
STATISTICAL SPOKEN LANGUAGE UNDERSTANDING: FROM GENERATIVE MODEL
TO CONDITIONAL MODEL

Ye-Yi Wang1, John Lee2 , Milind Mahajan1 and Alex Acero1

1Speech Technology Group, Microsoft Research

2Computer Science and Artificial Intelligence Laboratory, MIT

ABSTRACT

Spoken Language Understanding (SLU) addresses the problem
of extracting semantic meaning conveyed in a user’s utterance.
Traditionally the problem is solved with a knowledge-based
approach. In the past decade many data-driven statistical models
have been proposed, all of them are in the generative framework.
In our previous study, we have introduced a HMM/CFG composite
model. It is a generative model that integrates knowledge-based
approach in a statistical learning framework. We have investigated
similar integration of prior knowledge and statistical learning in
the framework of conditional models recently. This extended
summary describes our experiences and presents some preliminary
results, which shows a 17% slot error rate reduction over the
generative model.

1. INTRODUCTION
Spoken Language Understanding (SLU) addresses the problem

of extracting semantic meaning conveyed in a user’s utterance.
Traditionally the problem is solved with a knowledge-based
approach. In the past decade many data-driven statistical models
have been proposed for the problem. An introduction to these
models can be found in [1]. All of the statistical leaning
approaches exploit generative models for SLU. Data sparseness is
one of the major problems associated with such approaches. In our
previous study, we have proposed a HMM/CFG composite model,
another generative model that integrates knowledge-based
approach in a statistical learning framework. The inclusion of prior
knowledge in the model compensates for the dearth of data for
model training. The HMM/CFG composite model achieves the
understanding accuracy at the same level as the best performing
semantic parsing system based on a manually developed grammar
in ATIS evaluation [2]. We have recently exploited conditional
models for further improving the understanding accuracy. We have
tried direct porting of the HMM/CFG composite model to Hidden
Conditional Random Fields (HCRFs) [3]. We have failed to obtain
any improvement mainly due to the local optimality of the hidden
model and vast parameter space. We have then simplified the
original model structure and remove the hidden valuables in the
HCRF. With the introduction of important non-homogeneous
features to the Conditional Random Field (CRF) [4], we have
improved the slot insertion-deletion-substitution error rate by 17%.
In this extended summary, we will first introduce the HMM/CFG
generative model, then discuss the problem of directly porting the
model to a HCRF, and finally introduce the CRF and the features
we used to obtain the best SLU result on ATIS test data.

2. THE GENERATIVE MODEL
The HMM/CFG composite model [1] adopts a pattern

recognition approach to SLU. Given a word sequence W , a SLU
component needs to find the semantic representation of the
meaning M that has the maximum a posteriori probability

()Pr |M W :

 () () ()ˆ arg max Pr | arg max Pr | Pr
M M

M M W W M M= = ⋅

The composite model integrates domain knowledge by setting the
topology of the prior model, ()Pr M , according to the domain
semantics; and by using PCFG rules as part of the lexicalization
model ()Pr |W M .
The domain semantics define an application’s semantic structure
with semantic frames. Figure 1 shows a simplified example of two
semantic frames in the ATIS domain. Figure 2 shows a meaning
representation according to the domain semantics.

< frame name=“ShowFlight” toplevel=“true”>
 <slot name=“Flight” filler=“Flight”/>
< /frame>
< frame name=“GroundTrans” toplevel=“true”>
 < slot name=“City” filler=“City”/>
< /frame>
< frame name=“Flight”>
 <slot name=“DCity” filler=“City”/>
 < slot name=“ACity” filler=“City”/>
< /frame>

Figure 1. Simplified semantic frames in the ATIS domain. The two frames
with “toplevel” attribute are also known as commands. The filler specifies
the semantic object (covered by the corresponding CFG rule) that can fill a
slot. For example, an object that is an instantiation of the Flight frame can
be the filler for the Flight slot of ShowFlight frame, and a string covered
by the “City” rule in a CFG can be the filler of the ACity (ArriveCity) or
the DCity (DepartCity) slot.

