
Secrecy and Group CreationLuca Cardelli1, Giorgio Ghelli2, and Andrew D. Gordon11 Microsoft Research2 Pisa UniversityAbstract. We add an operation of group creation to the typed �-calculus, where a group is a type for channels. Creation of fresh groupshas the e�ect of statically preventing certain communications, and canblock the accidental or malicious leakage of secrets. Intuitively, no chan-nel belonging to a fresh group can be received by processes outside theinitial scope of the group, even if those processes are untyped. We formal-ize this intuition by adapting a notion of secrecy introduced by Abadi,and proving a preservation of secrecy property.1 IntroductionGroup creation is a natural extension of the sort-based type systems developedfor the �-calculus. However, group creation has an interesting and subtle connec-tion with secrecy. We start from the untyped �-calculus, where an operation tocreate fresh communication channels can be interpreted as creating fresh secrets.Under this interpretation, though, secrets can be leaked. We then introduce thenotion of groups, which are types for channels, together with an operation forcreating fresh groups. We explain how a fresh secret belonging to a fresh groupcan never be communicated to anybody who does not know the group in the�rst place. In other words, our type system prevents secrets from being leaked.Crucially, groups are not values, and cannot be communicated; otherwise, thissecrecy property would fail.1.1 Leaking SecretsConsider the following con�guration, where P is a private subsystem (a player)running in parallel with a potentially hostile adversary O (an opponent).O j PSuppose that the player P wants to create a fresh secret x. For example, xcould be a private communication channel to be used only between subsystemsof P . In the �-calculus this can be done by letting P evolve into a con�guration(�x)P 0, which means: create a new channel x to be used in the scope of P 0.O j (�x)P 0



2 The channel x is intended to remain private to P 0. This privacy policy is goingto be violated if the system then evolves into a situation such as the following,where p is a public channel known to the opponent (p(y) is input of y on p, andphxi is output of x on p): p(y):O0 j (�x)(phxi j P )In this situation, the name x is about to be sent by the player over the pub-lic channel p and received by the opponent. In order for this communicationto happen, the rules of the �-calculus, described in Section 2, require �rst anenlargement (extrusion) of the scope of x (otherwise x would escape its lexicalscope). We assume that x is di�erent from p, y, and any other name in O0,so that the enlargement of the scope of x does not cause name con
icts. Afterextrusion, we have: (�x)(p(y):O0 j phxi j P )Now, x can be communicated over p into the variable y, while keeping xentirely within the scope of (�x). This results in:(�x)(O0fy xg j P )where the opponent has acquired the secret.1.2 Preventing LeakageThe private name x has been leaked to the opponent by a combination of twomechanisms: the output instruction phxi, and the extrusion of (�x). Can weprevent this kind of leakage of information? We have to consider that such aleakage may arise simply because of a mistake in the code of the player P , orbecause P decides to violate the privacy policy of x, or because a subsystem ofP acts as a spy for the opponent.It seems that we need to restrict either communication or extrusion. Sincenames are dynamic data in the �-calculus, it is not easy to say that a situationsuch as phxi (sending x on a channel known to the opponent) should not arise,because p may be dynamically obtained from some other channel, and may notoccur at all in the code of P .The other possibility is to try to prevent extrusion, which is a necessarystep when leaking names outside their initial scope. However, extrusion is afundamental mechanism in the �-calculus: blocking it completely would alsoblock innocent communications over p. In general, attempts to limit extrusionare problematic, unless we abandon the notion of \fresh channel" altogether.A natural question is whether one could somehow declare x to be private,and have this assertion statically checked so that the privacy policy of x cannotbe violated. To this end, we may consider typed versions of the �-calculus. Inthese systems, we can classify channels into di�erent groups (usually called sortsin the literature). We could have a group G for our private channels and write(�x:G)P 0 to declare x to be of sort G. Unfortunately, in standard �-calculus type



