping

The subtype relation� (relative to the underlying class table) is defined inductively by
the following rules, wheret, t ′, t ′′, �, �′ are arbitrary types andc, c′ are arbitrary classes.

• t � t,
t � t ′ t ′� t ′′

t � t ′′ � is a partial order

• parent(c) = c′
c�c′ � extends the parent relation over classes

• �→ t �Object maps are objects
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• ���′ t � t ′
(�→ t)�(�′ → t ′) maps types are covariant in argument and

result types

• t �Object
Null� t

Null lies beneath all object types

• Thrown� t Thrown lies beneath all other types.

Note that map types are covariant in both argument and result types which is consistent
with the type system of AsmL and which fits many purposes. For example, maps are often
used as lookup tables e.g. to represent dynamic functions of abstract state machines[9].
(In Section 5.3.4 we discuss the advantages and disadvantages of changing our type system
such that map types are contravariant in argument types.)

The subtype relation is a partial order of a relatively simple form described in the following
proposition. Call two typescomparableif one of them is a subtype of the other; otherwise
call themincomparable.

Proposition 5.

1. The primitive types form an anti-chain with respect to� (i.e. they are pairwise incom-
parable). No primitive type compares to Null.

2. Restricted to classes, the subtype relation is a(reflexive transitive) tree relation.The class
tree is rooted at Object and lies above Null. No class compares to any primitive type.

3. The map types are located below Object and above Null. No map type compares to
primitive types or subclasses of Object.

4. Below all these types is located Thrown.
5. For all map typest1 → t2 and�1 → �2, we have

(t1 → t2)�(�1 → �2) ⇐⇒ (t1��1) ∧ (t2��2).

The proof is straightforward. �

Corollary 6. Every two typest1, t2 have a greatest lower boundt1� t2. Every two subtypes
of Object have a least upper boundt1 � t2.

3.4. Well-typed expressions

We assume that every literallit has a built-in typelittype(lit ). For instance,littype(2) =
Int, littype(true) = Bool and littype(null) = Null. We also assume that a type function
optype(op) defines the argument and result types for every built-in operationop. For exam-
ple,optype(and) = (Bool, Bool)→Bool.

A type context Tis a function mapping local variables, possibly includingme, to types.
TT is a function associating certain expressionsewith types. IfTT (e) is defined, thene is
said to bewell-typedwith respect toT.

The definition ofTT (e) is inductive. The induction step splits into many rules, most of
them self-explanatory. A comment, if any, follows the rule. As a notational shorthand, we
write TT (e1, . . . , en) = (t1, . . . , tn) to mean thatTT (ei) = ti for all i = 1, . . . , n. The
same applies to inequalities.
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Note that, in the following rules, typest and� may equalThrown, but remember that
Thrownis not available in the syntax and thus cannot occur in expressions.
Literals and local variables

T1. TT (lit ) = littype(lit ).

T2.
� ∈ dom(T )

TT (�) = T (�)
.

TT (�) is undefined when� /∈ dom(T ). It will follow that an expressione is well-typed with
respect toT only if dom(T ) contains all free variables ine.

Operations

T3.
optype(op) = �̄→t TT (ē)� �̄

TT (op(ē)) = t
.

Local binding

T4.
TT (e1) = t

TT (let � = e1 do e2) = TT ©< {� �→ t}(e2)
.

Here T©< {� �→ t} is the type context obtained fromT either by adding� �→ t ,
if � /∈ dom(T ), or else by replacing� �→ T (�) with � �→ t . Theoverrideoperation©< is
defined formally in Section13.

Case distinction

T5.
TT (e1) = Bool

TT (if e1 then e2 elsee3) = TT (e2) � TT (e3)
.

Thus,if e1 then e2 elsee3 is well-typed with respect toT only if the least upper bound
of TT (e2) andTT (e3) exists.

Class instances

T6.
fldinfo(c) = f̄ as t̄ TT (ē)� t̄

TT (new c(ē)) = c
.

T7.
TT (e) = c

TT (e.f ) = fldtype(f, c)
.

T8.
TT (e1) = c dclr(m, c) = m(� as�) as t do e3 TT (e2)��

TT (e1.m(e2)) = t
.

T9.
TT (e2)�TT (e1.f )

TT (e1.f := e2) = V oid
.

Maps

T10.
TT (e1)� t1 TT (e2)� t2

TT (new t1→t2 {e1 �→ e2}) = t1 → t2
.

T11.
TT (e1) = �→t TT (e2)��

TT (e1[e2]) = t
.
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T12.
TT (e1) = �→t TT (e2)�� TT (e3)� t

TT (e1[e2] := e3) = Void
.

T13.
TT (e1) = �→t TT (e2)��
TT (removee1[e2]) = V oid

.

Note that map assignments require runtime type checking (for the same reason that array
assignments of C# or Java require runtime type checking). For example, we may have a
method that, given a mapxof typeInt → Point, performs assignmentx[3] := newPoint(),
which is statically correct. Later on, we extendPoint toColoredPointso that the typeInt →
ColoredPointis a subtype ofInt → Point. But passing a map of typeInt → ColoredPoint
to our method causes a problem. See also examples23 and 24.

Type test and type cast

T14.
t < TT (e)

TT (e is t) = Bool
.

T15.
t < TT (e)

TT (e as t) = t
.

Casting into a subtype is viewed valid at compile time but may turn out to be invalid at
runtime. Thus, casts must be rechecked at runtime.

The premiset < TT (e) requires an explanation. Why do we restrict type casting to
this one case? IfTT (e)� t , then, by type soundness (theorem18), e is t must evaluate to
true unless an exception occurs. IfTT (e) andt have no lower bound other thanThrown,
then type soundness implies thate is t must evaluate tofalse. In either case, the expression
e is t is superfluous and can harmlessly (perhaps usefully) be disallowed. There is a third
possibility:TT (e) andt are incomparable but have a lower boundt ′ > Thrown. In this case,
we can replacee is t with the more reasonablee is t �TT (e). (Note that the greatest lower
bound exists by corollary 6.)

Parallel, nondeterministic and sequential composition

T16.
TT (e1) is defined

TT (e1 ‖ e2) = TT (e2)
.

This reflects the intention that an expressione1 ‖ e2 outputs the value produced bye2
unless an exception is thrown. There are good ways to restore the symmetry of the parallel
composition. This issue will be discussed later on.

T17.
TT (e1) = �→t TT ©< {� �→�}(e2) is defined

TT (forall � in e1 do e2) = Void
.

T18. TT (e1 [] e2) = TT (e1) � TT (e2).

T19.
TT (e1) = �→t

TT (choose� in e1 do e2) = TT ©< {� �→�}(e2)
.
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The partchoose� in e1 refers to choosing an element in the domain ofe1 (rather than
choosing an entire maplet).

T20.
TT (e1) is defined

TT (e1 ; e2) = TT (e2)
.

T21.
TT (e1) = Bool TT (e2) is defined

TT (while e1 do e2) = Void
.

Exception generation and handling

T22. TT (throw exc) = Thrown.

T23. TT (try e1 catchexc: e2) = TT (e1) � TT (e2).

Remark 7. Typing rules T1–T23 could be strengthened so as to filter out certain degenerate
expressions like 7+ (throw fooX) which always evaluates to an exception even though it
is well-typed. See Section5.3.6 in this connection.

3.5. Well-formed programs

A program iswell-formedif all of its classes are well-formed and its body is well-typed
in the empty type context. A classc is well-formed if every methodm ∈ mthset(c) is
well-formed relative toc, symbolicallym ok in c.

Supposedclr(m, c) = m(�1 as �1, . . . , �n as �n) as t do e andparent(c) = c′. Let T
denote the type context{me �→ c} ∪ {�1 �→ �1, . . . , �n �→ �n}. The definition ofm ok in c

is inductive.

• m ∈ addm(c)−mthset(c′) TT (e)� t

m ok in c
.

• m ∈ mthset(c)− addm(c) m ok in c′
m ok in c

.

•

(
m ∈ addm(c) ∩mthset(c′) TT (e)� t m ok in c′

dclr(m, c′) = m(�′1 as�′1, . . . , �′n as�′n) as t ′ do e′ �̄→t � �̄′→t ′
)

m ok in c
.