< ShowFlight”>
 < Flight>
 < DCity type=“City”> Seattle< /DCity>
 <ACity type=“City”>Boston< /ACity>
 < /Flight>
< /ShowFlight>

Figure 2. The semantic representation for “Show me the flights departing
from Seattle arriving at Boston” is an instantiation of the semantic frames
in Figure 1.

NIPS Workshop: Advances in Structured Learning for Text and Speech Processing, Whistler, BC, Canada, 2005

The HMM topology and the state transition probabilities comprise
the semantic prior model. The topology is determined by the
domain semantics defined by the frames and the transition
probabilities can be estimated from training data. Figure 3 shows
the topology of the underlying states in the statistical model for the
semantic frames in Figure 1.

7:FlightInit 10:FlightFinal

8:ACity

6:ShowFlightFinal5:Flight4:ShowFlightInit

s f

3:GroundTransFinal2:City1:GroundTransInit

9:DCity

Figure 3. The HMM/CFG model’s state topology, as determined by the
semantic frames in Figure 1. On the top is the transition network for the
two top-level commands. State 1 and state 4 are called precommands. State
3 and state 6 are called postcommands. States 2, 5, 8 and 9 represent slots.
They are actually a three state sequence — each slot is bracketed by a
preamble and a postamble (represented by the dots) that serve as the
contextual clue for the slot’s identity.

The lexicalization model, ()Pr |W M , depicts the process of
generating sentences from the topology. It models the distribution
for words to emit from the states in the topology. It uses state-
dependent n-grams to model the precommands, postcommands,
preambles and postambles, and uses CFG to model the fillers of a
slot. The use of knowledge-based CFG rules compensate for the
dearth of domain-specific data.

Given the semantic representation (training examples) in Figure 2,
the state sequence through the topology in Figure 3 is deterministic
as show in Figure 4. The alignments of the words to the state in the
shaded boxes are not labeled. The parameters in these n-gram
models can be estimated with an EM algorithm that treats the
alignments as hidden variables.

Figure 4. Word/state alignments. The segmentation of the word sequences
in the shaded region is hidden. The EM algorithm is applied to train state-
specific n-gram models.

We evaluate the HMM/CFG composite model in the ATIS domain
[2]. The model is trained with ATIS3 category A training data
(~1700 annotated sentences) and tested with the 1993 ATIS3
category A test sentences. Compared to the manually annotated
labels, the test set slot ins-del-sub error rate is 5%. This leads to a
5.3% semantic error rate in the standard ATIS evaluation, which is
slightly better than the best manually developed system (5.5%).

3. PORTING TO CONDITIONAL MODELS

We investigated the application of conditional models to SLU. The
problem can be formulated as assigning a label l to each word in
the word sequence 1

τo of observation o . Here an observation o

consists of a word vector 1
τo and CFG non-termimals that cover

subsequences of 1
τo , as illustrated in Figure 5. The task for the

conditional model is to label “two” as the “NumOfTickets” slot of
the “ShowFlight” command, and label “Washington D.C.” as the
ArriveCity slot for the same task. To do so, the model must learn to
resolves the following ambiguities: the filler/non-filler ambiguity
(e.g. “two” as a NumTickets slot filler vs. as part of the preamble
of ArriveCity); CFG coverage ambiguity (e.g. City vs. State for
“Washington”); segmentation ambiguity (e.g. [Washington][D.C.]
vs. [Washington D.C.]); and semantic label ambiguity (e.g.
[ArriveCity Washington D.C.] vs. [DepartCity Washington D.C.]).

Figure 5. Observation consists of a word sequence and the subsequences
covered by CFG non-terminal symbols.

3.1 CRFs and HCRFs
Conditional Random Fileds (CRFs) [4] are undirected conditional
graphical models that assign the conditional probability of a state
(label) sequence with respect to a vector of the features 1 1()sτ τ,f o .
They are of the following form:

 ()1 1
1() exp ()

()
p s s

z
τ τλ λ

λ
| ; = ⋅ , .

