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ABSTRACT
Parameterized unit tests extend the current industry practice of us-
ing closed unit tests defined as parameterless methods. Parameter-
ized unit tests separate two concerns: 1) They specify the external
behavior of the involved methods for all test arguments. 2) Test
cases can be re-obtained as traditional closed unit tests by instan-
tiating the parameterized unit tests. Symbolic execution and con-
straint solving can be used to automatically choose a minimal set
of inputs that exercise a parameterized unit test with respect to pos-
sible code paths of the implementation. In addition, parameterized
unit tests can be used as symbolic summaries which allows sym-
bolic execution to scale for arbitrary abstraction levels. We have
developed a prototype tool which computes test cases from para-
meterized unit tests. We report on its first use testing parts of the
.NET base class library.

Categories and Subject Descriptors:D.2.1 [Software Engineer-
ing]: Requirements/Specifications —Methodologies

General Terms: Design, Verification

Keywords: unit testing, algebraic data types, symbolic execution,
automatic test input generation, constraint solving

1. INTRODUCTION
Object-oriented unit tests are written as test classes with test meth-
ods. A test method is a method without parameters. It represents a
test case and typically executes a method of a class-under-test with
fixed arguments and verifies that it returns the expected result.

Unit tests are a key component of software engineering, and the
Extreme Programming discipline [20] for instance leverages them
to permit easy code changes. Being of such importance, many
companies now provide tools, frameworks and services around unit
tests. Tools range from specialized test frameworks, as for example
integrated in Visual Studio Team System [24] (VSUnit), to auto-
matic unit-test generation, e.g. as provided by Parasoft’s JUnit Test
Tool [27]. However these tools don’t provide any guidance for:

• which tests should be written (for internal and for external
behavior),
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• how to come up with a minimal number of test cases and

• what guarantees the test cases provide.

Parameterized unit tests(PUTs) is anewmethodology extending
the current industry practice of closed unit tests (i.e. test methods
without input parameters). Test methods are generalized by allow-
ing parameters. This serves two purposes. First, parameterized test
methods arespecificationsof the behavior of the methods-under-
test: they do not only provide exemplary arguments to the methods-
under-test, but ranges of such arguments. Second, parameterized
unit tests describe a set of traditional unit tests which can be ob-
tained byinstantiatingthe parameterized test methods with given
argument sets. Instantiations should be chosen so that they exercise
different code paths of the methods-under-test.

We instrument parameterized unit tests using symbolic execution
techniques. To this end, we execute a PUT (including the methods-
under-test it calls) symbolically, assigning symbolic variables to its
parameters. Each symbolic execution path results in apath condi-
tion, and finding solutions to that condition results in instantiations
of the parameters of the PUT. If the methods-under-test have only
finitely many paths and if a PUT passes for the chosen instantia-
tions, there is a mathematical proof that the PUT would pass for
all possible instantiations; a result which goes back to [21]. For
dealing with PUTs with an unbounded number of paths, we im-
pose bounds on loops and recursion; even in that case, we can still
obtain an unbiased set of test cases with high code coverage.

PUTs can also be used as summaries of the behavior of the meth-
ods specified in them. During symbolic execution, we can use these
summaries of already tested methods instead of re-exploring them.
This increases the performance of symbolic execution, since when
testing a component using summaries of already tested classes,
fewer paths must be investigated, and thus fewer test cases are gen-
erated while still maintaining the same coverage of the currently
tested component.

Admittedly, writing open, parameterized unit tests is more chal-
lenging than writing closed, traditional unit tests. However, we
believe that the benefit of automatic and comprehensive test case
generation outweighs the additional effort.

In summary, PUTs’contributionsare:

• They allow unit tests to play a greater role as specifications
of program behavior. In fact, PUTs are axiomatic specifica-
tions.

• They enable automatic case analysis, which avoids writing
implementation-specific unit tests.

• Their generated test cases often result in complete path cov-
erage of the implementation, which amounts to a formal proof
of the PUTs’ assertions.



We have developed the prototype tool Unit Meister, which uses
symbolic execution of .NET assemblies in the Exploring Runtime,
XRT[17], to instrument PUTs:

• It allows symbolic execution of object-oriented programs with
symbolic references.

• It can use summaries obtained from PUTs for symbolic rea-
soning to avoid re-execution of summarized methods.

• The automated case analysis scales by using such summaries.

• Evaluations have shown Unit Meister’s ease-of-use and use-
fulness.

We are working on a plan to integrate the methodology of PUTs
into the forthcoming Visual Studio Team System product. So far we
have mainly applied PUTs on single-threaded abstract data types
such as those provided by the .NET Framework base class library.

Section 2 illustrates the advantages of PUTs on some examples.
Section 3 discusses the formal framework and sketches our imple-
mentation. Section 4 evaluates the results achieved so far. Section
5 presents related work and Section 6 provides concluding remarks.

2. OVERVIEW

2.1 Traditional Unit Tests
Using the conventions of NUnit[25, 26] and VSUnit[24], we define
unit tests as test methods contained in test classes. A parameterless
method decorated with a custom attribute like[TestMethod] is a
test method. Usually, each unit test explores a particular aspect of
the behavior of the class-under-test.

Here is a unit test written in C# for VSUnit that adds an element
to a .NETArrayList instance. The test first creates a new array
list, where the parameter to the constructor is the initial capacity,
then adds a new object to the array list, and finally checks that the
addition was correctly performed by verifying that a subsequent
index lookup operation returns the new object. (We omit visibility
modifiers in all code fragments.)

[TestMethod]
void TestAdd() {

ArrayList a = new ArrayList(0);
object o = new object();
a.Add(o);
Assert.IsTrue(a[0] == o);

}

It is important to note that unit tests include a test oracle that
compares observed behavior with expected results. By convention,
the test oracle of a unit test is encoded using assertions. The test
fails if any assertion fails or an exception is thrown. Unit test frame-
works can also deal with expected exceptions, which in VSUnit are
specified by additional custom attributes, see also Section 3.4.