3systems all the groups are global, so the opponent could very well mention G inan input instruction. Global groups do not o�er any protection, because leakageto the opponent can be made to type-check:p(y:G):O0 j (�x:G)(phxi j P 00)In order to guarantee secrecy, we would want the group G itself to be secret, sothat no opponent can input names of group G, and that no part of the playercan output G information on public channels. A �rst idea is to partition groupsinto public ones and secret ones, with the static constraints that members ofsecret groups cannot be communicated over channels of public groups [7]. Butthis would work only for systems made of two (or a �xed number of) distrustfulcomponents; we aim to �nd a more general solution.1.3 Group CreationIn general, we want the ability to create fresh groups on demand, and then tocreate fresh elements of those groups. To this end, we extend the �-calculus withan operator, (�G)P , to dynamically create a new group G in a scope P . Thisis a dynamic operator beacause, for example, it can be used to create a freshgroup after an input: q(y:T ):(�G)PAlthough group creation is dynamic, the group information can be tracked stat-ically to ensure that names of di�erent groups are not confused. Moreover, dy-namic group creation can be very useful: we can dynamically spawn subsystemsthat have their own pool of shared resources that cannot interfere with othersubsystems (compare with applet sandboxing).Our troublesome example can now be represented as follows, where G is anew group, G[ ] is the type of channels of group G, and a fresh x is declaredto be a channel of group G (the type structure will be explained in more detaillater): p(y:T ):O0 j (�G)(�x:G[ ])phxiHere an attempt is made again to send the channel x over the public channelp. Fortunately, this process cannot be typed: the type T would have to mentionG, in order to receive a channel of group G, but this is impossible because G isnot known in the global scope where p would have to have been declared. Theconstruct (�G) has extrusion properties similar to (�x), which are needed topermit legal communications over channels unrelated to G channels, but theseextrusion rules prevent G from being confused with any group mentioned in T .1.4 Untyped OpponentsLet us now consider the case where the opponent is untyped or, equivalently, notwell-typed. This is intended to cover the situation where an opponent can executeany instruction available in the computational model without being restricted



4by static checks such as type-checking or bytecode veri�cation. For example, theopponent could be running on a separate, untrusted, machine.We �rst make explicit the type declaration of the public channel, p:U , whichhas so far been omitted. The public channel must have a proper type, becausethat type is used in checking the type correctness of the player, at least. Thistype declaration could take the form of a channel declaration (�p:U) whosescope encloses both the player and the opponent, or it could be part of somedeclaration environment shared by the player and the opponent and providedby a third entity in the system (for example, a name server).Moreover, we remove the typing information from the code of the opponent,since an opponent does not necessarily play by the rules. The opponent nowattempts to read any message transmitted over the public channel, no matterwhat its type is. (�p:U)(p(y):O0 j (�G)(�x:G[ ])phxi)Will an untyped opponent, by cheating on the type of the public channel, be ableto acquire secret information? Fortunately, the answer is still no. The fact thatthe player is well-typed is su�cient to ensure secrecy, even in the presence ofuntyped opponents. This is because, in order for the player to leak informationover a public channel p, the output operation phxi must be well-typed. The namex can be communicated only on channels whose type mentions G. So the outputphxi cannot be well-typed, because then the type U of p would have to mentionthe group G, but U is not in the scope of G.The �nal option to consider is whether one can trust the source of the dec-laration p:U . This declaration could come from a trusted source distinct fromthe opponent, but in general one has to mistrust this information as well. Inany case, we can assume that the player will be type-checked with respect tothis questionable information, p:U , within a trusted context. Even if U tries tocheat by mentioning G, the typing rules will not confuse that G with the oneoccurring in the player as (�G), and the output operation phxi will still fail totype-check. The only important requirement is that the player must be type-checked with respect to a global environment within a trusted context, whichseems reasonable. This is all our secrecy