;
o f o

o
 (1)

The parameter vector λ is trained conditionally (discriminatively).
If we assume that 1

TS is a Markov chain given O , then

 (1) ()
1

1

1() exp ()
()

t t
k k

k t
p s f s s t

z

τ
τ λ λ

λ
−

=

⎛ ⎞| ; = , , ,⎜ ⎟; ⎝ ⎠
∑ ∑o o

o
 (2)

In some cases, it may be natural to define feature vectors that
depend on variables that are not directly observed. For example,
the following feature may be defined in terms of an observed
words and an unobserved state in the shaded region in Figure 4:

()
(1) ()

FlightInit,flights
1 if =FlightInit = flights;

()
0 otherwise

t t
t t s

f s s t− ⎧ ∧⎪, , , = ⎨
⎪⎩

o
o

In this case, the state sequence 1
TS is used in the model, but the

sequence is only partially labeled in the observation as
5 8() "DepartCity" () "ArriveCity"l S l S= ∧ = for the words “Seattle”

and “Boston”. The state for the remaining words are hidden
variables. To obtain the conditional probability of the partially
observed label, we need to sum over all possible values of the
hidden variables:

1

(1) ()

1()

1() exp ()
()

t t
k k

k ts l
p l f s s t

z τ

τ
λ λ

λ
−

=∈Γ

⎛ ⎞| ; = , , ,⎜ ⎟; ⎝ ⎠
∑ ∑ ∑o o

o
 (3)

Here ()lΓ represents the set of all state sequences that satisfy the
constraints imposed by the observed label .l CRFs with features
depending on hidden variables are called Hidden Conditional
Random Fields (HCRFs). They are applied to tasks like Phonetic
classification [3].

We train CRFs and HCRFs with gradient-based optimization
algorithms that maximize the log conditional likelihood. The
gradient of the log conditional likelihood is

1 1
1 1() () ()

T TL S L S

T T
P PP PL S Sλ λ λ λ

, | , |

⎡ ⎤ ⎡ ⎤∇ = , ; − , ;⎣ ⎦ ⎣ ⎦O OO O
E f O E f O% % (4)

which is the difference between the conditional expectation of the
feature vector given the observation sequence and label, and its
conditional expectation given only the observation sequence. Due
to the Markov assumption we made earlier in Eq. (2), these
expectations can be computed using forward-backward like
dynamic programming algorithm. In the results reported in this
summary, we applied stochastic gradient decent (SGD) [5] for
model training.

3.2 Porting HMM/CFG Model to HCRF

Our original objective of applying conditional models was to
exploit their discriminative training capability. Initially, we used
the same state topology and features as the one we used in the
HMM/CFG composite model.

Because the state sequence is only partially labeled, a HCRF is
used to model the conditional distribution of labels. The following
features are included in the model:

1. Command prior features capture the likelihood of observing
different top-level commands:

()
(1) () 1 if =0 C()

() , CommandSet.
0 otherwise

t
PR t t

c
t s c

f s s t c− ⎧ ∧ =⎪, , , = ∀ ∈⎨
⎪⎩

o

Here C(s) stands for the name of the top-level command that
corresponding to the transition network containing s.

2. Transition features capture the likelihood of transition from
one state to another:

(1) ()
(1) () 1 2

1 2 1 2

,1 2

1 if
() ,

0 otherwise
, | is a legal trasnition in model topology.

t t
TR t t
s s

s s s s
f s s t

s s s s

−
− ⎧ = , =⎪, , , = ⎨

⎪⎩
∀ →

o

3. Unigram and bigram features capture the words that a state
emits:

()
(1) ()

1

(1) () 1
(1) () 1 2

1

,

, ,1 2

1 if
() ,

0 otherwise

1 if
() ,

0 otherwise

t t
UG t t

t t t t
BG t t

s w

s w w

s s w
f s s t

s s s s w w
f s s t

s

τ

τ

−

− −
−

⎧ = ∧ =⎪, , , = ⎨
⎪⎩
⎧ = ∧ = ∧ = ∧ =⎪, , , = ⎨
⎪⎩

∀

o
o

o o
o

() 1 2| isFiller ; , TrainingDatas w w w¬ ∀ ∈

The model is trained with SGD with two different ways to
initialize the parameters. The flat start initialization set all
parameters to 0. The generative model initialization converts
the parameters of the HMM/CFG composite model to the
conditional model.
Figure 6 shows the test set slot error rates at different training
iterations. The flat start initialization (top curve) never catches up
the 5% baseline error rate of the HMM/CFG composite model. The
generative initialization reduces the error rate to 4.8% at the first
two iterations but quickly gets over-trained afterwards.