2.2 Parameterized Unit Tests
The unit test above specifies the behavior of the array list by exam-
ple. Strictly speaking, this unit test only says that by adding a new
object to an empty array list, this object becomes the first element
of the list. What about other array lists and other objects?

[TestAxiom]
void TestAdd(ArrayList a, object o) {

Assume.IsTrue(a!=null);
int i = a.Count;
a.Add(o);
Assert.IsTrue(a[i] == o);

}

By adding parameters we can turn a closed unit test into a univer-
sally quantified conditional axiom that must hold for all inputs un-
der specified assumptions. Intuitively, theTestAdd( . . .) method
asserts that for all array listsa and all objectso, the following holds:

∀ArrayList a, object o.
(a 6= null ) → let i = a.Count in a.Add( o) ,̊ a[ i] == o

where ‘̊,’ denotes sequential composition from left to right, i.e.
(f ,̊ g)(x) = g(f(x)). Section 3.4 explains how axiom formulas
are derived from PUTs in more details. See also [5] for an overview
of the theory and practice of algebraic specifications.

2.3 Test Cases
Adding parameters to a unit test improves its expressiveness as a
specification of intended behavior, but we lose concrete test cases.
We can no longer execute this test axiom by itself. We need actual
parameters. But which values must be provided to ensure sufficient
and comprehensive testing? Which values can be chosen at all?

In the ArrayList example, if we study the internal structure
of the .NET Framework implementation, we observe that there are
two cases of interest. One occurs when adding an element to an
array list that already has enough room for the new element (i.e. the
array list’s capacity is greater than the current number of elements
in the array list). The other occurs when the internal capacity of the
array list must be increased before adding the element.

If we assume that library methods invoked by theArrayList
implementation are themselves correctly implemented, we can de-
duce that running exactly two test cases is sufficient to guarantee
thatTestAdd( . . .) succeeds for all array lists and all objects.

[TestMethod]
void TestAddNoOverflow() {

TestAdd(new ArrayList(1), new object());
}

[TestMethod]
void TestAddWithOverflow() {

TestAdd(new ArrayList(0), new object());
}

Splitting axioms and test cases in this way is aseparation of
concerns. First, we describe expected behavior as PUTs. Then we
study the case distinctions made by the code paths of the imple-
mentation to determine which inputs make sense for testing.

2.4 Test Case Generation
We use symbolic execution to automatically and systematically pro-
duce the minimal set of actual parameters needed to execute a finite
number of finite paths. Symbolic execution works as follows: For
each formal parameter a symbolic variable is introduced. When
a program variable is updated to a new value during program ex-
ecution, then this new value is often expressed as an expression
over symbolic variables. For each code path explored by symbolic
execution. apath conditionis built over symbolic variables. For
example, theAdd-method of theArrayList implementation con-
tains anif -statement whose condition isthis. items.Length
== this. size (where the fielditems denotes the array holding
the array list’s elements andsize denotes the number of elements
currently contained in the array list). The symbolic execution con-
joins this condition to the path condition for thethen-path and the
negated condition to the path condition of theelse-path. In this
manner all constraints are collected, which are needed to deduce
what inputs cause a code path to be taken.

Analysis of all paths can’t always be achieved in practice. When
loops and recursion are present, an unbounded number of code



paths may exist. In this case we approximate by analyzing loops
and recursion up to a specified number of unfoldings, similar to the
heuristics used in [9]. Even if the number of paths is finite, solv-
ing the resulting constraint systems is sometimes computationally
infeasible. Our ability to generate inputs based on path analysis
depends upon the abilities of the constraint solver used; in our case
we can use either Zap[28] or Simplify[12].

When a constraint system cannot be solved automatically, the
programmer must supply additional inputs. For example, when
constructing suitableArrayList values, which capacity should be
picked and what elements should the array list contain?

There are two ways in which this information can be provided.
The first is for the user to provide a set of candidate values for the
formal parameters. In our running scenario let us assume that a
user has provided the values

[TestValues(For="TestAdd", Parameter="a")]
ArrayList[] a = {new ArrayList(0),

new ArrayList(1)};

[TestValues(For="TestAdd", Parameter="o")]
object[] o = {new object()};

Now the constraint solver can simply check ifa[0] , a[1] or
o[0] satisfy the constraints. The generated tests are:

TestAdd(a[0], o[0]);
TestAdd(a[1], o[0]);

The second way is to provide an invariant for a class that makes
it possible to construct suitable instances using .NET reflection.
The invariant is a Boolean predicate with the custom attribute[In-
variant] attached to it. For array lists the invariant is

this._items != null && this._size>=0 &&
this._items.Length >= this._size

For theTestAdd() method, this invariant is instantiated with
the symbolic variablea and serves as the initial path condition.
This allows the constraint solver to give example input values for
each symbolic variable encountered on each path. For the path
with the conditiona. items.Length==a. size the solver could
choose the binding:a. items.Length==0 anda. size==0 . Us-
ing .NET reflection the system can now produce an array list that
corresponds exactly toa[0] .

If no solution is found, the tool prints the path condition.

2.5 Reusing Parameterized Unit Tests
While symbolic execution is more general than concrete execution,
it is also slower. The number of possible paths to consider can grow
exponentially with the number of control flow decisions. We need
a way to prune the search space.