The statement̄�→t � �̄′→t ′, in the final premise, abbreviates the inequalities�1��′1, . . . ,

�n ��′n andt � t ′.

Proviso 8. In the sequel, we assume that all classes in the underlying class table are
well-formed.

3.6. Analysis: type contexts

The results in this subsection are not used until Section5. We include them here because
they belong naturally in the present section on static semantics.
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3.6.1. Induced type contexts
Let ◦ be a distinguished element ofLocalVar. A punctured expressionis an expression

e with a unique free occurrence of variable◦; this is sometimes written ase(◦). For any
expressione′, let e(e′/◦) denote the expression obtained fromeby substituting the unique
free occurrence of◦ with e′.

For every punctured expressione(◦) and type contextT, we define theinduced type
contextT � e(◦) at◦ in ewith respect toT.
• If e is ◦ thenT � e(◦) = T .
• If ehas any of the forms

let � = e′ do e′′(◦), forall � in e′ do e′′(◦), choose� in e′ do e′′(◦),
thenT � e(◦) = (T©< {� �→ TT (e′)}) � e′′(◦). For example,
T �

(
let � = 7 do (11+ ◦)) = T©< {� �→ Int}.

• OtherwiseT � e(◦) = T � e0(◦) wheree0(◦) is the unique maximal proper punctured
subexpression ofe. For example, ife = e′ ‖ e′′(◦) thenT � e(◦) = T � e′′(◦).

Proposition 9. If TT � e(◦)(e′) = TT � e(◦)(e′′) thenTT (e(e′/◦)) = TT (e(e′′/◦)).

The proposition is proven by a straightforward induction one(◦).
We will not need the concepts of punctured expressions or induced type contexts until

Section5.2.

3.6.2. Dominating type contexts
LetTandT ′ be any type contexts. We sayT ′ dominates T, writtenT �T ′, if T (�)�T ′(�)

for all � ∈ dom(T ).

Theorem 10. If T �T ′ and bothTT (e),TT ′(e) are defined, thenTT (e)�TT ′(e).

Proof. Proof is by induction one. Assume that the statement hold for all proper subexpres-
sions ofe. By examination of typing rules T1–T23, we show that the statement holds fore
as well.

T1–T3, T6, T9–T10,T12–T17, T20–T22: These cases are obvious. For instance, ife is of
the formremovee1[e2] thenTT (e) = TT ′(e) = Void by rule T13.

T4: Supposee is of the formlet � = e1 do e2. Let t = TT (e1) andt ′ = TT ′(e1). Then
t � t ′ by the induction hypothesis. Therefore,T©< {� �→ t}�T ′©< {� �→ t ′}. Using the
induction hypothesis again, we have

TT (e) = TT ©< {� �→t}(e2)�TT ′ ©< {� �→t ′}(e2) = TT ′(e).

T5, T18, T23: Supposee is any of the following:if e0 then e1 elsee2, e1 [] e2, or try e1
catchexc: e2. ThenTT (ei)�TT ′(ei) for i = 1, 2 by the induction hypothesis. Therefore,

TT (e) = TT (e1) � TT (e2)�TT ′(e1) � TT ′(e2) = TT ′(e).

T7: Supposee is of the forme0.f . Let c = TT (e0) andc′ = TT ′(e0). Thenf is a field of
bothc andc′. Sincec�c′, well-formedness of the underlying class table implies thatf is
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declared in a unique common ancestor ofc andc′. Therefore,

TT (e) = fldtype(f, c) = fldtype(f, c′) = TT ′(e).

T8: Supposee is of the forme0.m(ē). Let c = TT (e0), c′ = TT ′(e0), �̄ → t = mthtype
(m, c), and�̄′ → t ′ = mthtype(m, c′). Sincec�c′, the well-formedness ofm relative toc
andc′ implies that�̄→ t � �̄′ → t ′. In particular,TT (e) = t � t ′ = TT ′(e).
T11: Supposee is of the forme1[e2]. Let�→ t = TT (e1) and�′ → t ′ = TT ′(e1). Invoking
the induction hypothesis, we haveTT (e) = t � t ′ = TT ′(e).
T19: Suppose e is of the formchoose� in e1 do e2. Again, let � → t = TT (e1) and
�′ → t ′ = TT ′(e1). By the induction hypothesis,���′. It follows thatT©< {� �→ �}�T ′
©< {� �→ �′}. Using the induction hypothesis again, we have

TT (choose� in e1 do e2) = TT ©< {� �→�}(e2)

� TT ′ ©< {� �→�′}(e2) = TT ′(choose� in e1 do e2). �

4. Operational semantics

By induction on expressionse, we define the effectEb,s(e) of executinge (starting) at a
given storesunder a bindingb for the free variables ofe. This allows us to define the effect
of executing a program.

Our semantics is structural operational semantics (SOS) in the sense that it is operational
and is defined by induction on syntactical structure. It is thus similar to Plotkin’s structural
operational semantics[24]. People distinguish between small-step and big-step styles of
structural operational semantics [23]. The latter is sometimes called natural semantics [19].
Our semantics is of the big-step variety.

However, we break the SOS tradition as far as the interaction with the outside world is
concerned. To query the outside world, we useexternal functions; we use them the same
way they are used in abstract state machines [9]; we do not presume any familiarity with
abstract state machines, however. The question arises why to break the tradition. (One of
our referees insisted that we address this question.) Well, there are two aspects of AsmL-S
that require the intervention of outside world. One is nondeterminism1 and the other is
the creation of new objects. Traditional SOS deals elegantly with nondeterminism. It
is more awkward to account for new-object creation in traditional SOS, especially when, as
in our case, multiple new objects are created in parallel. More importantly, the full AsmL
is highly interactive, and so our semantics should scale up with respect to additional kinds
of interaction with the outside world.

Remark 11. We speak here aboutintra-step interaction, a kind of interaction that occurs
within one step of a program. The resolution of nondeterminism and new object creation
are examples of such intra-step interaction. Other examples include calling library routines
or foreign methods. Without loss of generality, intra-step interaction can be conducted
by issuing queries and receiving replies[3]. Call an interactive algorithmordinary if it

1 The point that an algorithm needs an outside world to resolve nondeterminism is argued in[11, Section 9.1].
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completes a step only after all the queries from that step have been answered and if it uses no
information from the outside world except for the answers to its queries. An axiomatization
of ordinary sequential algorithms with intra-step interaction is found in[3]. It turns out that
external functions are sufficient to support ordinary interaction with the outside world [4].

The rest of this section is as follows. In Section 4.1, we define some semantic domains
and functions that are needed in the definition ofEb,s(e). In Section 4.2, we introduce
evaluation contexts, effects and two external functions that take care of object construction
and nondeterminism. Section 4.3 is devoted to a recursive definition ofEb,s(e) and a def-
inition of the effectEffect(�) of a program�. A type soundness theorem is formulated in
Section 4.2 and proved in Section 5.1.

4.1. Stores

Let Literal, LocalVar, ObjectId, Class, FieldId, MapType, Exceptionbe the following
disjoint sets: the AsmL-S literals, an infinite set of local variables includingme, a pool of
potential object ids, the classes of the underlying class table, the field names of these classes,
the map types generated by these classes, the set of built-in exceptions plus an infinite set
of potential custom exceptions. LetDEL be a fresh symbol, not occurring anywhere in the
AsmL-S syntax.

We define a few additional sets of interest. Some of them have been described—in a
preliminary way—in Section 2. If�, � are sets, then� → � denotes the set of partial
functions from� to �. ℘ (�) denotes the powerset of�.

Nvalue = ObjectId∪ Literal,
Value = Nvalue∪ Exception.

Elements ofNvalueare callednormal values.

TypeMap = ObjectId→ (Class∪MapType)
Index = FieldId ∪ Nvalue
ContentMap = ObjectId→ (Index→ Nvalue)
Update = (ObjectId× Index)× (Nvalue∪ {DEL})
UpdateSet = ℘ (Update).