The failure of the direct porting of the generative model to the
conditional model can be attributed to the following reasons:

1. The conditional log-likelihood function is no longer a convex
function due to the summation over hidden variables. This
makes it highly likely that model training will settle on a local
optimum. The fact that the flat start initialization failed to
catch up the accuracy of the generative initialization is a clear
indication of the problem.

2. The generative model needs to account for the words in test
data. For that purpose, the n-grams models are properly
smoothed with backed-offs to the uniform distribution over
the vocabulary. This results in a huge parameter space, and
many of the parameters cannot be estimated reliably in the
conditional model, given that model regularization is not as
well studied as in the n-gram generation model.

3. The hidden variables also contribute to the unreliable estimate
of parameters with a small amount of training data.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

Figure 6. Test set slot error rates (in %) at different training iterations. The
top curve is for the flat start initialization. The bottom curve is for the
generative initialization.

3. CRFS FOR SPOKEN LANGUAGE
UNDERSTANDING

An important lesson we have learned from the previous experiment
is that we should not think generatively when we apply conditional
models. We only need to find the important cues that help identify
slots. There is no need to accurately estimate the distribution of
generating every word in a sentence. Hence the separation of
precommands, preambles, postcommands and postambles is no
longer necessary. Every word that appears between two slots is
labeled as the preamble state of the second slot, as illustrated in
Figure 7. This effectively removes the hidden variables and greatly
simplifies the model to a CRF. This not only improves the speed of
model training, but also avoids settling at a local optimum because
the log conditional likelihood is a convex function in CRF.

Figure 7. The state sequence is deterministic once the slots are marked in
the simplified model topology. The fully marked state sequence leaves no
hidden variables and results in a CRF model.

The same command prior and state transition features (with fewer
states) are used as in the HCRF model. For unigram and bigram
features, only the unigrams and bigrams that occur in front of a
CFG non-terminal that can be the filler of a slot are included as the
features for the preamble state of that slot:

()

(1) ()
1

(1) () 1
(1) () 1 2

1

,

, ,1 2

1 if
() ,

0 otherwise

1 if
() ,

0 otherwise

| isFil

t t
UG t t

t t t t
BG t t

s w

s w w

s s w
f s s t

s s s w w
f s s t

s

τ

τ

−

− −
−

⎧ = ∧ =⎪, , , = ⎨
⎪⎩
⎧ = = ∧ = ∧ =⎪, , , = ⎨
⎪⎩

∀ ¬

o
o

o o
o

()
1 2 1 2

ler ;
, | in the training data, , appears in front

 of sequence covered by a CFG rule that is
 the filler of the slot preambled by .

s
w w w w w w

s

∀

One advantage of CRFs over generative models is that we can
introduce more non-independent, non-homogeneous features to the
model. The first additional feature set we introduce to the model
addresses a side effect of not modeling the generation of every
word in a sentence. If a preamble state has never occurred in a
position that is confusable with a filler of a slot, and a word in the
filler has never occurred as part of the preamble, then the unigram
feature of the word for that preamble has weight 0. In such case,
there is not penalty for mislabeling the word as the preamble. This
is one of the most common errors we observed in the development
set. The chunk coverage features are introduced for the model to
learn the likelihood of a word covered by a CFG non-terminals
being labeled as a preamble:

() ()
(1) ()

,

1 if C() covers(,) isPre()
()

0 otherwise

t t t
CC t t

c NT

s c NT s
f s s t− ⎧ = ∧ ∧⎪, , , = ⎨

⎪⎩

o
o

Here isPre()s indicates that s is a preamble state.