Consider the following example of a bag class. A bag is an un-
ordered collection of values, i.e. elements may appear more than
once in a bag. We implement a bag by using a hash table in which
an element and its multiplicity are stored as key-value pairs.

class Bag {
Hashtable h = new Hashtable();

void Add(object o) {
if (h.ContainsKey(o)) h[o] = (int)h[o] + 1;
else h[o] = 1;

}

int Multiplicity(object o) {
if (h.ContainsKey(o)) return (int)h[o];
else return 0;

}
}

A test for our bag might be thatAdd(x) incrementsx ’s multi-
plicity. We specify this as follows:

[TestAxiom]
void AddMultiplicityTest(Bag b, object x) {

Assume.IsTrue(b!=null & x!=null);
int m = b.Multiplicity(x);
b.Add(x);
Assert.IsTrue(m+1 == b.Multiplicity(x));

}

When this unit test is symbolically executed, two cases arise in
the bag implementation: One where the added object is already
contained in the hash table, and one where it is not. However,
executing the hash table implementation induces many more case
distinctions (whether the capacity should be increased, whether a
hash collision must be handled, etc.), and as a result we get dozens
of distinct code paths. On the other hand, if we also have axioms
summarizing the hash table’s operations, we can avoid execution
of the hash table by introducing expressions representing calls to
the hash table and using the hash table’s axioms as rewrite rules
on those expressions. As a result, the hash table’s implementation
specific cases no longer need to be explored. Less time is needed
for the analysis, and only two test cases specific to the actual bag
implementation will be generated.

Again, we use .NET custom attributes to indicate that certain
axioms should be reused. In the following example axioms defined
in the HashtableTests class should be reused during symbolic
execution ofBagTest .

[TestClass, UsingAxioms(typeof(HashtableTests))]
class BagTests {

[TestAxiom]
void AddMultiplicityTest( ... ) { ... }
...

}

For this example, we need two hash table axioms that relate the
constructor,ContainsKey and the indexer. We use the custom
attributeProvidingAxioms to indicate which type is summarized.

[TestClass, ProvidingAxioms(typeof(Hashtable))]
class HashtableTests {

[TestAxiom]
void NothingContainedInitially(object key) {

Assume.IsTrue(key!=null);
Hashtable h = new Hashtable();
Assert.IsTrue(!h.ContainsKey(key));

}

[TestAxiom]
void SetImpliesContainsAndGet(

Hashtable h, object key, object val) {
Assume.IsTrue(h!=null && key!=null);
h[key] = val;
Assert.IsTrue(h.ContainsKey(key));
Assert.IsTrue(h[key] == val);

}
...

}

Later we will see that we actually need two more axioms which
specify that the externally observable state of the hash table is not
changed by any of its observers. We defer the introduction of these
axioms to Section 3.4.

Using universally quantified axioms in the context of symbolic
exploration solves another problem, too. Often parts of a program
might not yet be implemented, and sometimes the implementation
cannot be interpreted by the symbolic execution engine. Since we



cannot explore code that does not exist or that cannot be interpreted,
we need a different description of its behavior. And the best way to
describe it is via PUTs, i.e. as axioms! In fact, we already used im-
plicit axioms during the generation of test cases for theArrayList
class, which uses arrays, and the arrays of .NET are implemented
outside of the .NET Framework.

3. FRAMEWORK
We next formalize the notions introduced informally in the previous
section. First we describe our representation of symbolic states,
constraints and their evolution. Next we describe how to derive
and consume axioms from PUTs.

We also sketch our current implementation. It rests on two com-
ponents: a backtrackable interpreter for .NET’s intermediate in-
struction language (CIL) and a theorem prover, either Simplify[12]
or Zap[28]. The interpreter operates on register-based instructions
which are directly derived from CIL. The interpreter is optimized
to deal efficiently with concrete and symbolic data representations.
The theorem provers are used for reasoning about the feasibility of
constraints and aid in finding concrete solutions.

3.1 Symbolic State
Symbolic states are like concrete states on which a conventional
program execution operates, except that symbolic states can con-
tain expressions with symbolic variables.

Symbolic expressions

Let ObjectIdbe an infinite set of potential object identifiers,VarId
a set of symbolic variable identifiers,TypeIda set of type identi-
fiers, andFuncIda set of function symbols, such that these sets are
mutually disjoint. The set of untypedsymbolic expressions Eis de-
scribed by the following grammar where the meta-variableso, v, t
andf range overObjectId, VarId, TypeIdandFuncId, respectively.

E = o object ids
| v variables
| t types
| f(Ē) function application
| ∀v̄.E universal quantification

We use vector notation̄x to denote lists of itemsx1, . . . , xn.
An expression isgroundif it does not contain symbolic variables.

Function symbols

We distinguish two classes of function symbols:

• Predefined function symbolshave a fixed interpretation in the
theorem provers used. For instance,adddenotes integer ad-
dition, andanddenotes logical conjunction;equals(x, y) de-
notes whetherx and y represent the same value for value
types, or the same object identity for reference types, and
subtype(x, y) establishes thatx is a subtype ofy. The liter-
alsnull , void , 0, 1, 2 are nullary functions.

Also supported are storage function symbols operating on
maps. A map is an extensionally defined finite partial func-
tion. emptydenotes the empty map;update(m, x, y) de-
notes the update of mapm at indexx to the new valuey;
select(m, x) selects the value of mapm at indexx.

Some of these functions are partial. Their application will
always be guarded by constraints imposed on the state, as
will be described in Section 3.2.

In the following, we often writex = y for equals(x, y), and
x ∧ y for and(x, y). We omit() for function applications on
empty tuples.

• Uninterpreted function symbolsrepresent properties of ob-
jects and method calls appearing in axioms.

For example,type(x) denotes the runtime type of objectx,
and len(x) the length of arrayx. fieldf (x) denotes the ad-
dress of fieldf of object x, elem(x, y) the address of the
array element at indexy of arrayx. Expressions denoting
addresses of object fields and array elements are used as in-
dices in applications of storage functions.

For each methodm of the program withn parameters (in-
cluding thethis parameter for instance methods) we intro-
duce up to three uninterpreted function symbols which are
used to summarize different dynamic aspects ofm: ms, mx,
andmr. Each of these functions takesn + 1 parameters,
where the additional first parameter represents the state of the
heap just before an invocation tom. Let h be an expression
denoting the state of the heap in whichm(x̄) is called. Then
ms(h, x̄) denotes the resulting state of the heap,mr(h, x̄)
denotes the return value of the call, if any, andmx(h, x̄) rep-
resents the type of an exception thatm throws, orvoid if no
exception can be thrown.