theorem (Section 3) needs to assume.1.5 SecrecyWe have thus established, informally, that a player creating a fresh group Gcan never communicate channels of group G to an opponent outside the initialscope of G, either because a (well-typed) opponent cannot name G to receive themessage, or, in any case, because a well-typed player cannot use public channelsto communicate G information to an (untyped) opponent.Channels of group G are forever secret outside the initial scope of (�G).So, secrecy is reduced in a certain sense to scoping and typing restrictions.But the situation is fairly subtle because of the extrusion rules associated withscoping, the fact that scoping restrictions in the ordinary �-calculus do not



5prevent leakage, and the possibility of untyped opponents. As we have seen, thescope of channels can be extruded too far, perhaps inadvertently, and cause leak-age, while the scope of groups o�ers protection against accidental or maliciousleakage, even though it can be extruded as well.We organise the remainder of the paper as follows. Section 2 de�nes the syn-tax, reduction semantics, and type system of our typed �-calculus with groups.In Section 3 we adapt a notion of secrecy due to Abadi to the untyped �-calculus.We also state the main technical result of the paper, Theorem 1, that a well-typed process preserves the secrecy of a fresh name of a fresh group, even from anuntyped opponent. We outline the proof of Theorem 1 in Section 4; the main ideaof the proof is to separate trusted data (from the typed process) and untrusteddata (from the untyped opponent) using an auxiliary type system de�ned onuntyped processes. Finally, Section 5 concludes.2 A Typed �-Calculus with GroupsWe present here a typed �-calculus with groups and group creation. The earliesttype system for the �-calculus, reported in Milner's book [10] but �rst publishedin 1991, is based on sorts; sorts are like groups in that each name belongs to asort, but Milner's system has no construct for sort creation. Moreover, his systemallows recursive de�nitions of sorts; we would need to add recursive types to oursystem to mimic such de�nitions. Subsequent type systems introduced a varietyof channel type constructors and subtyping [11, 12].2.1 Syntax and Operational SemanticsTypes specify, for each channel, its group and the type of the values that can beexchanged on that channel.Types:T ::= G[T1; : : : ; Tn] polyadic channel in group GWe study an asynchronous, choice-free, polyadic typed �-calculus. The calcu-lus is de�ned as follows. We identify processes up to capture-avoiding renamingof bound variables; we write P = Q to mean that P and Q are the same up tocapture-avoiding renaming of bound variables.Expressions and Processes:x; y; p; q names, variablesP;Q;R ::= processx(y1:T1; : : : ; yk:Tk):P polyadic inputxhy1; : : : ; yki polyadic output(�G)P group creation(�x:T )P restriction



6 P j Q composition!P replication0 inactivityIn a restriction, (�x:T )P , the name x is bound in P , and in an input,x(y1:T1; : : : ; yk:Tk):P , the names y1, . . . , yk are bound in P . In a group cre-ation (�G)P , the group G is bound with scope P . Let fn(P ) be the set thenames free in a process P , and let fg(P ) and fg(T ) be the sets of groups free ina process P and a type T , respectively.In the next two tables, we de�ne a reduction relation, P ! Q, in terms of anauxiliary notion of structural congruence, P � Q. Structural congruence allows aprocess to be re-arranged so that reduction rules may be applied. Each reductionderives from an exchange of a tuple on a named communication channel.Our rules for reduction and structural congruence are standard [10] apartfrom the inclusion of new rules for group creation, and the exclusion of garbagecollection rules such as 0 � (�x:T )0 and x =2 fn(P )) (�x:T )P � P . Such rulesare unnecessary for calculating reduction steps. In their presence, reduction canenlarge the set of free groups of a process. Hence, their inclusion would slightlycomplicate the statement of subject reduction.Structural Congruence: P � QP � P (Struct Re
)Q � P ) P � Q (Struct Symm)P � Q;Q � R) P � R (Struct Trans)P � Q) (�x:T )P � (�x:T )Q (Struct Res)P � Q) (�G)P � (�G)Q (Struct GRes)P � Q) P j R � Q j R (Struct Par)P � Q) !P � !Q (Struct Repl)P � Q) x(y1:T1; : : : ; yn:Tn):P � x(y1:T1; : : : ; yn:Tn):Q (Struct Input)P j 0 � P (Struct Par Zero)P j Q � Q j P (Struct Par Comm)(P j Q) j R � P j (Q j R) (Struct Par Assoc)!P � P j !P (Struct Repl Par)x1 6= x2 ) (�x1:T1)(�x2:T2)P � (�x2:T2)(�x1:T1)P (Struct Res Res)x =2 fn(P )) (�x:T )(P j Q) � P j (�x:T )Q (Struct Res Par)(�G1)(�G2)P � (�G2)(�G1)P (Struct GRes GRes)G =2 fg(T )) (�G)(�x:T )P � (�x:T )(�G)P (Struct GRes Res)G =2 fg(P )) (�G)(P j Q) � P j (�G)Q (Struct GRes Par)Reduction: P ! Qxhy1; : : : ; yni j x(z1:T1; : : : ; zn:Tn):P ! Pfz1 y1g � � � fzn yng (Red I/O)P ! Q) P j R! Q j R (Red Par)