If � is a type map andt is a type, then we define

Nvalue�(t) = {o : �(o)� t} ∪ {lit : littype(lit )� t}.
States of a computation are represented by stores. Formally, astoreis a triples = (�, �, u),
where� is a type map,� is a content map andu is an update set, that satisfies the following
three conditions.
(a) dom(�) = dom(�) ⊇ {o : ((o, i), v) ∈ u} wherev could beDEL
(b) if �(o) = c ∈ Classandfldinfo(c) = f̄ as t̄ then

• dom(�(o)) = {f1, . . . , fn}
• �(o)(f̄ ) ∈ Nvalue�(t̄)

• ((o, i), v) ∈ u  ⇒ i ∈ {f1, . . . , fn} andv ∈ Nvalue�(fldtype(i, c))
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(c) if �(o) = �→ t ∈ MapTypethen
• dom(�(o)) ⊆ Nvalue�(�)

• rng(�(o)) ⊆ Nvalue�(t)

• ((o, i), v) ∈ u  ⇒ i ∈ Nvalue�(�) andv ∈ Nvalue�(t) ∪ {DEL}.
If s is a store, we will sometimes write�s , �s andus to denote the components ofs.

To clarify our intentions, here are explanations in plain language.
The domain of� and� is the set of object ids allocated prior to the evaluation of the

expression. Once an object is created, its id persists until the end of the run of the pro-
gram. That is, unless the object becomes unreachable and is garbage-collected; however,
for purposes of semantics, garbage collection can be ignored.

� maps allocated objects to their runtime types. Once declared, an object’s runtime type
never changes. The content map� associates objects with functions representing their, well,
contents. Ifo is an instance of classc, then�(o) maps the field names ofc to their values
in o. If o is an object of type�→ t , then�(o) is the map represented byo.

Remark 12. Alternatively (and closer to the traditional ASM paradigm), letLocation=
ObjectId× Index. ThenContentMapcan be defined asLocation→ Nvalue. This explains
why updates are represented as pairs inLocation× (Nvalue∪ {DEL}).

There are two kinds of updates: modifications and removals. A modification update puts
a new value into a given location. Formally, this is a pair((o, f ), v), whereo is a class
instance,f is a field ofoandv is a value of the appropriate type, or else((o, v1), v2), where
o is an object of map type andv1, v2 are values of the appropriate domain and codomain
types, respectively. It is not required that the new value differs from the old one. Since
updates may be performed simultaneously, a trivial update, where the new value equals the
old one, may have semantical significance: it may clash with another update of the same
location. A removal update, formally a pair((o, v), DEL), removes a given map location.
We sayu is inconsistentif it contains distinct updates of the same location; otherwise, it is
consistent. A consistent update set thus gives rise to a content map in the alternative sense:
from ObjectId× Indexto Nvalue∪ {DEL}.

Notation 13. Let R1, R2 be any binary relations andm1, m2 any maps.
• Theoverride ofR1 byR2 is defined by

R1©< R2 =
{
(x, y) ∈ R1 : �z . (x, z) ∈ R2

} ∪ R2.

• Theoverride ofm1 bym2 is defined by

(m1©< m2)(x) =
{

m1(x) if x ∈ dom(m1)− dom(m2)

m2(x) if x ∈ dom(m2).

• Theunion ofR1 andR2 is defined, in the usual way, asR1 ∪ R2.
• If m1©< m2 = m2©< m1, then theunion ofm1 andm2 is defined by

(m1 ∪m2)(x) =
{

m1(x) if x ∈ dom(m1)

m2(x) if x ∈ dom(m2).

If m1©< m2 "= m2©< m1, thenm1 ∪m2 is undefined.
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• By extension, for any storess1 = (�1, �1, u1) ands2 = (�2, �2, u2) we define

s1 ∪ s2 = (�1 ∪ �2, �1 ∪ �2, u1 ∪ u2)

provided that maps�1∪ �2 and�1∪�2 are defined. (u1∪u2 is always defined, sinceu1
andu2 are binary relations.) Check that ifs1 ∪ s2 is defined then it meets the definition
of a store.

• We says2 extendss1, writtens1 ⊆ s2, if s1 ∪ s2 = s2.

Remark 14. If G(m) = {(x, y) : m(x) = y} denotes the graph of a mapm, thenG(m1
©< m2) = G(m1)©< G(m2) andG(m1 ∪m2) = G(m1) ∪G(m2) whenm1 ∪m2 is defined.

Remark 15. RepresentingContentMapin the form�→ (�→ �), rather than(�×�) → �,
allows us to use the convenient override operation©< .

Firing updates. Let s = (�, �, u) be any store. Ifu is consistent, then it gives rise to a new
storeŝ = (�, �̂, ∅) where content map̂� is defined by

�̂(o)(i) =
{

v if ((o, i), v) ∈ u andv "= DEL,

�(o)(i) if ((o, i), DEL) /∈ u.

ŝ is the store obtained froms by “firing” all updates inu. If u is inconsistent, then̂s is
undefined.

4.2. Evaluation contexts, effects, and external functions

An evaluation contextis a pair(b, r) consisting of a storer and abinding b, which is a
partial function fromLocalVar to dom(�r ) ∪ Literal. Every evaluation context(b, r) gives
rise to a type context[b, r] where

[b, r](�) =
{

�r (b(�)) if b(�) ∈ dom(�r )

littype(b(�)) if b(�) ∈ Literal.

Check that, if a stores extendsr, then(b, s) is an evaluation context and[b, r] = [b, s].
(We will use this fact extensively in the type soundness proof.)

An expressione is (b, r)-typedif it is well-typed with respect to the type context[b, r],
that is, ifT[b,r](e) is defined.

An effect is a pair〈s, v〉 (the angular brackets are used only for the purpose of visual
distinction) consisting of a storesand a valuev in dom(�s)∪Literal∪Exception. The type
of effect〈s, v〉 is defined in the obvious way:

type(〈s, v〉) =


�s(v) if v ∈ dom(�s)

littype(v) if v ∈ Literal
Thrown if v ∈ Exception.

In the next subsection, we define an operatorEb,r over (b, r)-typed expressions. The
computation ofEb,r (e) is in general nondeterministic and it may diverge. If it converges, it
produces an effectEb,r (e) = 〈s, v〉. In Section5.1 we prove:
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Theorem 18(Type soundness). type(Eb,r (e))�T[b,r](e) for all b, r, e and any converging
computation ofEb,r (e).

The definition of the effect operatorEb,r utilizes two external functions. One of them is
a nullary functionfreshid. Every evaluation offreshid produces a new object id. Different
invocations offreshid produce different objects. The other external function is a unary
functiononeof(X). It takes a nonempty setXas an argument and returns one of its elements.
We presume that the outside environment guarantees that the two external functions work
properly.

The effectEb,r (e) is nondeterministic only because of the use of external functions. Due
to the use of external functions, the effect depends on the outside environment. We keep the
dependence of the effectEb,r (e) on the environment implicit. The equalityEb,r (e) = 〈s, v〉
means that some convergent computation ofEb,r (e) produces the effect〈s, v〉. The equality
Eb,r (e) = Eb′,r ′(e′) means that
• the range of possible convergent effects ofEb,r (e) equals the range of possible convergent

effects ofEb′,r ′(e′), and
• there is a divergent computation ofEb,r (e) if, only if, there is a divergent computation

of Eb′,r ′(e′).
The range of possible effects ofEb,r (e) does not depend on the environment.

4.3. Definition of the effect operator

This section is devoted to a recursive definition of the effect operatorEb,r (e) over(b, r)-
typed expressions. The recursion reflects the inductive definition of the abstract syntax of
AsmL-S.

Proviso. In rulesE1–E32,the symbolsv, v′, v1, v2, . . . stand for normal values, not ex-
ceptions. In rulesE33–E40 (dealing with exception generation, handling and propagation),
these same symbols represent any values(normal or exceptional). In this way, we separate
the rules for normal evaluations from those for exception handling and propagation.
Literals and local variables

E1. Eb,r (lit ) = 〈r, lit 〉.
E2. Eb,r (�) = 〈r, b(�)〉.

Operations

E3.
Eb,r (ē) = 〈s̄, v̄〉 op(v̄) is defined

Eb,r (op(ē)) = 〈⋃ s̄, op(v̄)〉 .

E4.
Eb,r (ē) = 〈s̄, v̄〉 op(v̄) is undefined

Eb,r (op(ē)) = 〈r, argX〉 .

Local Binding

E5.
Eb,r (e1) = 〈s, v〉

Eb,r (let � = e1 do e2) = Eb ©< {� �→ v}, s(e2)
.
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Case distinction

E6.
Eb,r (e1) = 〈s, true〉

Eb,r (if e1 then e2 elsee3) = Eb,s(e2)
.