Heaps

We distinguish two kinds of heaps.

• The extensional heapis represented by nested applications
of the updatefunction, indexed by field and array element
addresses only.emptydenotes the initial extensional heap.
For example, the execution of the code fragment

p.f=1; q.g=2;

turns a given extensional heapHe into the following exten-
sional heapH ′

e, assuming the locationsp, q hold the expres-
sionst, u respectively, andt andu cannot evaluate tonull .

H ′
e = update(update(He, fieldf (t), 1), fieldg(u), 2)

If an extensional heap expression contains symbolic vari-
ables, then the expression actually describes many concrete
heaps, possibly isomorphic.

• The intensional heapis described by a history of method
invocations: initial denotes the intensional heap where no
method has been called yet.ms(Hi, x̄) represents the se-
quence of method calls encoded in the intensional heap ex-
pressionHi, followed by a call tom(x̄). Consider for exam-
ple the execution of the following code fragment.

ArrayList a = new ArrayList(); a.Add(o);

This code fragment turns a given intensional heapHi into
H ′

i, wherea is a fresh object identifier, andt the expression
held in locationo.

H ′
i = Adds(ArrayList s(Hi, a), a, t)

Note that constructors do not create new objects, but are seen
as methods that are called on fresh object identifiers.

Usually, we partition the types and their methods of the program
to work on either heap. We discuss finer partitionings in Section 5.

Symbolic state

A symbolic stateis a 5-tupleS = (O, A, He, Hi, X), where the
current set of objectsO is a subset ofObjectId, the program stack
A is a stack of activation records,He andHi are expressions denot-
ing the extensional heap and the intensional heap respectively, and



finally, X, an object expression, denotes the current exception. We
associate with each activation record a method, a program counter
pointing to the current instruction to execute in the method, as well
as a store for the formal parameters and local variables. See [6] for
a typical formalization of activation records. We say a computa-
tion in stateS is normal ifX is null , a computation is abrupted
if X denotes an exception object. We writeO(S), He(S), etc. for
projections onS. We writeS+1 for the state which is likeS ex-
cept that the program counter has been incremented. The set of all
symbolic states is calledState.

3.2 Constraints
A constrainton a symbolic state is a pairC = (BG, PC), where
BG is the static background, which only depends on the program
declarations, andPC is the dynamic path condition, which is built
up during symbolic evaluation.

The background conjoinssubtype predicates, encoding the type
hierarchy, and axioms, whose generation is described in Section
3.4. Assume the whole program consists only of the class definition
class C {}, then the background would just consist of the single
predicatesubtype(C, System.Object ).

We writeBG(C) andPC(C) for projections onC, and(BG,
PC) ∧ c for (BG, PC ∧ c). The set of all constraints is called
Constraints.

A constrained state is a pair(S, C).
Let D be a non-empty set,I0 an interpretation of(S, C) that

maps every n-ary function symbol appearing inS or C to an n-ary
function overDn → D, andσ denote an assignment of the sym-
bolic variables appearing in(S, C) to elements inD. With I we
denote the usual meaning function which maps symbolic expres-
sions with symbolic variables to values inD [22].

We call an interpretationI of symbolic expressions appearing in
(S, C) to ground expressions asolutionof (S, C) if I is a model
for BG =⇒ PC. If a solution for(S, C) exists, we say that
(S, C) is feasible.

3.3 Symbolic Evaluation
We next discuss the evolution of constrained states.

One-step transition

The one-step relation

→⊆ (State× Constraints)× (State× Constraints)

describes the effect of the current instruction from a given con-
strained state(S, C). Most instructions are handled in the standard
way, e.g. a method call instruction pushes a new activation record
onto the program stack. The most interesting cases are the follow-
ing ones. Suppose the current instruction is a

• new object creationof typeT . Let o ∈ ObjectId− O(S) be
a fresh object identifier. Then(S, C) → (S′, C ∧ type(o) =
T ) whereS′ is like S+1 except that the extensional heap
h = He(S) is replaced with

update(· · · update(h, fieldf1
(o), v1) · · · , fieldfn

(o), vn)

wheref1, . . . , fn are the fields ofT andv1, . . . , vn their de-
fault values, e.g.0 for integers andnull for references. The
current instruction inS′ must be a call to a constructor ono.

• conditional branchwith a conditionc and labell. If (S, C ∧
c) is feasible, then(S, C) → (S′, C ∧ c) where the pro-
gram counter inS′ is set tol. If (S, C ∧¬c) is feasible, then
(S, C) → (S+1, C ∧ ¬c). Note that these cases are not ex-
clusive and thus symbolic execution explores both branches.

• member accesswith target expressiont and result locationr.
If (S, C ∧ t 6= null ) is feasible, then the normal behavior
is (S, C) → (S′, C ∧ t 6= null ) whereS′ is like S+1 ex-
cept that the locationr holds the expressionselect(He(S),
fieldf (t)). But if (S, C ∧ t = null ) is feasible as well, then
there is also the exceptional transition(S, C) → (S′′, C ∧
type(e) = NullReferenceException ∧ t = null ) where
S′′ is like S except that the current exception references a
new exception objecte and the program counter is advanced
to the next exception handler.

• Assume.IsTrue with conditionc. If (S, C ∧ c) is feasible,
then(S, C) → (S+1, C ∧ c). Otherwise, there is no succes-
sor of(S, C).

• Assert.IsTrue with condition c. This instruction is se-
mantically equivalent to the following code fragment:

if (! c) throw new AssertFailedException();

Exploration

On top of the→ relation, several exploration strategies like depth-
first search and breadth-first search can be built. Following [9], we
use a bounded depth-first search by default, which unfolds loops
and recursion only a fixed number of times, using a standard set of
heuristics to explore only some of the paths.