7P ! Q) (�G)P ! (�G)Q (Red GRes)P ! Q) (�x:T )P ! (�x:T )Q (Red Res)P 0 � P; P ! Q;Q � Q0 ) P 0 ! Q0 (Red �)The new rules for group creation are the congruence rules (Struct GRes) and(Red GRes), and the scope mobility rules (Struct GRes GRes), (Struct GResRes), and (Struct GRes Par). The latter rules are akin to the standard scopemobility rules for restriction (Struct Res Res) and (Struct Res Par).2.2 The Type SystemEnvironments declare the names and groups in scope during type-checking; wede�ne environments, E, by E ::= ? j E;G j E; x:T . We de�ne dom(E) bydom(?) = ?, dom(E;G) = dom(E) [ fGg, and dom(E; x:T ) = dom(E) [ fxg.We de�ne four typing judgments: �rst, E ` � means that E is well-formed;second, E ` T means that T is well-formed in E; third, E ` x : T means thatx:T is in E, and that E is well-formed; and, fourth, E ` P means that P iswell-formed in the environment E.Typing Rules:(Env ?)? ` � (Env x)E ` T x =2 dom(E)E; x:T ` � (Env G)E ` � G =2 dom(E)E;G ` �(Type Chan)G 2 dom(E) E ` T1 � � � E ` TnE ` G[T1; : : : ; Tn] (Exp x)E0; x:T;E00 ` �E0; x:T;E00 ` x : T(Proc GRes)E;G ` PE ` (�G)P (Proc Res)E; x:T ` PE ` (�x:T )P (Proc Zero)E ` �E ` 0 (Proc Par)E ` P E ` QE ` P j Q (Proc Repl)E ` PE ` !P(Proc Input)E ` x : G[T1; : : : ; Tn] E; y1:T1; : : : ; yn:Tn ` PE ` x(y1:T1; : : : ; yn:Tn):P(Proc Output)E ` x : G[T1; : : : ; Tn] E ` y1 : T1 � � � E ` yn : TnE ` xhy1; : : : ; yniThe rules for good environments ensure that the names and groups declaredin an environment are distinct, and that all the types mentioned in an environ-ment are good. The rule for a good type ensures that all the groups free in atype are declared. The rule for a good name looks up the type of a name in the



8environment. The rules (Proc Input) and (Proc Output) for well-typed processesensure that names occurring in inputs and outputs are used according to theirdeclared types. The rules (Proc GRes) and (Proc Res) allow fresh groups andnames, respectively, to be used inside their scope but not outside. The otherrules (Proc Zero), (Proc Par), and (Proc Repl) de�ne a composite process to bewell-typed provided its components, if any, are themselves well-typed.2.3 Subject ReductionSubject reduction is a property stating that well-typed processes reduce neces-sarily to well-typed processes, thus implying that \type errors" are not generatedduring reduction. As part of establishing this property, we need to establish asubject congruence property, stating that well-typing is preserved by congru-ence. Subject congruence is essential for a type system based on the �-calculus:two congruent processes are meant to represent the same computation so theyshould have the same typing properties.As we shall see shortly, a consequence of our typing discipline is the abilityto preserve secrets. In particular, the subject reduction property, together withthe proper application of extrusion rules, has the e�ect of preventing certaincommunications that would leak secrets. For example, consider the discussion inSection 1.3, regarding a process of the form:p(y:T ):O0 j (�G)(�x:G[ ])PIn order to communicate the name x (the secret) on the public channel p,we would need to reduce the initial process to a con�guration containing thefollowing: p(y:T ):O00 j phxiIf subject reduction holds then this reduced term has to be well-typed, whichis true only if p : H [T ] for some H , and T = G[ ]. However, in order to get tothe point of bringing the input operation of the opponent next to an outputoperation of the player, we must have extruded the (�G) and (�x:G[ ]) bindersoutward. The rule (Struct GRes Par), used to extrude (�G) past p(y:T ):O00,requires that G =2 fg(T ). This contradicts the requirement that T = G[ ]. If thatextrusion were allowed, that is, if we failed to prevent name clashes on groupnames, then the player could communicate with the opponent in a well-typedway, and secrecy would fail.Lemma 1 (Subject Congruence). If E ` P and P � Q then E ` Q.Proposition 1 (Subject Reduction). If E ` P and P ! Q then E ` Q.Subject reduction allows us to prove secrecy properties like the following one.Proposition 2. Let the process P = p(y:T ):O0 j (�G)(�x:G[T1; : : : ; Tn])P 0. IfE ` P , for some E, then no process deriving from P includes a communicationof x along p. Formally, there are no processes P 00 and P 000 and a context C[ ]such that P � (�G)(�x:G[T1; : : : ; Tn])P 00, P 00 ! P 000, P 000 � C[phxi], where pand x are not bound by C[].