E7.
Eb,r (e1) = 〈s, false〉

Eb,r (if e1 then e2 elsee3) = Eb,s(e3)
.

Null exceptions

E8.
Eb,r (e1) = 〈s, null〉

Eb,r (e1.f ) = Eb,r (forall � in e1 do e2)

= Eb,r (choose� in e1 do e2) = 〈r, nullX〉
Eb,r (e1) = 〈s, null〉 type(Eb,r (e2)) "= Thrown

Eb,r (e1.f := e2) = Eb,r (e1[e2]) = Eb,r (removee1[e2]) = 〈r, nullX〉
Eb,r (e1) = 〈s, null〉 type(Eb,r (e2,3)) "= Thrown

Eb,r (e1[e2] := e3) = 〈r, nullX〉
Eb,r (e1) = 〈s, null〉 type(Eb,r (e2)) "= Thrown

Eb,r (e1.m(e2)) = 〈r, nullX〉 .

Class instances

E9.
Eb,r (e) = 〈s, v〉 freshid() = o

Eb,r (new c(e)) = 〈r ∪ ⋃
s ∪ ({o �→ c}, {o �→ {f �→ v}},∅), o〉 .

We include “r ∪” in casefldseq(c) is the empty sequence�.

E10.
Eb,r (e) = 〈s, v〉 v "= null
Eb,r (e.f ) = 〈s, �s(v)(f )〉 .

E11.

(
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉 type(〈s1, v1〉) = c

dclr(m, c) = m(� as�) as t do e3

)
Eb,r (e1.m(e2)) = E{me�→v1, � �→v2}, s1∪⋃ s2

(e3)
.

Note that bothe1 ande2 are evaluated in storer. A similar remark applies to a number
of other rules. The binding in the latter evaluation context is{me �→ v1, � �→ v2} rather
thanb©< {me �→ v1, � �→ v2} since the free variables ine3 are contained among� ∪ {me}
as a consequence of the well-formedness ofm relative toc.

Remark 16. Almost every rule in the recursive definition ofEb,r (e) reducesEb,r (e) to
effectsEb,s(e

′) wheree′ is a proper subexpression ofe. Rules E11 (method calls) and
E32 (while-expressions) are the only exceptions. Consequentially, these rules are the only
reasons that computation ofEb,r (e) may diverge.

E12.
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉 v1 "= null
Eb,r (e1.f := e2) = 〈s1 ∪ s2 ∪

(∅,∅, {((v1, f ), v2)}), void〉 .
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The empty type map as well as the empty context map are denoted by∅.

Maps

E13.

(
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉
consistent(v1, v2) freshid() = o

)
Eb,r (new �→ t {e1 �→ e2})

= 〈r ∪ ⋃
s1 ∪ ⋃

s2 ∪
({o �→ �→ t}, {o �→ {v1 �→ v2}},∅

)
, o〉

,

whereconsistent(a1, . . . , an, b1, . . . , bn) =∧1� i,j �n(ai = aj ) ↔ (bi = bj ).

E14.
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉 ¬consistent(v1, v2)

Eb,r (new �→ t {e1 �→ e2}) = 〈r, argconsistencyX〉 .

E15.
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉 v2 ∈ dom(�s1(v1))

Eb,r (e1[e2]) = 〈s1 ∪ s2, �s1(v1)(v2)〉 .

E16.
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉 v2 /∈ dom(�s1(v1))

Eb,r (e1[e2]) = 〈r, mapkeyX〉 .

E17.

(
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉 Eb,r (e3) = 〈s3, v3〉

type(s2, v2) → type(s3, v3)� type(s1, v1)

)
Eb,r (e1[e2] := e3) = 〈s1 ∪ s2 ∪ s3 ∪

(∅,∅, {((v1, v2), v3)}), void〉 .

E18.

(
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉 Eb,r (e3) = 〈s3, v3〉

type(〈s2, v2〉) → type(〈s3, v3〉)�type(〈s1, v1〉)
)

Eb,r (e1[e2] := e3) = 〈r, maptypeX〉 .

E19.
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉 v1 "= null

Eb,r (removee1[e2]) = 〈s1 ∪ s2 ∪
(∅,∅, {((v1, v2), DEL)}), void〉 .

Type test and type cast

E20.
Eb,r (e) = 〈s, v〉 type(〈s, v〉)� t

Eb,r (e is t) = 〈s, true〉 .

E21.
Eb,r (e) = 〈s, v〉 type(〈s, v〉)�t

Eb,r (e is t) = 〈s, false〉 .

E22.
Eb,r (e) = 〈s, v〉 type(〈s, v〉)� t

Eb,r (e as t) = 〈s, v〉 .

E23.
Eb,r (e) = 〈s, v〉 type(〈s, v〉)�t

Eb,r (e as t) = 〈r, castX〉 .

Parallel, nondeterministic and sequential composition

E24.
Eb,r (e1) = 〈s1, v1〉 Eb,r (e2) = 〈s2, v2〉

Eb,r (e1 ‖ e2) = 〈s1 ∪ s2, v2〉 .
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The do-in-parallel operation‖ returns the combined stores of both effects together with
the value of the second effect. (An alternative semantics in whiche1 ‖ e2 returnsvoid is
discussed in Section5.3.2.)

E25.

(
Eb,r (e1) = 〈s, v〉

Eb©< {� �→	},s(e2) = 〈s	, v	〉 for each	 ∈ dom(�s(v))

)
Eb,r (forall � in e1 do e2) = 〈s ∪ ⋃

	∈dom(�s (v))

s	, void
〉 .

A forall-expression computes the combined store of multiple parallel executions ofe2
with respect to evaluation contexts which vary as the local variable� ranges over the domain
of the map given bye1. The value returned isvoid.

E26.
oneof{left, right} = left
Eb,r (e1 [] e2) = Eb,r (e1)

,
oneof{left, right} = right
Eb,r (e1 [] e2) = Eb,r (e2)

.

Recall thatoneof(X) is an external function computed by the outside world. Different
calls tooneof(X) can give different results.

E27.
Eb,r (e1) = 〈s, v〉 dom(�s(v)) = ∅
Eb,r (choose� in e1 do e2) = 〈r, choiceX〉 .

E28.
Eb,r (e1) = 〈s, v〉 dom(�s(v)) "= ∅ oneof(dom(�s(v))) = 	

Eb,r (choose� in e1 do e2) = Eb©< {� �→	},s(e2)
.

In choose-expressions, like in forall-expressions,� is bound to a value in the domain of
the map given bye1.

E29.
Eb,r (e1) = 〈s, v〉 us is inconsistent

Eb,r (e1 ; e2) = 〈r, updateX〉 .

E30.

(
r ′ = (�r , �r ,∅) Eb,r ′(e1) = 〈s1, v1〉 s1 = (�1, �1, u1)

u1 is consistent Eb,̂s1(e2) = 〈s2, v2〉 s2 = (�2, �2, u2)

)
Eb,r (e1 ; e2) = 〈(�2, �2©< �1, ur ∪ (u1©< u2)

)
, v2〉 .

Recall how we compute the update set ofe1 ; e2. First we evaluatee1 in the present store,
then we evaluatee2 in the modified store obtained by firing all updates generated bye1 and
we return the specially combined storein which updates generated bye2 override updates
generated bye1. We computee1 in the evaluation contextr ′, rather thanr, in order to isolate
updates generated bye1 from those accumulated inur . We then computee2 in the store
ŝ1 obtained froms1 by firing u1 (see the end of Section4.1 in this connection) and return
ur ∪ (u1©< u2).

We return the type map�2 since, by monotonicity,�r ⊆ �1 = �ŝ1 ⊆ �2. Thus, dom(�2)

includes all existing objects as well as all objects created bye1 ande2.Also by monotonicity,
�r ⊆ �1 and�ŝ1 ⊆ �2. However, it can happen that�1 "= �ŝ1. It remains to explain the
content map�2©< �1. One may have an impression that the content map should be just�2.
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But this is not necessarily so. Recall thate2 is evaluated in the auxiliary storês1 obtained
from s1 by firing u1. After the evaluation ofe2, the auxiliary store is thrown away. The
objects altered by firingu1 should be returned to their virgin status. This is achieved by
overriding�2 with �1.