3.4 Axioms
There are two views on a PUT: It can be seen as a generator of
test cases for an implementation, and as a summary, an axiom, of
external behavior.

In this subsection we describe how we use uninterpreted function
symbols to represent summaries, and how we generate universally
quantified formulas from a PUT. These formulas can then be used
by the theorem prover as rewrite rules to reason about externally
observable method behavior.

Assume that we want to summarize the set of methodsM of
classD. We can do so by decorating a test classTD, which con-
tains a set of test axioms over the methodsM of classD, with
the attribute[ProvidingAxioms(typeof( D))] . Then other test
classes will reuse these axioms when they are decorated with the
attribute[UsingAxioms(typeof( TD))] .

For method calls toM we refine the behavior of→ relation.
Suppose the current instruction in(S, C) is a

• call to a methodm ∈ M , with actual arguments̄x. Let
H ′

i = ms(Hi(S), x̄). If (S, C ∧mx(Hi(S), x̄) = void ) is
feasible, then there is a normal successor with incremented
program counter and intensional heapH ′

i. The return value
of a normal execution ofm (if any) is given by the expres-
sionmr(Hi(S), x̄). If (S, C ∧ mx(Hi(S), x̄) 6= void ) is
feasible, then there is an abrupted successor with intensional
heapH ′

i which throws an exception of typemx(Hi(S), x̄)
and advances to the next exception handler accordingly.

Axioms for normal behavior

We generate axiom formulas for normal behavior by exploring a
test axiom method like we do for test case generation, but instead
of verifying that assertions hold, we turn them into axiom formu-
las. More formally: We instantiate the parameters of the test ax-
iom method with a vector̄x of symbolic variables. We explore
the method with a modified one-step relation→′, starting with
a variable intensional heaph. →′ is like → except that a call



Assert.IsTrue( c) in a constrained state(S, C) is treated like
Assume.IsTrue( c) and in addition a new axiom formula

∀h, x̄.PC(C) → c

is generated and conjoined with the backgroundBG(C) for further
explorations. Note that both the path conditionPC(C) and the
assertionc might refer to the variablesh andx̄.

Let’s revisit theTestAdd axiom from Section 2.2 for an illustra-
tion of the axiom formula generation process.

[TestAxiom]
void TestAdd(ArrayList a, object o) {

Assume.IsTrue(a!=null); // 1
int i = a.Count; // 2
a.Add(o); // 3
Assert.IsTrue(a[i] == o); // 4

}

We explore this method with the symbolic variablesa, o as argu-
ments, starting with variable intensional heaph. Figure 1 describes
the resulting constraints after each statement. We use “· · · ” to de-
note that an expression didn’t change from stepi to i + 1.

Exploring TestAdd generates the following universally quanti-
fied formula:

∀h, a, o. (a = null ∨ subtype(type(a), ArrayList))
∧ a 6= null →

getItemr(
Adds(getCounts(h, a), a, o),
a,
getCountr(h, a)) = o

Axioms for exceptional behavior

In NUnit and VSUnit, a closed test method must not throw an ex-
ception unless it is decorated with a custom attribute of the form
[ExpectedException(typeof( T ))] . In this case an exception
compatible with typeT must be thrown by the test method.

We support this specification style for PUTs, too. However we
require that if a test method has an attribute[ExpectedExcep-
tion( . . .)] , then the expected exception must be thrown by the
last call to a method inM . Further, we do not allow the presence
of exception handling code in PUTs which provide axioms.

To generate axiom formulas reflecting the presence or absence
of exceptions, we adapt the existing exploration. Assume that a
test method with attribute[ExpectedException(typeof( T ))]
is being explored starting with a variable intensional heaph and
symbolic variables as argumentsx̄. When we encounter the last
call to a methodm ∈ M with actual arguments̄y in a constrained
state(S, C), then we generate the axiom formula

∀h, x̄.PC(C) → subtype(mx(Hi(S), ȳ), T )

which states that an exception whose type is compatible with type
T will be thrown under the path condition. For every other call to
a methodm ∈ M with arguments̄y in a constrained state(S, C),
we generate the axiom formula

∀h, x̄.PC(C) → mx(Hi(S), ȳ) = void

which states thatm(ȳ) doesn’t throw an exception when called un-
der the path condition.

Consider the following example.

[TestAxiom, ExpectedException(
typeof(ArgumentNullException))]

void TestAdd(Hashtable ht, object o) {
Assume.IsTrue(ht!=null);
ht.Add(null, o);

}

This axiom states that theAdd method of a hash table must not
be applied to anull key, and that an appropriate exception will be
thrown otherwise. The corresponding axiom formula is

∀h, ht, o. (ht = null ∨ subtype(type(ht), Hashtable))
∧ ht 6= null →

subtype(Addx(h, ht, null , o),
ArgumentNullException )

Axioms for behavioral purity

Existing unit test frameworks like NUnit and VSUnit do not sup-
port notations to specify that a method invocation is behaviorally
pure, by which we mean that it does not affect the externally ob-
servable behavior of any later method invocation (see also [3] for
static techniques to check behavioral purity).

We discovered the necessity for these kinds of PUTs in the con-
text of axiom reuse. Often, specifications would be incomplete
without assertions about behavioral purity.

We support the specification of behaviorally purity by means of a
special custom attribute[ExpectedBehavioralPurity] , which
can be attached to test methods.

To generate behavioral purity axiom formulas, we again adapt
the existing exploration. In more detail: Assume that a test method
with attribute[ExpectedBehavioralPurity] is being explored
starting with variable intensional heaph and symbolic variables as
arguments̄x. When an execution path through the test method ends
in a constrained state(S, C), we generate the axiom formula

∀h, x̄.PC(C) → Hi(S) = h

which states that, for all initial intensional heaps and test method
arguments, the final intensional heapHi(S) can be equated with
the initial intensional heaph under the path condition.