9Proof. Assume that P 00 and P 000 exist. Subject reduction implies the judgmentE;G; x:G[T1; : : : ; Tn] ` P 000, which implies that E;G; x:G[T1; : : : ; Tn]; E0 ` phxifor some E0. Hence, p has a type H [G[T1; : : : ; Tn]]. But this is impossible, sincep is de�ned in E, hence out of the scope of G. utIn the following section we generalize this result, and extend it to a situationwhere the opponent is not necessarily well-typed.3 Secrecy in the Context of an Untyped OpponentWe formalize the idea that in the process (�G)(�x:G[T1; : : : ; Tn])P , the name xof the new group G is known only within P (the scope of G) and hence is keptsecret from any opponent able to communicate with the process (whether or notthe opponent respects our type system). We give a precise de�nition of whenan untyped process (�x)P preserves the secrecy of a restricted name x from anopponent (the external process with which it interacts). Then we show that theuntyped process obtained by erasing type annotations and group restrictionsfrom a well-typed process (�G)(�x:G[T1; : : : ; Tn])P preserves the secrecy of thename x.3.1 Review: The Untyped �-CalculusIn this section, we describe the syntax and semantics of an untyped calculusthat corresponds to the typed calculus of Section 2. The process syntax is thesame as for the typed calculus, except that we drop type annotations and thenew-group construct.Processes:x; y; p; q names, variablesP;Q;R ::= processx(y1; : : : ; yn):P polyadic inputxhy1; : : : ; yni polyadic output(�x)P restrictionP j Q composition!P replication0 inactivityAs in the typed calculus, the names y1, . . . , yn are bound in an inputx(y1; : : : ; yn):P with scope P , and the name x is bound in (�x)P with scopeP . We identify processes up to capture-avoiding renaming of bound names. Welet fn(P ) be the set of names free in P .Every typed process has a corresponding untyped process obtained by erasingtype annotations and group creation operators.We confer reduction, P ! Q, andstructural congruence, P � Q, relations on untyped processes corresponding tothe typed reduction and structural congruence relations. We omit the standard



10rules, which are obtained from the rules of the typed calculus by erasing typeannotations and deleting rules that mention the new-group construct.Erasures of type annotations and group restrictions:erase((�G)P ) �= erase(P ) erase((�x:T )P ) �= (�x)erase(P )erase(0) �= 0 erase(P j Q) �= erase(P ) j erase(Q)erase(!P ) �= !erase(P ) erase(xhy1; : : : ; yni) �= xhy1; : : : ; ynierase(x(y1:T1; : : : ; yn:Tn):P ) �= x(y1; : : : ; yn):erase(P )Proposition 3 (Erasure). For all typed processes P and Q, and untyped pro-cesses R, P ! Q implies erase(P )! erase(Q) and erase(P )! R implies thereis a typed process Q such that P ! Q and R � erase(Q).Finally, we de�ne input and output transitions to describe the interactionsbetween an untyped process and an untyped opponent running alongside inparallel. An input transition P x�! (y1; : : : ; yn)Q means that P is ready toreceive an input tuple on the channel x in the variables y1, . . . , yn, and thencontinue as Q. The variables y1, . . . , yn are bound with scope Q. An outputtransition P x�! (�z1; : : : ; zm)hy1; : : : ; yniQ means that P is ready to transmitan output tuple hy1; : : : ; yni on the channel x, and then continue as Q. Theset fz1; : : : ; zmg � fy1; : : : ; yng consists of freshly generated names whose scopeincludes both the tuple hy1; : : : ; yni and the process Q. The names z1, . . . , znare unknown to the opponent beforehand, but are revealed by the interaction.Labelled transitions such as these are most commonly de�ned inductively bya structural operational semantics; for the sake of brevity, the following de�ni-tions are in terms of structural congruence.