E31.
Eb,r (e1) = 〈s, v〉 us is inconsistent

Eb,r (e1 ; e2) = 〈r, updateX〉 ,

Eb,r (e1) = 〈s, false〉 us is consistent
Eb,r (while e1 do e2) = 〈s, void〉 .

E32.

 r ′ = (�r , �r ,∅) Eb,r ′(e1) = 〈s1, true〉 s1 = (�1, �1, u1)

u1 is consistent Eb,̂s1(e2) = 〈s2, v2〉 s2 = (�2, �2, u2)

s = (�2, �2©< �1, ur ∪ (u1©< u2)
)


Eb,r (while e1 do e2) = Eb,s(while e1 do e2)

.

If the evaluation ofe1 creates no updates, then Rule E32 can be simplified to contain
only the premisesEb,r (e1) = 〈s1, true〉 andEb,s1(e2) = (s, v). In general, however, the
evaluation ofe1 does produce updates, and they need to be taken care of. Further, if the
guarde1 is deterministic, Rule E32 can be simplified to contain only the premisesEb,r (e1) =
〈s1, true〉 andEb,r (e1; e2) = (s, v). But if e1 contains calls to the external functiononeof
then the simplified form is not appropriate: we have to ensure thate1 is not evaluated
twice.

Rule E32 is one reason that computation ofEb,r (e) may diverge (see Remark16 following
rule E11).

Exception generation and handling

In the remaining rules,v, v′, v1, v2, . . . represent any values, normalor exceptional.
E33. Eb,r (throw exc) = 〈r, exc〉.

E34.
Eb,r (e1) = 〈s, v〉 v /∈ exc

Eb,r (try e1 catchexc: e2) = 〈s, v〉 .

E35.
Eb,r (e1) = 〈s, v〉 v ∈ exc

Eb,r (try e1 catchexc: e2) = Eb,r (e2)
.

Heree2 is evaluated in storer. The updates produced during the evaluation ofe1 are lost.
(In fact,s = r by the part 3 of Theorem17.)

Exception propagation

E36.
Eb,r (e1, . . . , en) = 〈s1, v1〉, . . . , 〈sn, vn〉 {v1, . . . , vn} ∩ Exception"= ∅

Eb,r (e0) = 〈r, oneof({v1, . . . , vn} ∩ Exception)
〉

wheree0 is any of the following:

new c(e1, . . . , en) new �→ t {e1 �→ e2, . . . , en−1 �→ en} e1 is t

e1.f e1[e2] e1 as t

e1.m(e2, . . . , en) e1[e2] := e3 e1 ‖ e2
e1.f := e2 removee1[e2]
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E37.
Eb,r (e1) = 〈s, v〉 v ∈ Exception

Eb,r (e0) = 〈r, v〉 ,

wheree0 is any of the following:

let � = e1 do e2 forall � in e1 do e2 e1 ; e2
if e1 then e2 elsee3 choose� in e1 do e2 while e1 do e2.

This is different from E36:e1 is evaluated first.

E38.

(
r ′ = (�r , �r ,∅) Eb,r ′(e1) = 〈s1, v1〉 v1 /∈ Exception
us1 is consistent Eb,̂s1(e2) = 〈s2, v2〉 v2 ∈ Exception

)
Eb,r (e1 ; e2) = 〈r, v2〉 .

E39.

(
r ′ = (�r , �r ,∅)Eb,r ′(e1) = 〈s1, true〉 us1 is consistent

Eb,̂s1(e2) = 〈s2, v2〉 v2 ∈ Exception

)
Eb,r (while e1 do e2) = 〈r, v2〉 .

E40.

 Eb,r (e1) = 〈s, v〉 v /∈ Exception
Eb©< {� �→	},s(e2) = 〈s	, v	〉 for each	 ∈ dom(�s(v))

{v	 : 	 ∈ dom(�s(v))} ∩ Exception"= ∅


Eb,r (forall � in e1 do e2) =〈

r, oneof({v	 : 	 ∈ dom(�s(v))} ∩ Exception)
〉 .

This concludes the definition ofEb,r .

Check that the premises of rules E1–E40 are mutually exclusive. However, the premises
are not complete, i.e. they do not cover all possibilities. Ife is (b, r)-typed but does not
satisfy any premise, thenEb,r (e) is said todiverge. If Eb,r (e) = 〈s, v〉 converges, then check
that E1–E40 guarantee that〈s, v〉 is indeed an effect (i.e.s is a store andv ∈ dom(�s) ∪
Literal ∪ Exception.

The following theorem describes an important property ofEb,r .

Theorem 17(Monotonicity of stores). SupposeEb,r (e) = 〈s, v〉.
1. r ⊆ s

2. [b, r] = [b, s]
3. v ∈ Exception ⇒ r = s

Proof. Statements 1 and 3 are easily verified by inspection of effect rules E1–E40. Statement
2 follows trivially from 1. �

Effect of the program. Programs� are also evaluated (or executed) for its effect. Lete be
the body of�. By abuse of notation, we write∅ for both the empty binding and the initial
store (with no objects or updates). The effect of� is defined as follows. Recall thatŝ is the
store resulting from firing updatesus at stores.
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• E∅,∅(e) = 〈s, v〉 v ∈ Nvalue us is consistent
Effect(�) = 〈̂s, v〉 .

• E∅,∅(e) = 〈s, v〉 v ∈ Nvalue us is inconsistent
Effect(�) = 〈∅, updateX〉 .

• E∅,∅(e) = 〈s, v〉 v ∈ Exception
Effect(�) = 〈∅, v〉 .

5. Analysis

The precise semantics of a programming language allows one to prove various properties
of the language. In Section5.1 we prove the type soundness of AsmL-S. In Section 5.2, we
prove a refinement theorem. Some additional issues are discussed in Section 5.3.

5.1. Type soundness

This subsection is devoted to a proof of type soundness for AsmL-S.

Theorem 18(Type soundness). For every evaluation context(b, r) and every(b, r)-typed
expression e, we have

type(Eb,r (e))�T[b,r](e)

for any converging computation ofEb,r (e).

Proof. Proof is by induction one. Assume that the statement holds for anyb′, r ′, e′ where
e′ is a proper subexpression ofe. By examination of effect rules E1–E40, we will show that
the statement also holds forb, r, e.
E4, E8, E14, E16, E18, E23, E27, E29, E33, E36–E40: Each of these rules produces an
exceptional value with typeThrown. Thus, ife satisfies the premise of any of these rules
then

type(Eb,r (e)) = Thrown�T[b,r](e),

sinceThrownlies below every other type.

Proviso. In all cases below except E34 and E35,v, v′, v1, v2, . . . represent normal values
(not exceptions).

E12, E17, E19, E20, E21, E25, E31: Each of these rules returns a particular literal:E20,
E21 returntrue, false, respectively; the other rules returnvoid. The corresponding typing
rules assignBool or Void, accordingly. Therefore, type soundness holds with equality.
E1–E3: Type soundness follows immediately from T1–T3. To wit:

type(Eb,r (lit ))
E1= type(〈r, lit 〉) = littype(lit )

T1= T[b,r](lit ),
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type(Eb,r (�))
E2= type(〈r, b(�)〉) = [b, r](�)

T2= T[b,r](�).

If e = op(ē) whereEb,r (ē) = 〈s̄, v̄〉, optype(op) = �̄→ t andop(v̄) is defined, then

type(Eb,r (e))
E3= type(〈⋃s̄, op(v̄)〉) = littype(op(v̄)) = t

T3= T[b,r](e).

E5: Supposee is of the formlet � = e1 do e2 whereEb,r (e1) = 〈s, v〉 andT[b,r](e1) = t .
By the induction hypothesis,type(〈s, v〉)� t . By theorem17 (statement 2),[b, s] = [b, r].
Thus, we have

[b©< {� �→ v}, s] = [b, s]©< {� �→ type(〈s, v〉)}�[b, s]©< {� �→ t}
= [b, r]©< {� �→ t}.

By effect rule E5,Eb,r (e) = Eb©< {��→v},s(e2). By the induction hypothesis,

type(Eb©< {� �→v},s(e2))�T[b©< {� �→v},s](e2).