In Section 2.5, we introduced axioms for the hash table. These
axioms should have included the following two purity axioms.

[TestClass, ProvidingAxioms(typeof(Hashtable))]
class HashtableTests {

...
[TestAxiom, ExpectedBehavioralPurity]
void ContainsIsPure(Hashtable h, object key) {

Assume.IsTrue(h!=null && key!=null);
bool result = h.ContainsKey(key);

}

[TestAxiom, ExpectedBehavioralPurity]
void GetIsPure(Hashtable h, object key) {

Assume.IsTrue(h!=null && key!=null);
object result = h[key];

}
}

Together, these four hash table axioms are sufficient to explore
theAddMultiplicityTest of Section 2.5withoutresorting to the
hash table implementation.

Our approach allows us to specify behavioral purity not only for
single method invocations, but also for the combined effect of a se-
quence of method invocations. The following example states that,
if a key is not in a hash table, then adding and removing this key
will leave the hash table in the same state as it was initially.

[TestAxiom, ExpectedBehavioralPurity]
void AddRemoveIsPure(

Hashtable h, object key, object val) {
Assume.IsTrue(h!=null && key!=null);
Assume.IsTrue(!h.ContainsKey(key));
h.Add(key, val);
h.Remove(key);

}



Path conditions Intensional heap Local binding
0 (a = null h0 = h

∨type(a) = ArrayList),
1 . . . ∧ a 6= null . . .
2 . . . h1 = getCounts(h0, a) i = getCountr(h0, a)
3 . . . h2 = Adds(h1, a, o) . . .
4 . . . ∧ getItemr(h2, a, i) = o . . .

Figure 1: Evolution of constraints for the axiom formula generation of theTestAdd method

Our implementation currently does not generate test cases for
such purity axioms. See Section 5 for further discussion of how to
test behavioral equivalence.

3.5 Test case generation

Each transition sequence(S0, C0) → (S1, C1) → · · · represents
a unique execution path of the program. In this subsection, we only
consider finite execution paths. We say that a path isterminatedif
it ends in a state with an empty stack of activation records.

A test case is now simply an assignment that is (together with
a fixed interpretation) a solution of the last constrained state of a
terminating path. By choosing one assignment per terminated exe-
cution path, we get the minimal number of test cases that cover all
explored execution paths.

We say that a test case is successful if either the last state of
the test case’s path has no current exception and no[Expected-
Exception( . . .)] attribute is given, or the last state has a cur-
rent exception whose type is compatible with typeT of a given
[ExpectedException( T )] attribute. Otherwise the test case
failed, and the current exception in the last state indicates the kind
of failure. It could be an assertion failure or another implicit failure.

In general, we leave it to the constraint solver to decide feasibil-
ity of constraints. If a formula is not satisfiable, the theorem prover
Simplify[12] or Zap[28] might produce a counter example. In this
case the verdict is clearly that the path represented by the formula
is infeasible. However sometimes, our theorem provers can neither
prove nor disprove the formula. In this case the verdict is incon-
clusive and we continue the exploration as if the path was feasible.
Later, when we try to obtain concrete solutions, it might turn out
that no solution exists.

But how do we get concrete assignments? For certain formulas,
Zap supports model generation, i.e. the generation of assignments
that fulfill the formulas. With Simplify as our constraint solver we
have to provide additional domain information, similar to Korat’s
finitization [7]. We then use linear and binary search techniques
to narrow down the space of potential solutions to a particular as-
signment. For instance, for symbolic variables with reference types
we enumerate through the available object identifiers and thenull
value to find solutions.

Both theorem provers cannot reason about modulo and division.
In order to efficiently reason about these operations, as required
e.g. to explore the hash table code, we transform modulo and di-
vision by a constant into equivalent disjunctions. For example, the
expression(i/10) with the constrainti ∈ {0, . . . , 29} in the path
condition is replaced by the expression(i − d), whered is a new
symbolic variable. The constraintd ∈ {0, 10, 20} and the follow-
ing constraint are added to the path condition.

(0 ≤ i < 10 ∧ d = 0)
∨ (10 ≤ i < 20 ∧ d = 10)
∨ (20 ≤ i < 30 ∧ d = 20)

If division and modulo operations are used, a finitization, here a
range, must be given for the free variables involved.

4. EVALUATION
We wrote PUTs for several algorithms and collection types and
generated test cases:

• Quicksort is a recursive algorithm sorting an integer array.
We tested this algorithm with arrays of size 4, 5, and 6.

• Another function classifies a triangle, given by the lengths of
its three sides, into one of the categories equilateral, isosce-
les, scalene, and invalid.

• The ArrayList , its enumerator, and theHashtable data
type were taken from the .NET Framework Version 1.1, with
minor modifications to allow symbolic execution within the
capabilities of the theorem provers we were using. In par-
ticular, the hash table was using bit operations to manipulate
the highest bit of hash values to encode collisions. We in-
troduced a separate boolean flag for this purpose. The array
list was tested with inputs of sizes up to 10. The enumerator
was tested for up to 4 elements, and the hash table for up to
2 contained elements.

• We implemented theBag data type on top ofHashtable as
outlined in this paper. We tested its axioms without reusing
hash table axioms (“deep”), and with reusing (“shallow”).

• TheLinkedList andRedBlackTree data types were taken
from an early version of the collection library of the forth-
coming Spec# programming system[2], in which they are
private classes used for the implementation of theMap data
type. The assertions for the red-black tree operations man-
date that the red-black tree invariant is maintained. Linked
list operations were tested up to a depth of 10, red-black tree
operations with up to 8 involved nodes, which include nodes
created during the operations.

Figure 2 shows the results for algorithms, and Figure 3 for the
data type operations.