{ Let P x�! (y1; : : : ; yn)Q if and only if the names y1, . . . , yn are pairwisedistinct, and there are processes P1 and P2 and pairwise distinct namesz1, . . . , zm such that P � (�z1; : : : ; zm)(x(y1; : : : ; yn):P1 j P2) and Q �(�z1; : : : ; zm)(P1 j P2) where x =2 fz1; : : : ; zmg, and fy1; : : : ; yng \ (fz1; : : :,zmg [ fn(P2)) = ?.{ Let P x�! (�z1; : : : ; zm)hy1; : : : ; yniQ if and only if the names z1, . . . , zm arepairwise distinct, and we have P � (�z1; : : : ; zm)(xhy1; : : : ; yni j Q) wherex =2 fz1; : : : ; zmg and fz1; : : : ; zmg � fy1; : : : ; yng.3.2 A Secrecy TheoremThe following de�nition is inspired by Abadi's de�nition of secrecy [2] for the un-typed spi calculus [3]. Abadi attributes the underlying idea to Dolev and Yao [8]:that a name is kept secret from an opponent if after no series of interactions isthe name transmitted to the opponent. (In the presence of encryption, the de�-nition is rather more subtle than this.) An alternative we do not pursue here isto formulate secrecy using testing equivalence [1, 3].



11We model the external opponent simply by the �nite set of names S knownto it. We inductively de�ne a relation (P0; S0) R (P; S) to mean that startingfrom a process P0 and an opponent knowing S0, we may reach a state in whichP0 has evolved into P , and the opponent now knows S.(1) (P0; S0) R (P0; S0)(2) If (P0; S0) R (P; S) and P ! Q then (P0; S0) R (Q;S).(3) If (P0; S0) R (P; S), P x�! (y1; : : : ; yn)Q, x 2 S, and (fz1; : : : ; zng � S) \fn(P0) = ? then (P0; S0) R (Qfy1 z1; : : : ; yn zng; S [ fz1; : : : ; zng).(4) If (P0; S0) R (P; S), P x�! (�z1; : : : ; zm)hy1; : : : ; yniQ and x 2 S andfz1; : : : ; zmg \ (S [ fn(P0)) = ? then (P0; S0) R (Q;S [ fy1; : : : ; yng).Clause (1) says that (P0; S0) is reachable from itself. Clause (2) allows theprocess component to evolve on its own. Clause (3) allows the process to inputthe tuple hz1; : : : ; zni from the opponent, provided the channel x is known tothe opponent. The names fz1; : : : ; zng � S are freshly created by the opponent;the condition (fz1; : : : ; zng � S) \ fn(P0) = ? ensures these fresh names arenot confused with names initially known by P0. Clause (4) allows the processto output the tuple hy1; : : : ; yni to the opponent, who then knows the namesS [ fy1; : : : ; yng, provided the channel x is known to the opponent. The namesfz1; : : : ; zng (included in fy1; : : : ; yng) are freshly created by the process; thecondition fz1; : : : ; zmg \ (S [ fn(P0)) = ? ensures these fresh names are notconfused with names currently known by the opponent or initially known by P0.Next, we give de�nitions of when a name is revealed to an opponent, andformalize the secrecy property of group creation discussed in Section 1.Revealing Names, Preserving their Secrecy:Suppose S is a set of names and P is a process.Then P may reveal x to S if and only if there are P 0 and S0 such that(P; S) R (P 0; S0) and x 2 S0; otherwise, P preserves the secrecy of x from S.Moreover, (�x)P may reveal the restricted name x to S if and only if there isa name y =2 S [ fn(P ) such that Pfx yg may reveal y to S;otherwise (�x)P preserves the secrecy of the restricted name x from S.Theorem 1 (Secrecy). Suppose that E ` (�G)(�x:T )P where G 2 fg(T ).Let S be the names occurring in dom(E). Then the erasure (�x)erase(P ) of(�G)(�x:T )P preserves the secrecy of the restricted name x from S.We sketch a proof in the next section. The group restriction (�G) is essential.A typing E ` (�x:T )P does not in general imply that the erasure (�x)erase(P )preserves the secrecy of the restricted name from a set S. For example, considerthe typing ?; G; x:G[G[ ]] ` (�y:G[ ])xhyi. Then the erasure (�y)xhyi reveals therestricted name to any set S such that x 2 S.