By typing rule T4,T[b,r](e) = T[b,r]©< {� �→t}(e2). Theorem10 yields the inequality

T[b©< {� �→v},s](e2)�T[b,r]©< {� �→t}(e2).

We conclude thattype(Eb,r (e))�T[b,r](e).
E6, E7: Supposee = if e1 then e2 elsee3 whereEb,r (e1) = 〈s, true〉. Then

type(Eb,r (e))
E6= type(Eb,s(e2))

hyp.

� T[b,s](e2)

= T[b,r](e2)�T[b,r](e2) � T[b,r](e3)
T5= T[b,r](e),

where the middle equality is by Theorem17 (statement 2). The argument for E7 works the
same way.
E9, E13: Type soundness follows immediately from T6, T10.

type(Eb,r (new c(ē)))
E9= type(〈. . . ∪ ({o �→ c}, . . .), o〉) = c

T6= T[b,r](new c(ē))

type(Eb,r (new �→ t {e1 �→ e2})) E13= type(〈. . . ∪ ({o �→ �→ t}, . . .), o〉)
= �→ t

T10= T[b,r](new �→ t {e1 �→ e2}).
E10: Supposee = e1.f whereEb,r (e1) = 〈s, v〉 and v "= null. By typing rule T7,
T[b,r](e1) = c for some classc with field f. By the induction hypothesis (and the fact that
v "= null), type(〈s, v〉) = c′ for some classc′�c. Thus,f is a field ofc′ andfldtype(f, c′) =
fldtype(f, c).

By definition of store,f ∈ dom(�s(v)) and �s(v)(f ) ∈ Nvalue�s
(fldtype(f, c′)).

Consequentially,type(〈s, �s(v)(f )〉)�fldtype(f, c′). Putting it all together, we get

type(Eb,r (e))
E10= type(〈s, �s(v)(f )〉)�fldtype(f, c′) = fldtype(f, c)

T7= T[b,r](e).

E11: Supposee = e1.m(e2), Eb,r (e1) = 〈s1, v1〉, Eb,r (e2) = 〈s2, v2〉, type(〈s1, v1〉) = c
anddclr(m, c) = m(� as�) as t do e3.

By E11,Eb,r (e) = E{me�→v1, � �→v2},s1∪⋃ s2
(e3). By the induction hypothesis,

type(E{me�→v1, � �→v2},s1∪⋃ s2
(e3))�T[{me�→v1, � �→v2},s1∪⋃ s2](e3).
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It suffices to show that the latter type is dominated byT[b,r](e). The induction hypothesis
also impliestype(〈s1, v1〉)�T[b,r](e1) and type(〈s2, v2〉)�T[b,r](e2). We thus obtain the
following dominance relation among type contexts:

[{me �→ v1, � �→ v2}, s1 ∪⋃s2]�{me �→ T[b,r](e1), � �→ T[b,r](e2)}.
Theorem10 now yields:

T[{me�→v1, � �→v2},s1∪⋃ s2](e3)�T{me�→T[b,r](e1), � �→T[b,r](e2)}(e3).

The well-formedness ofm relative toc implies

T{me�→T[b,r](e1), � �→T[b,r](e2)}(e3)� t.

It suffices to show thatt �T[b,r](e). Let c′ = T[b,r](e1) and supposedclr(m, c′) =
m(�

′
as �′) as t ′ do e′3. Then c�c′ by the induction hypothesis. The well-formedness

of m relative toc andc′ impliest � t ′. By typing rule T8,T[b,r](e) = t ′. Thust �T[b,r](e).
E15: Supposee = e1[e2], Eb,r (ei) = 〈si, vi〉 for i=1, 2, type(〈s1, v1〉)=t , T[b,r](e1) = t ′,
andv2 ∈ dom(�s1(v1)). By E15,type(Eb,r (e)) = 〈s1 ∪ s2, v2〉.

By the induction hypothesis,t � t ′. Letting t = �1 → �2 and t ′ = �′1 → �′2, we have
�2��′2 andT[b,r](e) = �′2 by T11.

The definition of store impliesv2 ∈ Nvalue�s1
(t1), since�s1(v1) = v2. Consequentially,

type(〈s1, v2〉)��2. Clearly, type(〈s1, v2〉) = type(〈s1 ∪ s2, v2〉). Putting it all together,
we get

type(Eb,r (e)) = type(〈s1 ∪ s2, v2〉) = type(〈s1, v2〉)��2��′2 = T[b,r](e).

E22: If e = e1 as t whereEb,r (e1) = 〈s, v〉 andv� t , then

type(Eb,r (e))
E22= type(〈s, v〉)� t

T15= T[b,r](e).

E24: Supposee = e1 ‖ e2 whereEb,r (ei) = 〈si, vi〉 for i = 1, 2. Then

type(Eb,r (e))
E24= type(〈s1 ∪ s2, v2〉) = type(〈s2, v2〉)

hyp.

� T[b,r](e2)
T16= T[b,r](e2),

where the middle equality follows from the observation thatv2 ∈ dom(�s2).
E26: Supposee = e1 [] e2 andoneof{left, right} = left. Then

type(Eb,r (e))
E26= type(Eb,r (e1))

hyp.

� T[b,r](e1)�T[b,r](e1) � T[b,r](e2)
T18= T[b,r](e).

The case whereoneof{left, right} = right is handled the same way.
E28: Supposee = choose� in e1 do e2, Eb,r (e1) = 〈s, v〉, dom(�s(v)) "= ∅, and
oneof(�s(v)) = 	. By theorem17 (statement 2),[b, s] = [b, r].

Let type(〈s, v〉) = �→ t . Then	 ∈ Nvalue�s
(�) by definition of store. Consequentially,

type(〈s, 	〉)��. LettingT[b,r](e1) = �′ → t ′, the induction hypothesis implies(� → t)

�(�′ → t ′) and therefore���′. Thus, we have

[b©< {� �→ 	}, s] = [b, s]©< {� �→ type(〈s, 	〉)}�[b, s]©< {� �→ �′}
= [b, r]©< {� �→ �′}.
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We conclude

type(Eb,r (e))
E28= type(Eb©< {��→	},s(e2))

hyp.

� T[b©< {� �→	},s](e2)�T[b,r]©< {� �→�′}(e2)
T19= T[b,r](e),

where the latter inequality is by theorem10.
E30: Supposee = e1 ; e2 and letr ′ = (�r , �r ,∅), Eb,r ′(e1) = 〈s1, v1〉, s1 = (�1, �1, u1),
u1 be consistent,Eb,ŝ1(e2) = 〈s2, v2〉, ands2 = (�2, �2, u2). Then

type(Eb,r (e))
E30= type(〈(�2, �2©< �1, ur ∪ (u1©< u2)), v2〉)
= type(〈s2, v2〉)

hyp.

� T[b,ŝ1](e2) = T[b,r](e)
T20= T[b,r](e2).

Both unmarked equalities above are trivial to establish.The first follows from the observation
that�s2 = �2. The second follows from the observation that�r ⊆ �ŝ1 and therefore[b, r] =
[b, ŝ1].
E31, E32: Supposee = while e1 do e2. Recall that we consider a converging computation
of Eb,r (e). Eventually it returns valuevoid by rule E31, assuming the recursion implied by
rule E32 is well-founded. Type soundness clearly holds, sinceT[b,r](e) = Void by typing
rule T21.
E34, E35: Supposee = try e1 catch exc : e2 andEb,r (e1) = 〈s1, v1〉 where the valuev1
may be exceptional. Ifv1 /∈ excthen

type(Eb,r (e))
E34= type(〈s1, v1〉)

hyp.

� T[b,r](e1)�T[b,r](e1) � T[b,r](e2)
T23= T[b,r](e).

On the other hand, ifv1 ∈ excandEb,r (e2) = 〈s2, v2〉 then

type(Eb,r (e))
E35= type(〈s2, v2〉)

hyp.

� T[b,r](e2)�T[b,r](e2) � T[b,r](e2)
T23= T[b,r](e).

�

5.2. Semantic refinement

First we formalize the idea that one expression semantically refines the other with respect
to a given type contextT. Then we prove that an expressione1 semantically refines an
expressione2 with respect toT if e1 is obtained frome2 by replacing a subexpressione′′ of
e2 with somee′ that semantically refinese′′ with respect to the appropriate type contextT ′.