We give the number of operations we tested, the number of PUTs
we wrote, separating normal from exceptional behavior tests for
data type operations. We give the number of concrete test cases
that were automatically generated from the PUTs. We achieved
100% coverage of the reachable branches of the tested operations
in every case. Finally, we give the time it took to generate all cases
on a Pentium 4, 3.2 GHz. Memory consumption was not a concern
since we performed a bounded depth-first search.

We wrote PUTs ranging from simple robustness tests, asserting
only that no exception is thrown, to PUTs that relate the inputs
and outputs of a method call sequence by assertions. The PUTs
presented below can be seen as representative of all written PUTs.



Algorithm Input size PUTs # Cases Time

Quicksort int[4] 2 24 0.3s
Quicksort int[5] 2 120 1.2s
Quicksort int[6] 2 720 8.8s
Triangle 3 sides 4 9 0.2s

Figure 2: Evaluation Results - Algorithms

Normal Except.
Datatype Operations Input size PUTs PUTs # Cases Time

ArrayList 10 3 8 4 34 3.6s
Enumerator 4 4 4 6 67 9.8s

Hashtable 9 2 6 5 30 29.9s
Bag (deep) 3 any 3 3 20 37.2s
Bag (shallow) 3 any 3 3 9 2.3s
LinkedList 3 10 3 0 64 3.6s
RedBlackTree 3 8 nodes 3 0 457 427s

Figure 3: Evaluation Results - Traditional data structures

Using our prototype tool Unit Meister, we found three violations
of the PUTs which we had written:

• For theCapacity property of theArrayList , the MSDN
documentation for .NET Framework Version 1.1 states:

“. . . If Capacity is explicitly set to zero, the com-
mon language runtime sets it to the default capac-
ity instead. The default capacity is 16.”

We wrote the following PUT:

[TestAxiom]
void SetCapacityTest(ArrayList a, int i) {

Assume.IsTrue(a!=null && i>=a.Count);
a.Capacity = i;
if (i==0) Assert.IsTrue(a.Capacity==16);
else Assert.IsTrue(a.Capacity==i);

}

The assertiona.Capacity==16 fails when initially i==0 ,
a. size==0 , anda. items.Length==0 . In this case the
capacity is not set to the default capacity, but left unchanged.
The documentation in Version 2.0 no longer mentions this
special case.

• We found a bug in the enumerator ofArrayList with the
following PUT describing the normal iteration behavior:1

[TestAxiom]
void IterateTest(ArrayList a) {

Assume.IsTrue(a != null);
IEnumerator e = a.GetEnumerator();
for (int i = 0; i < a.Count; i++) {

Assert.IsTrue(e.MoveNext() &&
e.Current == a[i]);

}
Assert.IsTrue(!e.MoveNext());

}

Symbolic execution reveals that an exception will be thrown
by theCurrent property getter if, beside other constraints,

1In fact, this axiom must be observed by every implementer of the
IList interface.

a. items[0]==a . It turns out that in the .NET Framework
Version 1.1, the array list enumerator has a fieldcurrent-
Element , which holds the array list object itself as a magic
value in the special states where no current element is avail-
able, i.e. before the first call toMoveNext , and afterMove-
Next has returnedfalse . The Current property getter
throws an exception in these states. But since it is possible to
add the array list object to itself, theCurrent property get-
ter will throw an exception when the enumeration reaches a
contained array list object. The forthcoming Version 2.0 no
longer has this erroneous behavior.

• To test the staticRemove method of theLinkedList class,
we started by writing a robustness test:

[TestAxiom]
void RemoveTest(LinkedList l, object o) {

LinkedList res = LinkedList.Remove(l, o);
}

Symbolic execution finds that theRemove method throws a
NullReferenceException because it attempts to access
n.tail.tail whenn.tail==null , wheren ranges over
all (non-null) linked lists which do not containo.

5. RELATED AND FUTURE WORK
The automatic generation of tests has recently received a lot of at-
tention. Here we only try to cover those strands of research that use
symbolic evaluation for test case generation and which has influ-
enced our work on parameterized unit testing.

Most work in the formal methods community concentrated on
using models to generate black box tests for an implementation-
under-test (IUT). Models can be property oriented, i.e. described by
pre-/post conditions or functional programs, stateful i.e. described
by some form of state machines, or intensional, i.e. described by
axioms. In any case the goal of model-based test case generation is
to derive test cases from the model with a certain model coverage.

If the models are property oriented the models are typically ana-
lyzed symbolically to derive disjunctive normal forms. If the mod-
els contain recursion, then some kind of regularity or uniformity
hypothesis is used that limits the number of unfoldings used to stop
the test case generation process. A solution for the resulting formu-
las is then the test input for the IUT. This work goes back to [13],



which proposed it for testing implementations described by VDM
programs. It was recently reworked by [8], which uses Isabelle to
formalize the test case generation process. In any case only one
function at a time is tested.

Some recent frameworks also support symbolic generation of
non-isomorphic complex object graphs, most notably TestEra[23]
and Java PathFinder[29]. TestEra generates inputs from constraints
given in Alloy, a first-order declarative language based on relations.
The TestEra approach is still black-box testing, since the tests are
not generated on the basis of the methods of the implementation.
In the spirit of Korat[7], Java PathFinder constructs input object
graphs lazily, observing a data structure invariant which must be
written in Java in a special way to deal with partially initialized in-
put. Only primitive field values can be symbolic, whereas object
references are always concrete.

In parameterized unit testing we also use symbolic computation
to derive test inputs, but we do not split conditions into their dis-
junctive normal forms, instead we simply use the path conditions as
they are and we find covering inputs for the implementation meth-
ods and not the model. By working on the level of the implemen-
tation we find all (corner) cases. Further, if in our framework the
user provides a data structure invariant as required for TestEra or
Java PathFinder, then we can also use them to manufacture objects.
If no or only a weak data invariant is given, we can still use it to
bound the search space. In this case a set of representative objects
must be given.