124 Proof of SecrecyThe proof of the secrecy theorem is based on an auxiliary type system thatpartitions channels into untrusted channels, with type Un, and trusted ones,with type Ch [T1; : : : ; Tn], where each Ti is either a trusted or untrusted type.The type system insists that names are bound to variables with the same trustlevel (that is, the same type), and that no trusted name is ever transmitted on anuntrusted channel. Hence an opponent knowing only untrusted channel nameswill never receive any trusted name.Types:T ::= channel typeCh [T1; : : : ; Tn] trusted polyadic channelUn untrusted nameFor any group G, we can translate group-based types into the auxiliary typesystem as follows: any type that does not contain G free becomes Un, while atype H [T1; : : : ; Tn] that contains G free is mapped onto Ch [[[T1]]G; : : : ; [[Tn]]G].This translation is proved to preserve typability. This implies that an opponentknowing only names whose type does not contain G free, will never be able tolearn any name whose type contains G free. This is the key step in proving thesecrecy theorem.Next, we de�ne the three judgments of the auxiliary type system: �rst, E ` �means that E is well-formed; second, E ` x : T means that x:T is in E, andthat E is well-formed; and, third, E ` P means that P is well-formed in theenvironment E.Typing Rules:? ` � E ` � x =2 dom(E)E; x:T ` � E0; x:T;E00 ` �E0; x:T;E00 ` x : TE; x:T ` PE ` (�x)P E ` �E ` 0 E ` P E ` QE ` P j Q E ` PE ` !PE ` x : Ch [T1; : : : ; Tn] E; y1:T1; : : : ; yn:Tn ` PE ` x(y1; : : : ; yn):PE ` x : Ch [T1; : : : ; Tn] E ` y1 : T1 � � � E ` yn : TnE ` xhy1; : : : ; yniE ` x : Un E; y1:Un; : : : ; yn:Un ` PE ` x(y1; : : : ; yn):PE ` x : Un E ` y1 : Un � � � E ` yn : UnE ` xhy1; : : : ; yni



13The auxiliary type system is de�ned on untyped processes. Any untrustedopponent may be type-checked, as follows. This property makes the type systemsuitable for reasoning about processes containing both trusted and untrustedsubprocesses.Lemma 2. For all P , if fn(P ) = fx1; : : : ; xng then ?; x1:Un; : : : ; xn:Un ` P .Structural congruence and reduction preserve typings.Lemma 3. If E ` P and either P � Q or P ! Q then E ` Q.The following fact is the crux of the proof of Theorem 1: an opponent whoknows only untrusted names cannot learn any trusted one.Proposition 4. Suppose that ?; y1:Un; : : : ; yn:Un; x:T ` P where T 6= Un.Then the process P preserves the secrecy of the name x from S = fy1; : : : ; yng.Next, we translate the types and environments of the �-calculus with groupsinto our auxiliary system, and state that erasure preserves typing.Translations of types and environments:[[H [T1; : : : ; Tn]]]G �= �Ch [[[T1]]G; : : : ; [[Tn]]G] if G 2 fg(H [T1; : : : ; Tn])Un otherwise[[?]]G �= ? [[E;H ]]G �= [[E]]G [[E; x:T ]]G �= [[E]]G; x:[[T ]]GLemma 4. If E ` P then [[E]]G ` erase(P ).Finally, we outline the proof of Theorem 1.Lemma 5. If E; x:T;E0 ` P and E ` y : T then E;E0 ` Pfx yg.Lemma 6. Let S be a �nite set of names and P a process. Then P preservesthe secrecy of x from S if and only if for all P 0, S0, (P; S) R (P 0; S0) implies thatx =2 S0. Moreover, (�x)P preserves the secrecy of the restricted name x from Sif and only if for all y =2 fn(P ) [ S, Pfx yg preserves the secrecy of y from S.Proof of Theorem 1 Suppose that E ` (�G)(�x:T )P where G 2 fg(T ).Let S be the names occurring in dom(E). Then the erasure (�x)erase(P ) of(�G)(�x:T )P preserves the secrecy of the restricted name x from S.Proof. Since the name x is bound, we may assume that x =2 S. Consider any namey =2 fn(P ) [ S. By Lemma 6, it is su�cient to show that erase(P )fx yg pre-serves the secrecy of y from S. Since E ` (�G)(�x:T )P must have been derivedusing (Proc GRes) and (Proc Res), we have E;G; x:T ` P , with G =2 dom(E).Hence, [[E]]G = ?; z1:Un; : : : ; zn:Un where S = fz1; : : : ; zng. Lemma 4 impliesthat ?; z1:Un; : : : ; zn:Un; x:[[T ]]G ` erase(P ). Since G 2 fg(T ), [[T ]]G 6= Un.So Proposition 4 implies that erase(P ) preserves the secrecy of x from S. Ifx = y we are done, since in that case erase(P )fx yg = erase(P ). Otherwise,suppose x 6= y. Since y =2 fz1; : : : ; zng we can derive ?; z1:Un, . . . , zn:Un,