Let s be any store and letV ⊆ Value. Thes-span of V, symbolicallyspans(V ), is the
least supersetO of V ∩ dom(�s) satisfying the following conditions.
• If o ∈ O then

(
dom(�s(o)) ∪ rng(�s(o))

) ∩ dom(�s) ⊆ O.
• If o ∈ O, ((o, x), y) ∈ us andus is consistent, then{x, y} ∩ dom(�s) ⊆ O.
Think of spans(V ) as the set of objects reachable ins from V.

The triplesV = (�̃, �̃, ũ) is defined as follows, where→← is a fresh symbol connoting
inconsistency.

�̃ = �s � spans(V )

�̃ = �s� spans(V )
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ũ =
{ {

((o, x), y) ∈ us : o ∈ spans(V )
}

if us is consistent
→← if us is inconsistent

sV is called theV-essential part of s. Check thatsV is a store ifus is consistent. Think ofsV

as the result of garbage-collecting all unreachable objects and irrelevant updates ins, where
V is a set of accessible values (such as those named by local variables). Ifus is inconsistent,
then the updates inus can be ignored.

Lemma 19. Suppose thatr, s, s′ are stores andU, V are subsets of value.
(a) s V = s′V ⇐⇒ s V ∩ObjectId= s′V ∩ObjectId.
(b) s U∪V = s′U∪V ⇐⇒ (

s U = s′U ∧ s V = s′V
)
.

(c) If U ⊆ V thens V = s′V  ⇒ s U = s′U .
(d) If r ⊆ s andr ⊆ s′ thens dom(�r ) = s′dom(�r ).

Proof. (a)–(c) are obvious. (d) follows from the definition of the inclusion relation over
states. �

For any(b, r)-typed expressione, the set

E+
b,r (e) = ⋃{〈s, v〉 : some convergent computation ofEb,r (e) returns〈s, v〉}{∞ : some computation ofEb,r (e) diverges

}
is the set of possible effects of e. It is presumed that the symbol∞ is not used for anything
else.

Now supposee ande′ are arbitrary expressions. We say thate refinese′ with respect to
type contextT (written e�T e′) if TT (e) = TT (e′) ∈ Typeand each evaluation context
(b, r) with [b, r] = T satisfies I and II, below.
I. If ∞ ∈ E+

b,r (e) then∞ ∈ E+
b,r (e′).

II. For every effect〈s, v〉 ∈ E+
b,r (e), there exists an effect〈s′, v〉 ∈ E+

b,r (e′) such that
srng(b)∪{v} = s′rng(b)∪{v}.

We say thateande′ aresemantically equivalentwith respect toT (writtene ≈T e′) if e�T e′
ande′�T e.

As expected, refinement is transitive.

Proposition 20. If e�T e′ ande′�T e′′ thene�T e′′. �

Another important property of refinement is monotonicity with respect to subexpressions.
Recall punctured expressions defined above in Section3.6.1.

Theorem 21(Refinement). Supposee(◦) is a punctured expression ande′, e′′ are expres-
sions such thate(e′/◦) is T-well-typed ande′′�T � e(◦)e′. Then

e(e′′/◦)�T e(e′/◦).

Proof. Let e(◦), e′ ande′′ be as in the hypothesis. Proof of the statemente(e′′/◦)�T e(e′/◦)
is by induction on thedepthof the variable◦ in the punctured expressione(◦), defined
recursively by the rules:
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• depth(◦) = 0,
• if e "= ◦ thendepth(e(◦)) = 1+depth(e0(◦)) wheree0(◦) is the unique maximal proper

punctured subexpression ofe.
The case ofdepth(e(◦)) = 0, i.e. the casee = ◦, is trivial.

It suffices to prove the theorem in the case ofdepth(e(◦)) = 1. Indeed, suppose that
depth(e) > 1. Lete0 be the maximal proper punctured subexpression ofeand lete1 be the
result of replacinge0 by ◦ in e so thate(◦) = e1(e0(◦)/◦) anddepth(e1(◦)) = 1. Check
thatT � e(◦) = (T � e1(◦)) � e0(◦). Invoking the induction hypothesis twice, we have

e′′ � (T � e1(◦)) � e0(◦) e′
 ⇒ e0(e′′) � T � e1(◦) e0(e′)
 ⇒ e1(e0(e′′)) � T e1(e0(e′)).

So we restrict attention on the case ofdepth(e(◦)) = 1. Sincee′′�T � e(◦)e′, we have
TT � e(◦)(e′) = TT � e(◦)(e′′) ∈ Type.Thus, by Proposition9,TT (e(e′/◦)) = TT (e(e′′/◦))
∈ Type. Let (b, r) be any evaluation context such that[b, r] = T . We must show that state-
ments I and II in the definition of the refinement relation hold.

There are numerous (sub)cases to consider, for instance, three cases wheree is of the
formsif ◦ then e1 elsee2, if e0 then ◦ elsee2 andif e0 then e1 else◦. In most cases, proof
follows straightforwardly from the typing and effect rules. When◦ falls under the scope of
a fresh binding (i.e. is the body of a let-, forall- or choose-expression), proof is a matter of
definition-chasing. We consider here a single case wheree is of the formlet � = e1 do ◦.

Claim 22. I andII hold if e is of the formlet � = e1 do ◦.

For any expressione2 such thatlet � = e1 do e2 isT-well-typed, effect rules E5 and E37
(those mentioning let-expressions) imply thatEb,r (let � = e1 do e2) diverges if, and only
if, eitherEb,r (e1) diverges or elseEb,r (e1) = 〈s, v〉 andv is normal andEb©< {��→v}, s(e2)

diverges. Sincee′′�T � e(◦)e′ and[{� �→ v}, s] = T � e(◦), we have

∞ ∈ E+{� �→ v}, s(e
′′)  ⇒∞ ∈ E+{� �→ v}, s(e

′).

We conclude∞ ∈ E+
b,r (e(e′′/◦))  ⇒∞ ∈ E+

b,r (e(e′/◦)), confirming statement I.
As for statement II, suppose〈s, v〉 ∈ E+

b,r (e(e′′/◦)). By E5 and E37, it follows that there
is an effect〈s1, v1〉 ∈ E+

b,r (e1) such that(
v1 ∈ Exception∧ v1 = v

) ∨ (v1 ∈ Nvalue∧ 〈s, v〉 ∈ E+
b©< {� �→ v1}, s1

(e′′)
)
.

If v1 ∈ Exception, then E37 implies〈s, v〉 ∈ E+
b,r (e(e2/◦)) for any expressione2 such

that e(e2/◦) is [b, r]-typed, so in particular fore2 = e′. We will therefore assume that
v1 ∈ Nvalue.

Since[{� �→ v1}, s1] = T � e(◦), the refinement relatione′′�T � e(◦)e′ means that there
is an effect〈s′, v〉 ∈ E+

b©< {� �→ v1}, s1
(e′) such that

srng(b©< {� �→v1})∪{v} = s′rng(b©< {� �→v1})∪{v}.
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Note that rng(b) ∩ ObjectId⊆ dom(�r ). By monotonicity of stores (Theorem17), r ⊆ s

andr ⊆ s′. Lemma 19 impliess dom(�r )∪{v1,v} = s′dom(�r )∪{v1,v}. Hence, by Lemma 19(c),

s rng(b)∪{v} = s′rng(b)∪{v}.

Effect rule E5 implies〈s′, v〉 ∈ E+
b,r (e(e′/◦)), so we are done. �(Theorem21)

We now describe a few canonical refinements involving nondeterministic expressions of
the formse1 [] e2 andchoose� in e1 do e2.

Proposition 23. Supposee1 [] e2 is T-well-typed ande0�T true [] false. Then(
if e0 then e1 elsee2

)
�T e1 [] e2.

Furthermore, for i = 1, 2, if TT (ei) = TT (e1 [] e2) thenei �T e1 [] e2.

The proof is straightforward. �

In order to state a similar proposition for choose-expressions, we must first define a
specialized notion of refinement. We say thate choice-domain refinese′ with respect toT
(written e�c.d.

T e′) if TT (e) = TT (e′) ∈ MapTypeand each evaluation context(b, r) with
[b, r] = T satisfies Ic.d. and IIc.d., below.
I
c.d.