The purpose of test case generation from state based or prop-
erty oriented formalisms is to generate sequences of method calls.
Given a start and a final state, the BZ-TT tool uses constraint solv-
ing to derive start and final state covering method sequences from
B specifications [1]. Closer in spirit to our work is the work done
in testing from algebraic specifications. This work was started by
Gaudel et al. [4]. They use axioms in various ways: to describe
the test purpose; to obtain concrete data, which is necessary for the
instantiations of the axioms; and to derive new theorems, which
when tested should uncover errors in hidden state, i.e. state that is
not represented by the model. For deriving those theorems they
introduced regularity assumptions. One of the complications of
black-box testing is to detect whether two objects on the level of
the IUT are observationally equivalent (as specified by the axioms).
ASTOOT tests equality of two objects of the IUT by calling a se-
quence of observer functions on both and comparing the respective
results [14].

In parameterized unit testing we are not concerned with generat-
ing test sequences. Instead we just check whether a given property
holds for the IUT (i.e. is a theorem of the implementation).

Test sequences are meanwhile also generated using symbolic
evaluation of the IUT. To minimize the number of different method
sequences, Symstra[30] uses heap isomorphism and state subsump-
tion. We want to add both techniques to our framework too.

Another test goal is to test for robustness of individual methods.
Usually this is done by random input data generation [10]. Recently
[11] combined random input generation with constraint solving to
test the robustness of individual methods, where ESC/Java [15] re-
ports give constraint systems indicating necessary conditions for
potential errors. These reports are often false positives, i.e. the con-
straints are unsatisfiable. DART[16] also aims at testing methods of
a program automatically for robustness, using a variation of sym-
bolic execution where the program is explored exhaustively as long
as the arising path conditions are in the realm of the used constraint
solver; in all other cases, DART falls back on random input gener-
ation. The advantage is that no false-positives are generated, but in
general no exhaustive testing within certain structural bounds can

be achieved. In our framework, we test robustness all the time; we
do however need parameter domain annotations to generate inputs
and to avoid false-positives.

Another interesting strand is Henkel [18]’s recent work on syn-
thesizing algebraic axioms from a given implementation. In fact,
our algebraic representation of methods and of their effects follows
[18]. We have extended it to not only capture normal but also ex-
ceptional behavior. Heaps in [18] are very restricted. Essentially,
he uses one intensional heap per object and thus cannot describe
inter-object relationships or fields updates. For synthesizing alge-
braic axioms, he exercises the IUT systematically while observing
the relationship between the results of the individual method calls;
next he generalizes the observations. Their technique works well
for encapsulated abstract data types; however it does not work for
synthesizing equations for designs that involve peer to peer rela-
tions like collections and their enumerators (as exemplified in the
.NET library) or the subject-observer pattern. Despite these lim-
itations, we think that this work fits well into our framework and
thus we intend to adopt and extend it. If successful, it could be
of tremendous help in documenting and summarizing existing li-
braries, such as the .NET Framework base class library.

But one should note, that there are also problems with the chosen
framework of algebraic data types: for instance we model the inten-
sional heap as the collection of all summarized objects. We saw that
behavioral purity of methods or method sequence can adequately
be expressed as an axiom, but it is an open question how the inde-
pendence of objects, or clusters of objects, or methods over them,
can elegantly be expressed in this framework. We are currently
experimenting how best to define clusters by grouping together en-
tangled types which share some state, for example theArrayList
and its enumerator class.

A related problem arises when an axiom describing a property
of an ADT depends on properties of objects-under-test, for which
summaries are not yet available. Consider for example the PUT
SetImpliesContainsAndGet in Section 2.2. Although correct,
the axiom literally generated from this PUT relates the indexer and
the ContainsKey method only for a common objectkey , i.e. for
keys that are reference-equal. But we want the axiom to apply for
two arbitrary objects as long as they are related by a user-provided
equality relation; in other words, the axiom itself is parameterized
over the particular equality relation. We will address this problem
in future work.

Symbolic execution in an object-oriented framework requires an
adequate treatment of subtyping. In general, if an operation like a
virtual-method call depends on an object’s runtime type, the oper-
ation’s execution gives rise to a non-deterministic choice over pos-
sible types and matching methods. This poses no problem if we
have a closed program. Otherwise, we do not only have to gener-
ate input objects of known types, but we have to manufacture new
subtypes which enable the exploration of all feasible paths; these
manufactured types serve the same purpose as mock types in unit
testing. This is another area we want to investigate.

Using the theory of algebraic data types opens avenues for ex-
ploring other interesting questions in testing research. One of the
open questions is for instance: when do we have enough test cases
— or stated differently, which test cases are missing? The typical
answer is that it depends on the structural coverage of the IUT. We,
however, can even give a semantic answer. A parameterized test
method, i.e. axiom, is missing if observer methods (i.e. expres-
sions that return values) cannot be reduced to independent terms
(i.e., terms that don’t reference the ADT-under-test). In the the-
ory of algebraic data types this is known as testing for sufficient
completeness. Our framework allows the reporting of irreducible



terms, so that the user may provide the missing specification [19].
However we do not have yet any experience with this feature.

6. CONCLUSION
We presented the concept of parameterized unit tests, a generaliza-
tion of established closed unit tests. Parameterization allows the
separation of two concerns: The specification of the behavior of
the system, and the test cases to cover a particular implementa-
tion. Symbolic execution and constraint solving allow the auto-
matic generation of the test cases in many cases.

We have shown how parameterized unit tests can be turned into
axioms, which summarize three different aspects of the methods’
behavior: state change, normal return value, and exceptional return.
The axioms can be reused during symbolic execution to abstract
from the implementation details of the summarized methods.

We have demonstrated the usefulness of our approach by finding
bugs in the .NET Framework Library from small, simple parame-
terized unit tests.
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