14y:[[T ]]G; x:[[T ]]G ` erase(P ) using a weakening lemma, and also derive ?; z1:Un,. . . , zn:Un; y:[[T ]]G ` y : [[T ]]G. By the substitution lemma, Lemma 5, these twojudgments imply ?; z1:Un; : : : ; zn:Un; y:[[T ]]G ` erase(P )fx yg. Hence, Propo-sition 4 implies that erase(P )fx yg preserves the secrecy of the name y fromS = fz1; : : : ; zng. ut5 ConclusionWe proposed a typed �-calculus in which each name belongs to a group, and inwhich groups may be created dynamically by a group creation operator. Typingrules bound the communication of names of dynamically created groups, hencepreventing the accidental or malicious revelation of secrets. We explained theseideas informally, proposed a formalization based on Abadi's notion of namesecrecy, and explained the ideas underlying the proof.The idea of name groups and a group creation operator arose in our recentwork on type systems for regulating mobile computation in the ambient calcu-lus [5]. The new contributions of the present paper are to recast the idea inthe simple setting of the �-calculus and to explain, formalize, and prove thesecrecy properties induced by group creation. Another paper [6] extends thetyped �-calculus of Section 2 with an e�ect system. That paper establishes aformal connection between group creation and the letregion construct of Tofteand Talpin's region-based memory management [15]. That paper generalizes oursubject congruence, subject reduction, and erasure results (Lemma 1, Proposi-tions 1 and 3) to the system of types and e�ects for the �-calculus. We conjecturethat the main secrecy result of this paper, Theorem 1, would hold also for theextended system, but we have not studied the details.The idea of proving a secrecy property for a type system by translationinto a mixed trusted and untrusted type system appears to be new. Our workdevelops the idea of a type system for the �-calculus that mixes trusted anduntrusted data, and the idea that every opponent should be typable in the senseof Lemma 2. These ideas �rst arose in Abadi's type system for the spi calculus [1].In that system, each name belongs to a global security level, such as Public orSecret, but there is no level creation construct akin to group creation.A related paper [4] presents a control 
ow analysis for the �-calculus thatcan also establish secrecy properties of names. There is an intriguing connection,that deserves further study, between the groups of our system, and the channelsand binders of the 
ow analysis. One di�erence between the studies is that the
ow analysis has no counterpart of the group creation operator of this paper.Another is that an algorithm is known for computing 
ow analyses for the �-calculus, but we have not investigated algorithmic aspects of our type system.It would be interesting to consider whether algorithms for Milner's sort systems[9, 16] extend to our calculus.Other related work on the �-calculus includes type systems for guaranteeinglocality properties [13, 14]. These systems can enforce by type-checking that aname cannot be leaked outside a particular locality.
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