. If ∞ ∈ E+
b,r (e) then∞ ∈ E+

b,r (e′).
II

c.d.
. For every effect〈s, v〉 ∈ E+

b,r (e), there exists an effect〈s′, v′〉 ∈ E+
b,r (e′) such that

type(〈s, v〉) = type(〈s′, v′〉) = t and one of the following holds:
i. t ∈ {Null, Thrown}andv = v′,

ii. t ∈ MapTypeand�s(v) = �s′(v′) = ∅,

iii. t ∈ MapType, ∅ "= �s(v) ⊆ �s′(v′) ands rng(b) = s′rng(b).
We are now able to state the following:

Proposition 24. Supposechoose� in e1 do e2 is T-well-typed ande′1�
c.d.
T e1. Then(

choose� in e′1 do e2
)
�T

(
choose� in e1 do e2

)
.

The statement follows straightforwardly from the relevant definitions, including typing
rule T19 and effect rules E8, E27, E28, E37 (i.e. those mentioning choice-expressions).

5.3. Discussion

There are numerous additional issues related to the analysis of AsmL-S. Here we touch
on some of them without developing them in depth.

5.3.1. Simultaneous let
Currently the let bindings are evaluated sequentially. Consider for example the expression

let �1 = e1 do
(
let �2 = e2 do e3

)
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where�1 does not occur ine2. It would not hurt to evaluatee1, e2 in parallel (unlesse1
produces an exception) but our rules dictate to evaluatee1 first ande2 second. In the spirit
of ASMs with its emphasis on parallelism, we generalize the current let construct to a new
simultaneous let construct:

let �1 = e1, . . . , �n = en do en+1,

where�1, . . . , �n are distinct local variables. To evaluate the above expression, evaluate
all binding bodiese1, . . . , en at the present evaluation context. Let us presume that alln
computations converge. If alln computations return normal values, then proceed to evalu-
ationen+1 in the new evaluation context. Otherwise, return one of the exceptional values
nondeterministically. The only reason we did not introduce this simultaneous let construct
in AsmL-S above was to simplify notation.

5.3.2. Parallel composition
Eb,r (e1 ‖ e2), when convergent, returns the value ofEb,r (e2), as defined in rule E24.

Why do we want that the expressione1 ‖ e2 returns anything? Because the return value
may be useful in programming. Unfortunately, our decision to return the value ofe2 breaks
the symmetry betweene1 ande2, that is,e1 ‖ e2 "≈ e2 ‖ e1. Furthermore, this contrasts with
the symmetry of forall-expressions, which always returnvoid. The operator‖ can be made
symmetric, and consistent with the semantics of forall-expressions, by modifying rule E24
so thatEb,r (e1 ‖ e2) always returnsvoid. (Note that this can be simulated in the present
semantics by writing(e1 ‖ e2) ‖ void, though this does not change fundamental asymmetry
of the‖.)

Making ‖ symmetric exacts some price. Suppose that we would like to simulate the
asymmetric version of‖ that returns the value of the second expression. This would be
possible to achieve, but awkward, in the present syntax. For example, we could write(

newBool→ T { false �→ e1, true �→ e2}
)[true]

for the appropriateT. The asymmetrice1 ‖ e2 could be expressed more naturally by means
of simultaneous let aslet �1 = e1, �2 = e2 do �2.

5.3.3. Coverage
Our definition ofE+

b,r (e) in Section5.2 tacitly assumes that the definition ofEb,r is
complete and covers all the cases, so that every finite computation ofEb,r (e) returns a
value, possibly exceptional. The assumption is not immediately obvious but can be proven.

5.3.4. Covariance vs. contravariance in argument types
In the type system of AsmL-S, maps are covariant in both argument and result types (see

Section 3.3). This is consistent with the type system of the full AsmL. On the other hand,
in functional languages, functions are conventionally contravariant in argument types [23].
The rationale for contravariance in argument types is that a function of type�→ t could be
safely placed in any context expecting a map of type�′ → t where�′��. One can argue that
maps should be contravariant in argument types. Either variant has benefits and drawbacks.
Ultimately the most important consideration is how maps are supposed to be used. In AsmL



410 Y. Gurevich et al. / Theoretical Computer Science 343 (2005) 370–412

they have been used more as look-up tables than as functions in functional programming,
and so covariance is appropriate. For those familiar with abstract state machines, let us
mention that maps are often used to represent dynamic functions of ASMs; in that role they
are essentially look-up tables.

We make a couple of technical points related to the controversy. One benefit of contravari-
ance in argument types is preclusion of themaptypeXexception that arises in computing
Eb,r (e1[e2] := e3) whentype(Eb,r (e1)) = T→T ′ andtype(Eb,r (e2))�T , as in example24.
Obviously, we want to have as few built-in exceptions as necessary. But contravariance in
argument types has a price. The problem with contravariance lies in computing the forall-
and choose-expressions of AsmL-S

Eb,r (forall � in e1 do e2) Eb,r (choose� in e1 do e2),

where the binding of� ranges over the domain of the map given bye1 (which, as a set,
should be viewed as naturally covariant).

Suppose for a moment that map types are contravariant in argument types but the type
system of AsmL-S is otherwise unchanged. We encounter problematic programs such as
the following:

classA, classB extendsA {i as Int} :
let f = (newA → Int {newA() → 0}) do

let g = (if true then f else newB → Int {}) do
choose� in g do �.i

We check that this program is well-typed: the static type ofg is the least upper bound of
A → Int andB → Int, that is,B → Int; the static type of� is thereforeB; the body�.i of the
choose-expression is thus well-typed. However, in evaluating this program we run into the
problem of computing�.i when� has runtime typeAandi is not a field ofA. This calls for a
new exception (for undefined object fields) precluded in the current semantics of AsmL-S.
An alternative fix is to require explicit type casting in forall- and choose-expressions, as e.g.
forall � as t in e1 do e2.

5.3.5. Side-effect-free expressions
Since AsmL is primarily a specification language, it may be reasonable to require that

expressionse0 in

let-expressions let � = e0 do e1,

conditional expressionsif e0 then e1 elsee2,

class-field expressions e0.f,

type tests e0 is t.

be side-effect free. The list is not exhaustive list. Our purpose here is just to illustrate
the idea.

The requirement thate be side-effect free means that no evaluation ofe0 can produce
updates, and it can be enforced by simple syntactical constraints.

It is less reasonable to impose such restrictions of the full AsmL because it is also used
as a programming language. The guard of a conditional expression could be instrumented
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for example to collect certain data. In this semantical study, we have not been opposed
in principle to restrictions of that kind. It turns out, however, that the fact that we did
not impose such restrictions did not cause any problems. If one takes a route of imposing
such restrictions on AsmL-S, one should consider enriching the language with additional
constructs to compensate for the lost expressivity.

5.3.6. Well-typed expressions with subexpressions of static type Thrown
If an expressione has static typeThrown in some type contextT, then type soundness

(Theorem18) implies that the value ofEb,r (e) is exceptional for all evaluation contexts
(b, r) such that[b, r] = T . Most of such expressionseare nonsense expressions, with the
obvious exception whene is a throw-expressionthrow exc. For example, the map-creation
expression

new Int → Bool {(throw fooX) �→ true}

is well-typed in the present semantics. Its static type isInt → Bool, even though any
evaluation will returnfooX. This does not contradict type soundness, sincetype(fooX) =
Thrown < (Int → Bool). However, the fact that this expression will always result in an
exception can be recognized—and prevented—at compile time. In this particular example,
we can change typing rule T10 from its present formulation

TT (e1)� t1 TT (e2)� t2

TT (new t1→t2 {e1 �→ e2}) = t1 → t2

to the following:

Thrown< TT (e1)� t1 Thrown< TT (e2)� t2

TT (new t1→t2 {e1 �→ e2}) = t1 → t2
.

The effect of this change is that the above degenerate map-creation expression is no longer
well-typed. A similar observation applies to several other type rules with explicit premises.
Note that such a strengthening of type rules does not jeopardize type soundness, or any
other theorem, as the only consequence is that fewer expressions are well-typed.

Notice that the qualifier “static” in the heading of this discussion item is there for good
reason. It is undecidable whether a given subexpression produces only exceptions. These
improvements in type checking catch only the most egregious offenders.
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