In many cases the identity of a slot depends on the preambles of
the slot in front of it. For examples, “at two PM” is a DepartTime
in “flight from Seattle to Boston at two PM” but an ArriveTime in
“flight departing from Seattle arriving in Boston at two PM.” In
both cases, its previous slot is ArriveCity, so the transition features
will not be helpful for slot identity disambiguation. The identity of
the time slot depends on the preamble of the ArriveCity slot. The
previous slot’s context features introduce this dependency to the
model:

(1) ()
1 2 1

(1) ()
1 1 2, ,1 2

if (, , 1)
1

() isFiller() Slot() Slot()
0 otherwise

t t

PC t t
ws s

s s s s w s t
f s s t s s s

−

−

⎧ = ∧ = ∧ ∈Θ −
⎪, , , = ∧ ∧ ≠⎨
⎪
⎩

o
o

Here the condition 1isFiller()s restricts that 1s is a slot filler (not a
slot preamble.) Slot()s stands for the semantic slot associated with
the state ,s which can be the slot’s filler or its preamble.

1(, , 1)s tΘ −o is a set that contains the two words in front of the
longest sequence that ends at position 1t − and that is covered by
the filler non-terminal for 1Slot()s .

The next set of features helps prevent the model from making
mistakes like segmenting “Washington D.C.” into two different
cities. The slot boundary chunk coverage feature is activated when
a slot boundary within a task is covered by a CFG non-terminal
NT:

()
1

(1) () (1) () (1) ()
,

if C() covers(,)
1

() isFiller() isFiller()
0 otherwise

t t
t

SB t t t t t t
c NT

s c NT
f s s t s s s s

−
− − −

⎧ = ∧
⎪, , , = ∧ ∧ ∧ ≠⎨
⎪
⎩

o
o

This feature shares its weight with
,

(1) ()
1().

t NT

CC t tf s s tτ− , , ,o So no extra

model parameters are introduced.

Table 1 shows the Number of new parameters and the slot ins-del-
sub error rate after each new feature set is introduced into the
model, taken from the training iteration that obtains the best
accuracy on the development set. The inclusion of new features
makes the model more accurate in predicting slot identity and
reduces the error rate by 17% relatively over the generative
HMM/CFG composite model.

Features # of Parameters Slot Error Rate
Task prior 6
+Slot Transition +1377
+Unigrams +14433 8.40%
+Bigrams +58191 7.87%
+ChunkCoverForWords +156 6.87%
+PrevSlotContext +290 5.46%
+ChunkCoverSlotBoundaries +0 4.17%

Table 1. Number of additional parameters and the slot ins-del-sub error
rate after each new feature set is introduced into the model.

It is important to note that features similar to , and CC SB PCf f f
could not be easily introduced in the generative model. The
capability of incorporating non-homogeneous features is the key
benefit of CRFs. This is consistent with the findings in that work
that used conditional model for POS tagging [Lafferty, 2001
#141].

4. DISCUSSIONS AND CONCLUSIONS
We have shown that conditional model reduces SLU slot error rate
by 17% over the generative HMM/CFG composite model. The
improvement was mostly due to the introduction of the new
features into the model. We have also discussed about our
experience in direct porting a generative model to a conditional
model, and demonstrated that it may not helpful at all if we still
think generatively in conditionally modeling --- more specifically,
using the same feature set as a generative model in a conditional
model may not help much. The key benefit that the conditional
models bring is their capability of incorporating non-independent
and non-homogeneous features.

REFERENCES

[1] Y.-Y. Wang, L. Deng, and A. Acero, "Spoken Language
Understanding --- An Introduction to the Statistical Framework."
IEEE Signal Processing Magazine, vol. 22, 2005.
[2] P. Price, "Evaluation of Spoken Language System: the ATIS
domain." In the Proceedings of DARPA Speech and Natural
Language Workshop, Hidden Valley, PA, 1990.
[3] A. Gunawardana, M. Mahajan, A. Acero, and J. C. Platt,
"Hidden Conditional Random Fields for Phone Classification." In
the Proceedings of Eurospeech, Lisbon, Portugal, 2005.
[4] J. Lafferty, A. McCallum, and F. Pereira, "Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data." In the Proceedings of ICML, 2001.
[5] H. J. Kushner and G. G. Yin, Stochastic Approximation
Algorithms and Applications: Springer-Verlag, 1997.

